Size: px
Start display at page:

Download ""

Transcription

1 ( 30 )

2 ( Excel Conditional probability Bayes

3 cumulative distribution function χ Moment Generating Function Chebyshev Normal distribution χ Chi-squared distribution F F-distribution t t-distribution Testing Statistical Hypothesis : t

4

5 Excel gretl χ F t : 4

6 1..4 (

7 HP WEB EXCEL gretl gretl Excel gretl 4 Wooldridge, Introducory Econometrics: A Modern Approach, South Westren Publishing Hill, Griffiths, and Lin, Principles of Econometrics, Wiley Stock and Watson, Introduction to Econometrics, Pearson.( ) Gujarati and Porter, Basic Econometrics, McGrow Hill 6

8 The Lay Tasting Tea 1.4 Excel ( ) Excel gretl R gretl R OX Scilab Octave Eviews STATA TSP Eviews TSP STATA Gauss MATLAB Excel gretl gretl 1.5 A1 A ( 3 ) R 7

9 .1 1 x 1, x,..., x n : n Mean n x = 1 n x i Variance σ x = 1 n ( n n ) (x i x) = 1 x i n x n Standard deviation σ x = σ x Coefficient of variation / cv x = σ x x Range Median 8

10 Mode Quartile 5 % 1 first quartile 50 % second quartile 75 % 3 third quartile / 0 1 x i = x i x σ x. (x 1, y 1 ), (x, y ),..., (x n, y n ) : n Covariance ( Cov(x, y) = 1 n n ) (x i x)(y i ȳ) = 1 x i y i n x ȳ n n Correlation Cor(x, y) = Cov(x, y) σ x σ y = 1 n n x i x σ x yi ȳ σ y ( 1 Cor(x, y) +1) 9

11 X, Y x i = X i X, y i = Y i Ȳ y i = βx i ˆβ xi y i xi y = i r = xi ˆβ = s Y r xi yi s X 3 Ŷ = ˆα + ˆβX + ˆγZ ˆβ Z Y X : r Y X.Z = r Y X r Y Z r XZ 1 rxz 1 ry Z X, Y Z r Y X.Z = r Y X Y Z Ŷ = ˆα + ˆβZ Y Z û = Y Ŷ Y Z r Y X.Z û = Y Ŷ = Y (ˆα + ˆβZ), ˆv = X ˆX = X (ˆγ + ˆδZ) rûˆv Y Ŷ R = r Y Ŷ = ( Ŷ i Ȳ ) (Yi Ȳ ) 10

12 3 Excel =if(,a,b) a b 1) ) =IF(D>=60,, ) =IF(D>=80,,IF(D>=65,,IF(D>=50,, )))

13 3.5 x = 1 n n x i s = 1 n 1 S = 1 n =average() n (x i x) =var() n (x i x) =varp() σ x = S =stdev() cor(x, y) = 1 n n (x i x)(y i ȳ) σ x σ y =correl() 3.6 Excel ( ) HP Excel 1) ) 3.7 m σ {x i } n x i m σ = y i {y i } n y i = 50 + x i m σ/10 x i 3.8 =frequency() Excel 1

14 x n ax n 1 + c (mod m) 1. (mod m) x n m ( ). a, c, m Excel =rand() [0, 1) 1. A1 =rand() return. F9 3. A1 A A1000 F9 [0,1] B B1 B C1 =frequency($a$1:$a$1000,b1:$b$11) cf. 4. C1 C C11 5. D =C-C1 D D3 D11 6. D13 =sum(d:d11) D D F9? Excel Add-In Excel Add-in 13

15 risk40t.xla : middleton/decision.htm Monte Carlo Simulation Add-In for Excel, Trial Version.40. Developed by Mike Middleton University of San Francisco [0, 1) U 1, U, U 3 X F (x) f(x) F (x) = P r{x x}, f(x) = d dx F (x) F (x) F 1 (x) F 1 (y) = inf {x : F (x) y} 0 y 1 X = F 1 (U) X F (x) P r{x x} = P r{f 1 (U) x} = P r{u F (x)} = F (x)

16 4 4.1 trial sample space event Ω E Ω 0 P (E) 1 P (Ω) = 1 A B = P (A B) = P (A) + P (B) A B : A B : A B = A B = A + B 4.1. A A A C P (A C ) = 1 p(a) A A C = P (A) + P (A C ) = P (Ω) = 1 P ( ) = 1 P (Ω) = 0 A B P (A) P (B) B = A + A C B P (B) P (A) = P (A C B) 0 P (A B) = P (A) + P (B) P (A B) A B = A B C + A B + A C B A = A B + A B C B = B A + B A C P (A B) P (A) P (B) = = P (A B) 15

17 X P (X = k) P (X = k) 0 k P (X = k) = 1. P k = P (X = k) = c k c X? X = E(X) = 1 k= k P (X = k) = = 7 V ar(x) = E ( (X X) ) = 1 k= (k X) P (X = k) = = σ = V ar(x) Conditional probability P (B A) = P (A B) P (A) or P (A B) = P (A) P (B A) 16

18 4.1.6 A, B independent P (B A) = P (B), P (A B) = P (A) A, B P (A B) = P (A) P (B). n r n r 1 A B 1 A B? Ω A 1, A,... E Ω = A 1 + A + A i A j = E = E Ω = (A 1 E) + (A E) + P (E) = P (A i ) P (E A i ) i Bayes Ω A 1, A,... E comment!! P (A i E) = P (A i E) P (E) = P (A i) P (E A i ) P (A i ) P (E A i ) P (A i E) = P (A i) P (E A i ) P (A i ) P (E A i ) i i P (A i ) P (E A i ) (i = 1,,...) P (A i E) P (A i ) P (A i E) 1. 3 A B C 50 % 30 % 0 % A B C 3 % 4 % 5 % (1) 1? () 1 C? 17

