スライド 1
|
|
|
- ゆりか うづき
- 7 years ago
- Views:
Transcription
1 ブール代数
2 ブール代数 集合 { 0, 1 } の上で演算 AND, OR, NOT からなる数学的体系 何のため? ある演算をどのような回路で実現すればよいのか? どうすれば回路が小さくなるのか? どうすれば回路が速く動くのか? 3
3 復習 : 真理値表とゲート記号 真理値表 A B A B A B A+B A A ゲート記号 A B A B A B A+B A A 4
4 論理関数と論理式 論理関数 いくつかの論理値を引数として受け取り, 論理値を返す関数 f: {0, 1} n { 0, 1 } 真理値表と 1 対 1 対応 論理式 論理値を持つ変数 ( 論理変数 ) と論理値定数 ( つまり 0 または 1) に対して,AND, OR, NOT 演算を何度か適用して得られる式 演算子の優先順位は NOT AND OR の順 ゲート記号による論理回路図と 1 対 1 対応 論理式は一つの論理関数を定める しかし, 論理関数は論理式を一意に定めない 5
5 論理式 ( 論理回路 ) から真理値表へ : 例 1 論理式 f(a, B, C) = A + BC 真理値表 論理回路 A B C A+BC A B C A+BC 入力の組み合わせは高々有限個なので, 地道に評価していけばよい 慣れてくると, まとめて値を定められる場合がある. 例えばこのページの例では,A = 1 なら OR ゲートの作用で結果は必ず 1 になることがわかる 6
6 論理式 f(a, B, C) = (A+B)(A+C) 例 2 論理回路 A B (A+B)(A+C) 真理値表 ( 前ページと比較せよ ) A B C (A+B)(A+C) C 同じ論理関数を実現する論理式 ( 論理回路 ) は複数ある 同じなら, できるだけ小さくて速い回路で実現したい 7
7 真理値表から論理式への変換 A B XOR A B A B A B A B (A = 0, B = 1 のときのみ1) (A = 1, B = 0 のときのみ1) 真理値表から出力が 1 の行を抜き出し, それぞれについて 入力が 1 の変数はそのまま,0 の変数は否定 それら全変数の論理積を取る それらすべての項の論理和を取る A B = A B + A B 8
8 例 3 3 入力多数決関数 f(a, B, C) A B C f ちょっと回路が複雑そうだ. もっと 簡単な 回路 ( 簡単な論理式 ) で表せないだろうか? 9
9 ブール代数 元 0 と 1 を含む集合 S が, 上記のうち * つきの 4 つ ( 公理 ) を満たす 2 項演算 と + および単項演算 について閉じているとき,S をブール代数と呼ぶ. ( 他の性質はすべて公理から導かれる ) 10
10 ブール代数の公式 公理以外の定理は, 本来は (AND, OR, NOT の性質を既知とせずに ) 公理のみから証明しなてくはならない 我々は計算機工学に興味があるので,AND, OR, NOT の性質を既知として理解すれば十分である 二重否定までは AND, OR, NOT の性質からすぐわかる 分配則と吸収則はスイッチング回路図で考えるとよい b c b c b c b c b b 11
11 ド モルガン則はよく知られている通り ベン図で考えるとわかりやすい b 双対性 : ある命題における AND と OR, および 1 と 0 をそれぞれ入れ替えたものを, その命題の双対 (dul) と呼ぶ 定理 ( 成立することが証明できる命題 ) の双対は, 定理である なぜならば,AND と OR の真理値表は互いの 0 と 1 を入れ替えたものであり,NOT の真理値表は 0 と 1 を入れ替えても変わらない. よって双対を取ることによって, 命題の真偽は保存される 12
12 公式の適用例 ( 例 2) 分配則分配則冪等則吸収則吸収則 ( 例 1) A(A+C) に吸収則を適用するのでもよい 冪等則 分配則 ( 例 3) 相補則単位元こんなのどうやって思いつくのか? カルノー図 を勉強するまで待とう 14
13 練習問題 (1) 右表の f(a, B, C) を適当な論理式で表せ.( 表したあと,A,B,C に各値を代入して自分で検算してみるとよい ) (2) 4 入力の論理関数 g(x 4, x 3, x 2, x 1 ) を, 2 進数 x 4 x 3 x 2 x 1 が 3 の倍数と (10 進表示で )3 のつく数のときだけ 1 になる関数とする. 論理関数 g の真理値表を書き, それに基づいて g を適当な論理式で表せ. A B C f
14 解答例 (1) 論理式で表すと, 例えば その他, 正解は無数に存在する. (2) 真理値表は右の通り. 論理式の表示例は x 4 x 3 x 2 x 1 g
15 論理関数の標準形 ある論理関数を論理式で表す方法は無数にあるため, 例えば 2 つの論理式を直接見比べても, それらが論理関数として等価かどうかは判断できない. 論理関数を一意に表すことができる 標準形 があると便利である. 論理関数 f(x 1, x 2,, x n ) において, リテラルある入力変数, またはその否定 基本積リテラル, または 2 つ以上のリテラルの積で, 同じ入力変数を 2 度以上含まないもの 最小項基本積のうち, すべての入力変数を含むもの 主加法標準形 論理関数を最小項の和で表した形式 基本和リテラル, または2つ以上のリテラルの和で, 同じ入力変数を2 度以上含まないもの 最大項基本和のうち, すべての入力変数を含むもの 主乗法標準形 論理関数を最大項の積で表した形式 17
16 主加法標準形の作り方 真理値表から主加法標準形へ 1 になる行の最小項を並べて論理和を取る ( 先に学んだ 真理値表 論理式 の変換方法で得られるのは, 加法標準形そのものだった ) 任意の論理式から主加法標準形へ 分配則などを使って展開して積和形へ 最小項でない積項に対して, その積項に含まれないすべてのリテラル x i について,(x i +x i ) を乗ずる さらに展開して, 冗長な項を除去 18
17 主乗法標準形の作り方 真理値表から主乗法標準形 0 になる行の最小項を並べて論理和を取り, ド モルガン則を適用 ( つまり, 主加法標準形を作ることさえできれば, 主乗法標準形へは変換できる ) 任意の論理式から主乗法標準形へ 分配則などを使って展開して和積形へ 最大項でない和項に対して, その和項に含まれないすべてのリテラル x i について,(x i x i ) を加える さらに展開して, 冗長な項を除去 ( 分配のしかたに慣れないと難しいかも知れない ) 19
18 例題 得られた結果の式の形と, 元の真理値表の f = 0 の行の対応関係にも注意しておきたい x1 x2 x3 f
19 例題 21
20 練習問題, b, c の 3 人の男がいる. そのうち一人以上は正直者で, 一人以上は嘘つきである. 正直者は常に本当のことを言うが, 嘘つきの言うことは本当かも知れないし嘘かも知れない. 彼らは言う. b は正直者だ b c は正直者だ c この中に正直者は一人しかいない, b, c が正直者であるときに 1 になる論理変数をそれぞれ A, B, C とおく. の発言からは A = 1 かつ B = 1 であるか, または, A = 0 でなくてはならない ことが読み取れる. つまりという式 ( が 1 であること ) によって の発言が表される. (1) 同様に b, c の発言を論理式で表し, それらの論理積を取ることですべての条件を表す一つの論理式を導け. (2) (1) の論理式を主加法標準形にせよ. (3), b, c が正直者か嘘つきかを決定せよ. 22
21 解答例 (1) b: c: (2) (3) 正直者は一人以上いなくてはならないので,c が正直者である. 23
22 例題 ( おまけ ) 天国と地獄の分かれ道に門番が立っている. 門番は天国または地獄のどちらから派遣されているが, どちらかはわからない. 門番には はい または いいえ で答えることのできる質問を一つだけすることができる. ただし, 天国からきた門番は本当の答えを教えてくれるが, 地獄から来た門番は必ず嘘をつく. どのような質問をすればよいか. (1) X を 左側の道が天国のときに 1, さもなくば 0,Y を 門番が天国から来たなら 1, さもなくば 0 である論理変数とする. 門番にする質問を論理関数 f(x, Y), 門番から返る答え g(x, Y) とする. ただし はい を論理値 1 に対応させるとする.f(X, Y) を g(x, Y), X, Y を使った論理式で表せ. (2) g(x, Y) = X となるような f(x, Y) を求めたい. そのような f(x, Y) を論理式で表せ. これを日本語ではどう質問すればよいか. 24
23 解答例 (1) (2) よって質問すべき内容は : 左の道は天国行きであってかつあなたは天国から来た かまたは 左の道は地獄行きであってかつあなたは地獄から来た のどちらかですか? 同じことだが, もう少しスマートにしたければ X = Y かどうか聞いてもよい : あなたは左の道から来ましたか? 25
Microsoft PowerPoint - LogicCircuits01.pptx
論理回路 第 回論理回路の数学的基本 - ブール代数 http://www.info.kindai.ac.jp/lc 38 号館 4 階 N-4 内線 5459 [email protected] 本科目の内容 電子計算機 computer の構成 ソフトウェア 複数のプログラムの組み合わせ オペレーティングシステム アプリケーション等 ハードウェア 複数の回路 circuit の組み合わせ
離散数学