19 1 (1) # # # = A, B, C F F = (A F ) (B F ) (C F ) P (F ) = P (A F ) + P (B F ) + P (C F ) = P (A) P (F A) + P (B) P (F B) + P (C) P (F C) = = () P (C F ) P (C F ) = P (c F ) P (F ) = P (C) P (F C) P (F ) = = % 80 % 5% 95 %? E A : : A C : P (A E) P (E A) = 0.3 P (E A C ) = 0.8 P (A) = 0.05 P (A C ) = 0.95 P (A E) P (A E) P (A E) = = P (E) P (E A) + P (E A C ) P (A) P (E A) = P (A) P (E A) + P (A C ) P (E A C ) = = U 1 U U 3 U U 5 5 U U 1 U 6 U 3 (1)? : 71/70 () U? : 0/53 18

20 discrete : continuous : 4..1 r 0 π 0 x x 0 π x = πr? 0 πr r πr + dx P {πr x π + dx} = 1 πr dx dx 0 P {x = πr} X Ω = {x 0, x 1,..., x n,...} 1 {p k ; k = 0, 1,,...} p k 0 p k = 1 p k = P (X = x k ) (k = 0, 1,,...) k {p k } X 4..3 X Ω = R(set of real number) f(x) f(x) 0, f(x)dx = 1 a < b P (a < X < b) = Ω b a f(x)dx f(x) X probability density function 4..4 X {p k } ϕ(x) x ϕ(k) p k X ϕ(x) E {ϕ(x)} k ϕ(x) = x E{X} = k k p k = X or µ

21 ϕ(x) = ax + b E{X} = ae{x} + b ϕ(x) = (x µ) E { (X µ) } = k (X µ) (k µ) p k = V ar(x) σ = V ar(x) i.e. V ar(x) = σ σ V ar(ax + b) = a V ar(x) V ar(x) = E(X ) (E(X)) X f(x) ϕ(x) x ϕ(x)f(x)dx X ϕ(x) E {ϕ(x)} Ω X X = E(X) = Ω x f(x)dx (= µ) σ = V ar(x) = E ( (x µ) ) = σ = V ar(x) Ω E{aX + b} = ae{x} + b V ar(ax + b) = a V ar(x) V ar(x) = E(X ) (E(X)) (x µ) f(x)dx X p k = A λk k! k = 0, 1,,... (a) A (b) E(X) V ar(x). e x = k=0 x k k! (a) p k = A k=0 k=0 A = e λ λ k k! = A eλ = 1 e 0

22 (b) E(X) = E(X ) = k e k=0 k e k=0 k! = λ λ k 1 e λ (k 1)! = λ e λ = λ k=1 k! = λ λ k 1 eλ (1 + k 1) (k 1)! k=1 λ k 1 (k 1)! + λ e λ λ k (k )! = λ + λ λ λk = λ e λ k=1 λ λk V ar(x) = E(X ) (E(X)) = λ k= : Poisson. X p k = n C k p k (1 p) n k k = 0, 1,,... E(X) = k k=0 n 1 = np k 1=0 n! k!(n k)! pk (1 p) n k (n 1)! (k 1)! ((n 1) (k 1))! pk 1 (1 p) (n 1) (k 1) = np (1 + (1 p)) n 1 = np E(X ) = k n! k!(n k)! pk (1 p) n k k=0 n 1 = np = np = np k 1=0 n 1 k 1=0 n 1 k 1=0 k (n 1)! (k 1)! ((n 1) (k 1))! pk 1 (1 p) (n 1) (k 1) (1 + k 1) n 1 + n(n 1)p (n 1)! (k 1)! ((n 1) (k 1))! pk 1 (1 p) (n 1) (k 1) (n 1)! (k 1)! ((n 1) (k 1))! pk 1 (1 p) (n 1) (k 1) k =0 = np + n(n 1)p V ar(x) = np + n(n 1)p (np) = np(1 p) (n )! (k )! ((n ) (k ))! pk (1 p) (n ) (k ) 1. X f(x) = 1 (a < x < b) b a 0 others 1

23 X (a, b) Uniform distribution X Unif(a, b). X E(X) = E(X ) = b x a b a x 1 b a dx = a + b 1 b a dx = 1 3 (a + ab + b ) σ = V ar(x) = a + ab + b ( ) a + b = 3 σ = b a 3 { λ e λx (0 < x < + ) f(x) = (λ 0) 0 others (b a) 1 X λ exponential distribution E(X) = 1 λ V ar(x) = 1 λ 3. X f(x) = 1 ) (x µ) exp ( πσ σ ( < x <, < µ <, 0 < σ < ) X µ σ X N(µ, σ) E(X µ) = 1 ( + (x µ) exp 1 ( ) ) x µ dx = 0 πσ σ E(X) = µ V ar(x) = E ( (x µ) ) = 1 ( + ( ) ) (x µ) 1 x µ exp dx πσ σ = 1 { ( + (x µ) σ exp 1 ( ) )} x µ dx πσ σ ( = {[ σ 1 (x µ) exp 1 ( ) )] x µ + πσ σ ( + +σ exp 1 ( ) ) } x µ dx σ ( = σ 1 + exp 1 ( ) ) x µ dx = σ πσ σ f(x)

24 (a) x = µ (b) x = µ ± σ (c) lim f(x) = 0 x ± 4..6 X N(µ, σ ) z = x µ Z N(0, 1 ) σ ( 1 E(Z) = E σ X µ ) = 1 σ σ µ µ σ = 0 ( 1 V ar(z) = V ar σ X µ ) ( ) 1 = V ar(x) = 1 σ σ σ σ = f(y ) = P (z Y ) = P (x µ + σy ) = µ+σy 1 e 1 ( x µ σ ) dx πσ x µ = t x = t = x = µ + σy t = Y dx = σdt σ Y 1 F (Y ) = P (z Y ) = e t dt π Z N(0, 1 ) x µ = t σ 1 πσ e 1 ( x µ σ ) 1 πσ e t dx dt = 1 e t π X f(x) y = h(x) Y = h(x) h (x) 0 g(x) = f(h 1 (y)) dx dy 4..7 cumulative distribution function x f(x) F (x) F (x) = x 3 f(t)dt

25 P (a < x < b) = F (b) F (a) lim F (x) = 0 x lim F (x) = 1 x + F (x) = d dx x f(t)dt = f(x) 4..8 x x N(0, 1) y = x G(y) = P r{x y} = P r{ y x y ( ) 1 y} = exp t dt = F ( y) 1 0 π y g(y) = G (y) = 1 f( y) = 1 y 1 ( exp y ) (0 < y < + ) y π 0 otherwise 4..9 χ 0 1 S n = x 1 + x + + x n n χ S n = x 1 + x + + x n χ (n) X χ (n) E(X) = n V ar(x) = n X χ (n) f(x) = 1 ( n ) x n Γ n 1 e x 0 < x < + 4

26 Γ( ) Gamma Function Γ(p + 1) = + 0 Γ(p) = + x p lim x + e x = 0 0 x p 1 e x dx (p 0) x p e x dx = [ x p e x] p + Γ(p + 1) = pγ(p) p x = y ( ) 1 Γ = Γ(1) = 1 Γ(n + 1) = nγ(n) = n(n 1)Γ(n 1) = = n! + 0 x 1 e x dx = x p 1 e x dx = pγ(p) e y dy = π + e y dy = π? φ(t) = (1 t) n t < 1 χ Moment Generating Function X = x i p k = P (X = x k ) {p k } φ(z) = k z k p k φ(1) = k p k = 1 φ (z) = k kz k 1 p k, φ (z) = k k(k 1)z k p k,... z = 1 φ (1) = k kp k = E(X) φ (1) = k k(k 1)p k = k k p k k kp k = E(X ) E(X) 5

27 1. X B(n, p) φ(z) = n z k nc k p k (1 p) n k = (pz + (1 p)) n k=0 φ (z) = np (pz + (1 p)) n 1 φ (pz + (1 p)) n E(X) = φ (1) = np V ar(x) = E(X ) (E(X)) = (φ (1) + φ (1)) (φ (1)) = n(n 1)p + np n p = np(1 p). X P oisson(λ) φ(z) = z k e λ λk k! = eλ(z 1) k=0 X f(x) φ X = E(e tx ) = X φ(0) = φ (t) = φ (t) = e tx f(x)dx = f(x)dx = 1 k=0 xe tx f(x)dx, φ (0) = x e tx f(x)dx, φ (0) = t k x k f(x)dx = k! + + k=0 xf(x)dx = E(x) x f(x)dx = E(X ) t k k! E(Xk ).. φ (n) (t) = + x n e tn f(x)dx, φ (n) (0) = + x n f(x)dx = E(X n ) 1. 6

28 X N(µ, σ ) MGF φ(t) = 1 ( + exp(tx) exp 1 ( ) ) x µ ) dx = = exp (µt + σ πσ σ t ) φ (t) = (µ + σ t) exp (µt + σ t ) ) φ (t) = σ exp (µt + σ t + (µ + σ t) exp (µt + σ t φ (0) = µ = E(X) φ (0) = σ + µ = E(X ) X 1, X,..., X n φ X1 (t), φ X (t),..., φ Xn (t) c 1 X 1 + c X + + c n X n φ(t) φ c1 X 1 +c X + +c n X n (t) = φ X1 (c 1 t)φ X (c t) φ Xn (c n t) X i N(µ i, σ i ) X 1, X X 1 ± X φ(t) φ X1 ±X (t) = φ X1 (t)φ X (±t) = exp (µ 1 t + σ 1 = exp ((µ 1 ± µ )t + σ 1 ) + σ t ) (±µ t + σ ) t X 1 ± X N(µ 1 ± µ, σ 1 + σ ) X i N(µ i, σ i ), i.i.d X 1 + X + + X n N(µ 1 + µ + + µ n, σ 1 + σ + + σ n ) X 1, X,..., X n µ 1 = µ = = µ n = µ σ 1 = σ = = σ n = σ X 1 + X + + X n n N ) (µ, σ n µ σ n 0 n 7