離散数学 ブール代数 落合秀也 前回の復習 : 命題計算 キーワード 文 複合文 結合子 命題 恒真 矛盾 論理同値 条件文 重条件文 論法 論理含意 記号 P(p,q,r, ),,,,,,, 2 今日のテーマ : ブール代数 ブール代数 ブール代数と束 そして 順序 加法標準形とカルノー図 3 今日のテーマ : ブール代数 ブール代数 ブール代数と束 そして 順序 加法標準形とカルノー図 4 ブール代数の法則
HW-Slides-04.ppt
ハードウェア実験 組み込みシステム入門第 4 回 2012 年 10 月 11 日 IC TRAINER の導入 2 ブレッドボードとは何か! 手引き書 P8 半田付けせずに 簡単にリード線を差し込むだけで回路の動作を調べることができるボード! 部品挿入エリアでは ABCDE が縦に裏側で接続されている! 電源ラインでは 横に接続されている! 慣例として! 赤 : + 電源! 青 :- 電源または
知識工学 II ( 第 2 回 ) 二宮崇 ( ) 論理的エージェント (7 章 ) 論理による推論 命題論理 述語論理 ブール関数 ( 論理回路 )+ 推論 ブール関数 +( 述語 限量子 ( ) 変数 関数 定数 等号 )+ 推論 7.1 知識
知識工学 II ( 第 回 ) 二宮崇 ( [email protected] ) 論理的エージェント (7 章 ) 論理による推論 命題論理 述語論理 ブール関数 ( 論理回路 )+ 推論 ブール関数 +( 述語 限量子 ( ) 変数 関数 定数 等号 )+ 推論 7. 知識に基づくエージェント知識ベース (knowledge base, KB): 文 の集合 他の 文 から導出されない
融合規則 ( もっとも簡単な形, 選言的三段論法 ) ll mm ll mm これについては (ll mm) mmが推論の前提部になり mmであるから mmは常に偽となることがわかり ll mmはllと等しくなることがわかる 機械的には 分配則より (ll mm) mm (ll mm) 0 ll m
知識工学 ( 第 5 回 ) 二宮崇 ( [email protected] ) 論理的エージェント (7 章のつづき ) 証明の戦略その 3 ( 融合法 ) 証明の戦略その 1 やその 2 で証明できたときは たしかにKKKK ααとなることがわかるが なかなか証明できないときや 証明が本当にできないときには KKKK ααが成り立つのか成り立たないのかわからない また どのような証明手続きを踏めば証明できるのか定かではない
Microsoft PowerPoint - ch1.ppt
論理回路 ( 基礎 ) 法政大学 情報科学部 大森健児 参考書 論理演算 () AND,OR,NOT,XOR AND OR NOT XOR 論理演算 (2) NAND,NOR NAND NOR 前提 結論 If A then B は A が真のとき B が真であるならば この文は真であり A が偽のときは B が真であろうとなかろうとこの文は真である A が真のとき B が偽であればこの文は偽である
Microsoft PowerPoint - 9.pptx
9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍
論理学補足文書 7. 恒真命題 恒偽命題 1. 恒真 恒偽 偶然的 それ以上分割できない命題が 要素命題, 要素命題から 否定 連言 選言 条件文 双 条件文 の論理演算で作られた命題が 複合命題 である 複合命題は, 命題記号と論理記号を 使って, 論理式で表現できる 複合命題の真偽は, 要素命題
7. 恒真命題 恒偽命題. 恒真 恒偽 偶然的 それ以上分割できない命題が 要素命題, 要素命題から 否定 連言 選言 条件文 双 条件文 の論理演算で作られた命題が 複合命題 である 複合命題は, 命題記号と論理記号を 使って, 論理式で表現できる 複合命題の真偽は, 要素命題の真偽によって, 真になる場合もあれば, 偽になる場合もある 例えば, 次の選言は, A, の真偽によって, 真にも偽にもなる
Microsoft PowerPoint - 11.ppt
多段論理合成 ( 前半概要 ) 第 章多段論理合成 年 月改訂 論理合成システム 積項を用いたファクタリング TVF 論理式の割り算 関数分解 回路の変換 //5 多段論理合成 //5 多段論理合成 LSI の設計システム 論理合成システム Loic Sntesis Sstem 半導体技術に独立 半導体技術に依存 動作記術機能記術 ネットリスト ネットリスト レイアウト 動作記述言語, 機能記述言語論理式,
オートマトン 形式言語及び演習 3. 正規表現 酒井正彦 正規表現とは 正規表現 ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械正規表現 : 言語
オートマトン 形式言語及び演習 3. 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ とは ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械 : 言語を記号列で定義 - 記述しやすい ( ユーザフレンドリ ) 例 :01 + 10 - UNIX の grep コマンド - UNIX の