29 φ(t) = exp (t(c 1 x 1 + c x + + c n x n )) f(x 1, x,..., x n )dx 1 dx dx n X 1, X,..., X n f(x 1, x,..., x n ) = f(x 1 )f(x ) f(x n ) φ(t) = φ 1 (c 1 t)φ (c t) φ n (c n t) µ σ Π n x 1, x,..., x n x = (x 1 + x + + x n )/n x µ σ/ n n N(0, 1) z = x µ σ/ n = x 1 µ σ n + x µ σ n + + x n µ σ n x 1 µ σ/ n = u u φ 1(t) φ u (t) = E(e ut ) = 1 + E(u)t + t! E(u ) + t3 3! E(u3 ) + ( = 1 + t 1! nσ E ( (x µ) ) ) ( + t3 3! ( ) == 1 + t 1 n + O n 3/ = n x j µ σ n φ(t) = (φ u (t)) n = 1 (σ n) 3 E ( (x 3 µ) 3) ( t + ε(n) ), lim ε(n) = 0 n ) + z φ(t) ( ) n 1 + t + ε(n) = n ( 1 + t + ε(n) n ) n t + ε(n) t + ε(n) e t 4..1 Gauss u M u M 8

30 Gauss X = u M X P r(x X x + dx) = f(x)dx f(x) < x < + + f(x)dx = 1 u n M 1, M,..., M n X i = M i u X i P r(x 1 X 1 x 1 + dx,..., x n X n x n + dx) = Πf(x i )(dx) n Πf(x i ) = Πf(M i u) u M 1, M,..., M n u ū ( ) ū u ) Gauss ū = (M 1 + +M n )/n Gauss d f(mi u) = 0 f (x 1 ) du f(x 1 ) + f (x ) f(x ) + + f (x n ) f(x n ) = 0 f (x) f(x) = F (x) F (x 1) + F (x ) + + F (x n ) = 0 (ū) (M 1, M,, M n ) (M 1 ū)+(m ū)+ +(M n ū) = 0 (x 1 + x + + x n = 0) dxn dx i = 1(i = 1,,, n 1) F (x 1 )+F (x )+ +F (x n ) = 0 x i F (x i )+F (x n ) dxn dx i = 0 F (x i ) = F (x n )(i = 1,,, n 1) F (x 1 ) = F (x ) = = F (x n ) F (x) x F (x) = c 1 F (x) = c 1 x + c F (x 1 ) + F (x ) + + F (x n ) = 0 c = 0 f (x) f(x) = c 1x f(x) = ke c1 x c 1 < 0 c 1 = h k f(x) = h e h x h > 0 π 9

31 4..13 Chebyshev X µ σ k P { X µ kσ} 1 k σ = V ar(x) = = µ kσ µ kσ + (x µ) f(x)dx (x µ) f(x)dx + (x µ) f(x)dx + ( µ kσ k σ f(x)dx + P { X µ kσ} 1 k µ+kσ µ kσ + µ+kσ + µ+kσ (x µ) f(x)dx + (x µ) f(x)dx + µ+kσ (x µ) f(x)dx ) f(x)dx = k σ P { X µ kσ} 1 Chebyshev x 1, x,..., x n f 1, f,..., f n x σ x i x λσ (for arbitary positiveλ > 1) N (1 1λ ) N = n f i σ Nσ = n f i (x i x) I = {i; x i x λσ} Nσ f i N N ( λ = N 1 1 ) λ f i (x i x) λ σ f i f i < N σ N i I i I i I i I X Chebyshev Chebyshev { X X B(n, p) ε lim P x } n n p < ε 30

32 X B(n, p) µ = np σ = np(1 p) Chebyshev { P x np < k } np(1 p) 1 1 { k x } p(1 p) P n p < k 1 1 n k p(1 p) ε = k k p(1 p) { x } = n ε 1 P n n p p(1 p) < ε 1 { ε n lim P x } n n p < ε = 1 ε n x p n a X 0, x < 0 F (x) = x a, 0 x 1 1,, 1 < x (a) a = 1 3 (b) (c) a > 0. mode f(x) x X f(x) = { cx e x d, 0 < x < + 0, x 0 x = 3 mode c d 3. χ f(x) f(x)dx = 1 α α X 5 χ mode median mean 4. : χ X 5 χ P (X < c) = 0.90 c 31

33 Normal distribution X N(µ, σ ) Z = X µ σ N(0, 1 ) X N(µ, σ ) cx N(cµ, c σ ) X 1 N(µ 1, σ 1 ) X N(µ, σ ) X 1, X : indep. X i N(µ i, σ i ) X i : i.i.d. X 1 + X N(µ 1 + µ, σ 1 + σ ) ( n n X i N µ i, x=1 x=1 n x=1 σ i ) 4.3. χ Chi-squared distribution X N(0, 1 ) X χ (1) X i N(0, 1 ) X i : i.i.d. n S n = X i χ (n) x=1 ( ) X µ X N(µ, σ ) χ (1) σ X i N(µ i, σ i ) n ( ) Xi µ i S n = χ (n) X i : i.i.d. σ i F F-distribution X 1 χ (n 1 ) X χ (n ) X 1, X : indep. X 1 n 1 X n F (n 1, n ) t t-distribution X 1 N(0, 1) X χ (n ) X 1, X : indep. X 1 X n t(n) X F (1, n) X t(n) 3

34 n p k P (X = k) ( n ) P (X = k) = p k (1 p) n k k ( ) n n! k = k!(n k)! n, p X Bin(n, p) E(X) = np V ar(x) = np(1 p) Excel B4 n = 1, p = 0.5 n B9 p B P (X = k) = e λ λ k (k = 0, 1,,...) k! X X P oisson(λ) E(X) = V ar(x) = λ 1/λ λ Excel λ = 15 λ B µ σ X N(µ, σ ) f(x) = 1 e 1 ( x µ σ ) πσ X N(µ, σ ) Z = X µ σ 0 1 Excel B4 0 B5 1?