学習指導要領
(1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数 の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい ア イ 無理数 整数 ウ 無理数の加法及び減法 乗法公式などを利用した計 算ができる また 分母だけが二項である無理数の 分母の有理化ができる ( 例 1)
航空機の運動方程式
可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,
曲線 = f () は を媒介変数とする自然な媒介変数表示 =,= f () をもつので, これを利用して説明する 以下,f () は定義域で連続であると仮定する 例えば, 直線 =c が曲線 = f () の漸近線になるとする 曲線 = f () 上の点 P(,f ()) が直線 =c に近づくこ
伊伊伊伊伊伊伊伊伊伊 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 漸近線の求め方に関する考察 たまい玉井 かつき克樹 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 伊伊伊伊伊伊伊伊伊伊. 漸近線についての生徒からの質問 数学において図を使って直感的な説明を与えることは, 理解を深めるのに大いに役立つ
2010年度 筑波大・理系数学
00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f( x) x ax とおく ただしa>0 とする () f( ) f() となるa の範囲を求めよ () f(x) の極小値が f ( ) 以下になる a の範囲を求めよ () x における f(x) の最小値をa を用いて表せ -- 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ つの曲線 C : y six ( 0
Microsoft PowerPoint - logic ppt [互換モード]
述語論理と ( 全称 ) ( 存在 ) 回の講義の概観 : 命題論理 ( 真理値 ) 2 述語論理 ( モデルと解釈 ) 意味論 semantics 命題論理 ( 公理と推論規則 ) 述語論理 ( 公理と推論規則 ) syntax 構文論 preview 述語論理は命題論理よりも複雑 例題 : 次の文は真か偽か? ( 曖昧な文です ) すべての自然数 x に対して x < y を満たすような自然数
DVIOUT-SS_Ma
第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり
線形代数とは
線形代数とは 第一回ベクトル 教科書 エクササイズ線形代数 立花俊一 成田清正著 共立出版 必要最低限のことに限る 得意な人には物足りないかもしれません 線形代数とは何をするもの? 線形関係 y 直線 yもも 次式で登場する (( 次の形 ) 線形 ただし 次元の話世の中は 3 次元 [4[ 次元 ] 次元 3 次元 4 次元 はどうやって直線を表すの? ベクトルや行列の概念 y A ベクトルを使うと
PowerPoint Presentation
付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像
Microsoft Word - 町田・全 H30学力スタ 別紙1 1年 数学Ⅰ.doc
(1) 数と式 学習指導要領 都立町田高校 学力スタンダード ア 数と集合 ( ア ) 実数 根号を含む式の計算 数を実数まで拡張する意義を理解し 簡単な 循環小数を表す記号を用いて, 分数を循環小数で表 無理数の四則計算をすること すことができる 今まで学習してきた数の体系について整理し, 考察 しようとする 絶対値の意味と記号表示を理解している 根号を含む式の加法, 減法, 乗法の計算ができる
Microsoft Word - 微分入門.doc
基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,
<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>
3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として
チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用