35 statistical inference statistical estimation test of statistical hypothesis 4.5. point estimation point estimator interval estimation unbiasedness θ ˆθ E(ˆθ) = θ ˆθ θ unbiased estimator consistency θ ˆθ ϵ lim P ( ˆθ θ} ε) = 0 n ˆθ θ consistent estimator efficiency θ θ 1, θ θ 1 θ θ 1 θ µ σ n x 1, x,..., x n x n = 1 n (x 1 + x + + x n ) s = 1 n ( (x1 x) + (x x) + + (x n x) ) E( x n ) = 1 n nµ = µ E(s ) = n 1 n σ 34

36 x n n n 1 s = 1 n n 1 (x i x) x n µ σ n ( ) x n µ p σ/ n > k < 1 k ε = k σ n P ( x n µ > ε) < σ nε lim P ( x n µ > ε) = 0 n x n µ σ x i N(µ, σ ) x N(µ, σ n x = 1 n (x 1 + x + + x n ) S = 1 ( (x1 x) + (x x) + + (x n x) ) n 1 x µ (n 1)S ) σ N(0, 1) σ n χ (n 1) t = x µ σ/ n (n 1)S σ (n 1) = x µ S n t(n 1) P ( t t α ) = α α t α x µ S 1 α n S S 1 α confidence coefficient x t α n µ x + t α n 1 α confidence interval (n 1)S σ χ (n 1) 35

37 1 α P (z χ L ) = α P (z χ U ) = α χ L, χ U χ L (n 1)S σ (1 α) (n 1)S χ U 1. 1 χ U σ σ (n 1)S χ L 1 10cm 90 % 95 % 3cm. 90 % µ µ µ µ µ cm. 90 % µ 3/ / 10 µ / 10 8, 44 µ / 10 µ / µ {360, 410, 350, 380, 40, 400, 410} g 90 % 95 % 36

38 g (4400/6)g 4400/6 = 10.4g µ 4400/6 7 t(7 1) µ µ % µ % 35.0 µ 48.0 (xi x) = 4400 (n 1)S σ σ Testing Statistical Hypothesis T N T p N 1 p 1 n = 1 T alternative hypothesis H 1 : p > 1 n = 1 T X X 3 T X

39 T X x P {X = x} = n C x p x (1 p) x (x = 0, 1,,..., n) p H 0 : p = 1 null hypothesis H 0! n = 1 T 1 H 0 T N 1 T 1 P {X = 1} = 1 C 1 ( 1 ) 1 ( ) 1 0 = % H 0 10,000 3 H 0 H 0 reject n = 1 T % T significant level Fisher 5 % 1 % 5 % T % H 0 H 0 H 0 H 1 H 0 critical region H 1 : p > 1 x 10, {10, 11, 1} H 1 : p < 1 x, {0, 1, } 5 % D : T 10 P (D H 0 ) = = H 0 H 1 38

40 H 0 D Type 1 error α D H 0 Type error H 0 : H 0 : H 0 : H 0 : One-tailed test Two-tailed test : N 1oz 5 {0.90oz, 0.95oz, 1.00oz, 1.05oz, 0.85oz} 1.00oz 0.05oz. : 0.95 : 0.05 H 0 : µ = 1.00 H 1 : µ % x µ σ = =.4 n 5 5 % oz. : t oz S S = 1 n 1 n (x i x) σ S (n 1) t x µ S n t(n 1) 39

41 x µ S n = = % : N %. p H 0 : p = 0.05 i x i { 1: x i = 0: E(x i ) = 1 p + 0 (1 p) = p V ar(x i ) = (1 p) p + (0 p) (1 p) = p(1 p) x = 1 n E( x) = p V ar( x) = n x i p(1 p) n N x p p(1 p) x p p(1 p) = n N(0, 1) (1 0.05) =.4 5 % n : N or t Π 1, Π Π 1 Π n 1 n {x 1 1, x 1,..., x 1 n 1 }, {x 1, x,..., x n } x 1, x µ i σ 1 40

42 x 1 N (µ 1, σ 1 ) n 1 x N (µ, σ ) H 0 : µ 1 = µ n z = x 1 x σ 1 + σ n 1 n N(0, 1) σ 1 = σ 3 z = x 1 x 1 σ + 1 n 1 n S S 1 n 1 = n 1 + n n (x i x) + (y j ȳ) σ z t(n 1 + n ) σ 1 σ 4 5. : N Π i (i = 1, ) P p i Π i n i P R i H 0 : p 1 = p ( R i N p i, p ) i(1 p i ) n i n i 3 R 1 n 1 R n N j=1 ( p 1 p, p 1(1 p 1 ) + p ) (1 p ) n 1 n 3 σ 1 = σ

43 z = R 1 R n 1 n p(1 p) p(1 p) + n 1 n N(0, 1), p = p 1 = p = R 1 + R n 1 + n 6. : χ 1 5 1oz 1.00oz 0.05oz 0.05oz σ σ 0 H 0 : σ = σ 0 Π(µ, σ ) n {x 1, x,..., x n } n (x i x) σ χ (n 1) H 0 : σ = σ 0 n (x i x) n 1 χ 1 { 0.90oz, 0.95oz, 1.00oz, 1.05oz, 0.85oz} x = 0.95 z = 5 n=1 σ (( ) + + ( ) ) = χ 5 % χ.5 %.5 % : χ x x m x p 1, p,..., p m x n m n 1, n,..., n m n j = n np 1, np,..., np m x H 0 : H 1 : p 1 = p 10, p = p 0,..., p m = p m0 H 0 4 m p j0 = 1 j=1 j=1

44 H 0 z = m (n i np i0 ) t(m 1) np i0 5 z H 0 : p 1 = 1 6, p = 1 6,..., p 6 = 1 6 z = 6 (n i np i0 ) (44 50) (51 50) (57 50) = = 3.1 np i % z 5 χ 5 % M F B G = = pp

45 H 0 : H 0 : p MB = p M p B, p MG = p M p G, p F B = p F p B, p F G = p F p G 7 z = (30 0) 0 + (0 30) 30 + (10 0) 0 + (40 30) 30 = = 1 χ 5 % 5 % 3.84 m n 1 n sum 1 x 11 x 1 x 1n n 1 x 1 x x n n m x m1 x m x mn n m sum x 1 x x n n z = m n j=1 ( x ij n ni n n j n n ni n n j n ) χ ((m 1)(n 1)) (m 1)(n 1) χ (m 1) (n 1) 44

46 5 5.1 x y y = f(x) x y 1 6 y = a + bx log y = α + β log x a α b β 7 x y y = f(x) u : E(u i ) = 0. : E ( (u i ) ) = σ i = σ 3. 0 : E(u i, u j ) = 0 (i j) x y 1 7 x y y = Ax β 45

47 5.4 Y i = α + βx i + u i (i = 1,,..., T ) ((x 1, y 1 ), (x, y ),..., (x T, y T )) y i = ˆα + ˆβx i e i = y i ˆα ˆβx i i = 1,,..., T e i = (y i ˆα ˆβx i ) = φ(ˆα, ˆβ) ˆα, ˆβ α, β φ(ˆα, ˆβ) ˆα, ˆβ ( 8 ) 9 y i = T ˆα + ˆβ x i x i y i = ˆα x i + ˆβ α = β = ˆα = ȳ ˆβ x (x i x)(y i ȳ) ˆβ = (x i x) x i 1 T x x i x y i (xj x) x i x y i (xj x) y OLS y i = α + βx i + u i ˆβ = β + x i x u i (xj x) 8 9 ( x, ȳ) 46

48 u i OLS 10 u i ( ) xi x ω i = (xj x) ˆβ = β + E( ˆβ) = E ( ω i u i ˆβ β + ) ω i u i = β + V ar( ˆβ) ( = E ( ˆβ β) ) = ω i E(u i ) = β ω i E(u i ) + i j ω i ω j E(u i u j ) = σ (xi x) 0 ˆβ β Best Linear Unbiased Estimator OLS BLUE 5.6 β OLS ˆβ y 1, y,..., y T β β β = d i y i d 1, d,..., d T β E(β ) = d i E(y i ) = α d i x i = β d 1, d,..., d T d i = 0, d i x i = 0 10 α 47

49 ( T ) V ar(β ) = V ar d i y i = d i V ar(y i ) = σ T (d i ω i + ω i ) T = σ ( (di ω i ) + ω ) T i + (d i ω i )ω i σ ω i = V ar( ˆβ) d i = ω i β ((d i ω i )ω i ) = d i x i x d i ( T ) = 0 (x i x) (x i x) (x i x) 5.7 { ˆβ β z = ( T ) σ (x i x) 1 H 0 : β = 0 H 1 : β 0 ˆβ = ( T ) σ (x i x) 1 N(0, 1) σ z σ σ ˆσ 11 t = z ˆσ ˆσ = 1 T σ T «P ˆσ (x i x) ˆβ = (y i ˆα ˆβx i ) ˆσ σ χ (T ) ˆβ ( T ) ˆσ (x i x) 48 1 t(t )

50 5.8 : t t (x i, y i ) x i ŷ i ŷ i = ˆα + ˆβx i e i = y i ŷ i (y i ȳ) = (ŷ i ȳ) + y 1 e i R = / = 1 - / R = (ŷ i ȳ) = 1 (y i ȳ) e i (y i ȳ) R R 13 R R ( Σei ) R /(T k 1) = 1 (Σ(y i ȳ) Σ = T ) /(T 1) T k t - 13 R = 1 49

51 OLS BLUE d.w. y i = α + βx i + u i u i = ρu i 1 + ϵ i H 0 : ρ = 0, H 1 : ρ 0 d.w. = (e i e i 1 ) i= e i ρ ρ = e i e i 1 i= e i e i e i ρ d.w. (1 ρ) i= d.w.= d.w.=0 d.w.=4 d.w. d.w. d.w. d.w. d.w

52 5.1 y i = αz i + βx i + u i z i = 1 α z i x i z i λx i y i = αz i + βx i + u i (λα + β)x i + u i λα + β α, β 5.13 y i = α + βx i + u i V ar(u i ) = σ i σ i OLS y i = β 0 + β 1 x 1i + β x i + + β k x ki + ε i (i = 1,,..., n) 1 1. k(n). ε 1, ε,..., ε n N(0, σ ) 3. t d.w : t { H 0 : β j = β j0 H 1 : β j β j0 51