チェビシェフ多項式の 変数への拡張と公開鍵暗号 Ell 暗号 への応用 Ⅰ. チェビシェフ Chbhv Chbhv の多項式 より であるから よって ここで とおくと coθ iθ coθ iθ iθ coθcoθ 4 4 iθ iθ iθ iθ iθ i θ i θ i θ i θ co θ co θ} co θ coθcoθ co θ coθ coθ したがって が成り立つ この漸化式と であることより
Microsoft PowerPoint - 4.CMOSLogic.ppt
第 4 章 CMOS 論理回路 (1) CMOS インバータ 2008/11/18 広島大学岩田穆 1 抵抗負荷のインバータ V dd ( 正電源 ) R: 負荷抵抗 In Vin Out Vout n-mos 駆動トランジスタ グランド 2008/11/18 広島大学岩田穆 2 抵抗負荷のインバータ V gs I d Vds n-mos 駆動トランジスタ ドレイン電流 I d (n-mos) n-mosの特性
プログラミング実習I
プログラミング実習 I 03 変数と式 人間システム工学科井村誠孝 [email protected] 3.1 変数と型 変数とは p.60 C 言語のプログラム中で, 入力あるいは計算された数や文字を保持するには, 変数を使用する. 名前がついていて値を入れられる箱, というイメージ. 変数定義 : 変数は変数定義 ( 宣言 ) してからでないと使うことはできない. 代入 : 変数には値を代入できる.
2011年度 大阪大・理系数学
0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ
オートマトン 形式言語及び演習 1. 有限オートマトンとは 酒井正彦 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110,
オートマトン 形式言語及び演習 1 有限オートマトンとは 酒井正彦 wwwtrscssinagoya-uacjp/~sakai/lecture/automata/ 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110, } 形式言語 : 数学モデルに基づいて定義された言語 認識機械 : 文字列が該当言語に属するか? 文字列 機械 受理
Microsoft PowerPoint - mp11-02.pptx
数理計画法第 2 回 塩浦昭義情報科学研究科准教授 [email protected] http://www.dais.is.tohoku.ac.jp/~shioura/teaching 前回の復習 数理計画とは? 数理計画 ( 復習 ) 数理計画問題とは? 狭義には : 数理 ( 数学 ) を使って計画を立てるための問題 広義には : 与えられた評価尺度に関して最も良い解を求める問題
振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫
6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫りにするために スペクトルを滑らかにする操作のことをいう 6.1 合積のフーリエ変換スペクトルの平滑化を行う際に必要な 合積とそのフーリエ変換について説明する 6.2 データ
千葉大学 ゲーム論II
千葉大学ゲーム論 II 第五, 六回 担当 上條良夫 千葉大学ゲーム論 II 第五 六回上條良夫 本日の講義内容 前回宿題の問題 3 の解答 Nash の交渉問題 Nash 解とその公理的特徴づけ 千葉大学ゲーム論 II 第五 六回上條良夫 宿題の問題 3 の解答 ホワイトボードでやる 千葉大学ゲーム論 II 第五 六回上條良夫 3 Nash の二人交渉問題 Nash の二人交渉問題は以下の二つから構成される
オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦 正規言語の性質 反復補題正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると
オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ 正規言語の性質 正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると仮定してを使い 矛盾を導く 閉包性正規言語を演算により組み合わせて得られる言語が正規言語となる演算について調べる
Microsoft Word - thesis.doc
剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル
JavaプログラミングⅠ
Java プログラミング Ⅰ 4 回目演算子 今日の講義で学ぶ内容 演算子とオペランド 式 様々な演算子 代表的な演算子の使用例 演算子とオペランド 演算子 演算の種類です例えば + - * / 掛け算の記号は ではなく *( アスタリスク ) を使います割り算の記号は ではなく /( スラッシュ ) を使います オペランド 演算の対象です例えば 5( 値 ) num( 変数 ) 式 演算子とオペランドの組み合わせにより構成される数式です式は演算結果をもちます