53 t. : F { ˆβ j β j s.d.of ˆβ j t (n (k + 1)) H 0 : β 1 + β = 1, β 3 = β 30, β 4 = β 5 H 1 : H 0 F RSS(H 0 ) := RSS(H 1 ) := F = (RSS(H 0) RSS(H 1 ))/p F (p, n k 1) p RSS(H 1 )/(n k 1) α % F α (p, n k 1) F : Y = AK α L β or log Y = Ã + α log K + β log L α + β = 1 { H 0 : α + β = 1 H 1 : α + β 1 RSS(H 0 ) : log Y/L = Ã + α log K/L β : 1 α β : β = 1 ᾱ V ar(ˆβ) = V ar(ˆα) n = 7 log Y/L = log K/L (0.13) (0.0754) R = 0.943, R = 0.941, RSS = β = 1 α = = β = log Y = log K log L t (8.1) (8.45) (4.81) R = 0.943, R = log Y = log K log L t (3.58) (4.79) (4.40) R = 0.944, R = 0.939, RSS = F = (RSS(H 0) RSS(H 1 ))/p (RSS(H 1 )/(n k 1)) = ( )/ /(7 1) = F (1, 4) F F 0.05 (1, 4) = 4.6 5

54 :? : Y = AK α L β : Y = A α L β A A α α β β log Y = β 0 + β 1 log K + β log L + γ 0 β 0 D + γ 1 β 1 ((log K)D) + γ β ((log L)D) { H 0 : γ 0 = γ 1 = γ = 0 H 1 : H 0 53

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e,   ( ) L01 I(2017) 1 / 19 I L01(2017-09-20 Wed) : Time-stamp: 2017-09-20 Wed 07:38 JST hig e, http://hig3.net ( ) L01 I(2017) 1 / 19 ? 1? 2? ( ) L01 I(2017) 2 / 19 ?,,.,., 1..,. 1,2,.,.,. ( ) L01 I(2017) 3 / 19 ? I. M (3 ) II,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

数理統計学Iノート

数理統計学Iノート I ver. 0/Apr/208 * (inferential statistics) *2 A, B *3 5.9 *4 *5 [6] [],.., 7 2004. [2].., 973. [3]. R (Wonderful R )., 9 206. [4]. ( )., 7 99. [5]. ( )., 8 992. [6],.., 989. [7]. - 30., 0 996. [4] [5]

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

(pdf) (cdf) Matlab χ ( ) F t

(pdf) (cdf) Matlab χ ( ) F t (, ) (univariate) (bivariate) (multi-variate) Matlab Octave Matlab Matlab/Octave --...............3. (pdf) (cdf)...3.4....4.5....4.6....7.7. Matlab...8.7.....9.7.. χ ( )...0.7.3.....7.4. F....7.5. t-...3.8....4.8.....4.8.....5.8.3....6.8.4....8.8.5....8.8.6....8.9....9.9.....9.9.....0.9.3....0.9.4.....9.5.....0....3

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2

x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2 1 1 1.1 1.1.1 1 168 75 2 170 65 3 156 50... x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2 1 1 0 1 0 0 2 1 0 0 1 0 3 0 1 0 0 1...... 1.1.2 x = 1 n x (average, mean) x i s 2 x = 1 n (x i x) 2 3 x (variance)

More information

June 2016 i (statistics) F Excel Numbers, OpenOffice/LibreOffice Calc ii *1 VAR STDEV 1 SPSS SAS R *2 R R R R *1 Excel, Numbers, Microsoft Office, Apple iwork, *2 R GNU GNU R iii URL http://ruby.kyoto-wu.ac.jp/statistics/training/

More information

151021slide.dvi

151021slide.dvi : Mac I 1 ( 5 Windows (Mac Excel : Excel 2007 9 10 1 4 http://asakura.co.jp/ books/isbn/978-4-254-12172-8/ (1 1 9 1/29 (,,... (,,,... (,,, (3 3/29 (, (F7, Ctrl + i, (Shift +, Shift + Ctrl (, a i (, Enter,

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

最小2乗法

最小2乗法 2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

2 1 Introduction

2 1 Introduction 1 24 11 26 1 E-mail: toyoizumi@waseda.jp 2 1 Introduction 5 1.1...................... 7 2 8 2.1................ 8 2.2....................... 8 2.3............................ 9 3 10 3.1.........................

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). : obata/,.,. ( )

2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). :   obata/,.,. ( ) 2011 () () (),,.,,.,,. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.,.. (. ), 1. ( ). ()(). : www.math.is.tohoku.ac.jp/ obata/,.,. () obata@math.is.tohoku.ac.jp http://www.dais.is.tohoku.ac.jp/ amf/, (! 22 10.6; 23 10.20;

More information

i

i i 1 1 1.1..................................... 1 1.2........................................ 3 1.3.................................. 4 1.4..................................... 4 1.5......................................

More information

分布

分布 (normal distribution) 30 2 Skewed graph 1 2 (variance) s 2 = 1/(n-1) (xi x) 2 x = mean, s = variance (variance) (standard deviation) SD = SQR (var) or 8 8 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 8 0 1 8 (probability

More information

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp ( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

solutionJIS.dvi

solutionJIS.dvi May 0, 006 6 morimune@econ.kyoto-u.ac.jp /9/005 (7 0/5/006 1 1.1 (a) (b) (c) c + c + + c = nc (x 1 x)+(x x)+ +(x n x) =(x 1 + x + + x n ) nx = nx nx =0 c(x 1 x)+c(x x)+ + c(x n x) =c (x i x) =0 y i (x

More information

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 87 6.1 AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 2, V(y t y t 1, y t 2, ) = σ 2 3. Thus, y t y t 1,

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 1 21 10 5 1 E-mail: qliu@res.otaru-uc.ac.jp 1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 B 1.1.3 boy W ID 1 2 3 DI DII DIII OL OL 1.1.4 2 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.2.1 1. 2. 3 1.2.2

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

2 1,, x = 1 a i f i = i i a i f i. media ( ): x 1, x 2,..., x,. mode ( ): x 1, x 2,..., x,., ( ). 2., : box plot ( ): x variace ( ): σ 2 = 1 (x k x) 2

2 1,, x = 1 a i f i = i i a i f i. media ( ): x 1, x 2,..., x,. mode ( ): x 1, x 2,..., x,., ( ). 2., : box plot ( ): x variace ( ): σ 2 = 1 (x k x) 2 1 1 Lambert Adolphe Jacques Quetelet (1796 1874) 1.1 1 1 (1 ) x 1, x 2,..., x ( ) x a 1 a i a m f f 1 f i f m 1.1 ( ( )) 155 160 160 165 165 170 170 175 175 180 180 185 x 157.5 162.5 167.5 172.5 177.5

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3.....................................

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3..................................... 1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3........................................... 1 17.1................................................

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

1 1 [1] ( 2,625 [2] ( 2, ( ) /

1 1 [1] ( 2,625 [2] ( 2, ( ) / [] (,65 [] (,3 ( ) 67 84 76 7 8 6 7 65 68 7 75 73 68 7 73 7 7 59 67 68 65 75 56 6 58 /=45 /=45 6 65 63 3 4 3/=36 4/=8 66 7 68 7 7/=38 /=5 7 75 73 8 9 8/=364 9/=864 76 8 78 /=45 /=99 8 85 83 /=9 /= ( )

More information

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k 2012 11 01 k3 (2012-10-24 14:07 ) 1 6 3 (2012 11 01 k3) kubo@ees.hokudai.ac.jp web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 3 2 : 4 3 AIC 6 4 7 5 8 6 : 9 7 11 8 12 8.1 (1)........ 13 8.2 (2) χ 2....................

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

第11回:線形回帰モデルのOLS推定

第11回:線形回帰モデルのOLS推定 11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i

More information

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,,

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,, (1 C205) 4 8 27(2015) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7.... 1., 2014... 2. P. G., 1995.,. 3.,. 4.. 5., 1996... 1., 2007,. ii 2. F. ( ),.. 3... 4.,,. 5. G., L., D. ( )

More information

(p.2 ( ) 1 2 ( ) Fisher, Ronald A.1932, 1971, 1973a, 1973b) treatment group controll group (error function) 2 (Legendre, Adrian

(p.2 ( ) 1 2 ( ) Fisher, Ronald A.1932, 1971, 1973a, 1973b) treatment group controll group (error function) 2 (Legendre, Adrian 2004 1 1 1.1 Maddala(1993) Mátyás and Sevestre (1996) Hsiao(2003) Baltagi(2001) Lee(2002) Woolridge(2002a), Arellano(2003) Journal of Econometrics Econometrica Greene(2000) Maddala(2001) Johnston and Di-

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

untitled

untitled 1 Hitomi s English Tests 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 1 0 1 1 0 1 0 0 0 1 0 0 1 0 2 0 0 1 1 0 0 0 0 0 1 1 1 1 0 3 1 1 0 0 0 0 1 0 1 0 1 0 1 1 4 1 1 0 1 0 1 1 1 1 0 0 0 1 1 5 1 1 0 1 1 1 1 0 0 1 0

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

R R 16 ( 3 )

R R 16   ( 3 ) (017 ) 9 4 7 ( ) ( 3 ) ( 010 ) 1 (P3) 1 11 (P4) 1 1 (P4) 1 (P15) 1 (P16) (P0) 3 (P18) 3 4 (P3) 4 3 4 31 1 5 3 5 4 6 5 9 51 9 5 9 6 9 61 9 6 α β 9 63 û 11 64 R 1 65 13 66 14 7 14 71 15 7 R R 16 http://wwwecoosaka-uacjp/~tazak/class/017

More information

Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

Rによる計量分析:データ解析と可視化 - 第3回  Rの基礎とデータ操作・管理 R 3 R 2017 Email: gito@eco.u-toyama.ac.jp October 23, 2017 (Toyama/NIHU) R ( 3 ) October 23, 2017 1 / 34 Agenda 1 2 3 4 R 5 RStudio (Toyama/NIHU) R ( 3 ) October 23, 2017 2 / 34 10/30 (Mon.) 12/11 (Mon.)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

untitled

untitled 17 5 13 1 2 1.1... 2 1.2... 2 1.3... 3 2 3 2.1... 3 2.2... 5 3 6 3.1... 6 3.2... 7 3.3 t... 7 3.4 BC a... 9 3.5... 10 4 11 1 1 θ n ˆθ. ˆθ, ˆθ, ˆθ.,, ˆθ.,.,,,. 1.1 ˆθ σ 2 = E(ˆθ E ˆθ) 2 b = E(ˆθ θ). Y 1,,Y

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000 1 ( S/E) 006 7 30 0 (1 ) 01 Excel 0 7 3 1 (-4 ) 5 11 5 1 6 13 7 (5-7 ) 9 1 1 9 11 3 Simplex 1 4 (shadow price) 14 5 (reduced cost) 14 3 (8-10 ) 17 31 17 3 18 33 19 34 35 36 Excel 3 4 (11-13 ) 5 41 5 4

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information