05 年度センター試験数学 ⅡB () において,cos q 0 であるから,P ( cos q, sin q) より, 直線 OP を表す方程式は y sin q sin q x cos q cos q x すなわち, (sin q) x - (cos q) y 0 ( ) ク 点 O,P,Q が
05 年度大学入試センター試験解説 数学 ⅡB 第 問 []() 点間の距離の公式から, OP ( cos q ) + ( sin q ) ( cos q + sin q ) ア PQ { ( cos q + cos 7q ) - cos q } + { ( sin q + sin 7q ) - sin q } cos q + sin q 7 7 イ である また, OQ ( cos q + cos
学習指導要領
(1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している
2015-2018年度 2次数学セレクション(整数と数列)解答解説
015 次数学セレクション問題 1 [ 千葉大 文 ] k, m, n を自然数とする 以下の問いに答えよ (1) k を 7 で割った余りが 4 であるとする このとき, k を 3 で割った余りは であることを示せ () 4m+ 5nが 3 で割り切れるとする このとき, mn を 7 で割った余りは 4 ではないことを示せ -1- 015 次数学セレクション問題 [ 九州大 理 ] 以下の問いに答えよ
2016年度 九州大・理系数学
0 九州大学 ( 理系 ) 前期日程問題 解答解説のページへ 座標平面上の曲線 C, C をそれぞれ C : y logx ( x > 0), C : y ( x-)( x- a) とする ただし, a は実数である を自然数とするとき, 曲線 C, C が 点 P, Q で交わり, P, Q の x 座標はそれぞれ, + となっている また, 曲線 C と直線 PQ で囲まれた領域の面積を S,
Microsoft Word - 201hyouka-tangen-1.doc
数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見
Microsoft PowerPoint - 09re.ppt [互換モード]
3.1. 正則表現 3. 正則表現 : 正則表現 ( または正規表現 ) とは 文字列の集合 (= 言語 ) を有限個の記号列で表現する方法の 1 つ 例 : (01)* 01 を繰り返す文字列 つまり 0(0+1)* 0 の後に 0 か 1 が繰り返す文字列 (01)* = {,01,0101,010101,01010101, } 0(0+1)*={0,00,01,000,001,010,011,0000,
2018年度 東京大・理系数学
08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母
航空機の運動方程式
オブザーバ 状態フィードバックにはすべての状態変数の値が必要であった. しかしながら, システムの外部から観測できるのは出力だけであり, すべての状態変数が観測できるとは限らない. そこで, 制御対象システムの状態変数を, システムのモデルに基づいてその入出力信号から推定する方法を考える.. オブザーバとは 次元 m 入力 r 出力線形時不変システム x Ax Bu y Cx () の状態変数ベクトル
微分方程式補足.moc
Bernoulli( ベルヌーイ ) の微分方程式 ' + P( ) = Q() n ( n 0,) 微分方程式の形の補足 ( 階 ) 注意 : n =0 のときは 階線形微分方程式 n = のときは変数分離形となる 解法 : z = -n とおいて関数 z の微分方程式を解く z' =( - n) -n ' よりこれを元の微分方程 式に代入する - n z' + P() = Q() n 両辺を n
2016年度 京都大・文系数学
06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ xy 平面内の領域の面積を求めよ x + y, x で, 曲線 C : y= x + x -xの上側にある部分 -- 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ ボタンを押すと あたり か はずれ のいずれかが表示される装置がある あたり の表示される確率は毎回同じであるとする この装置のボタンを 0 回押したとき,
Microsoft PowerPoint LCB_14_論理回路シミュレータ.ppt
( 第 回 ) 鹿間信介摂南大学理工学部電気電子工学科 特別講義 : 論理回路シミュレータ. 論理回路の基本 ( 復習 ). シミュレータ (Multiim). 回路シミュレータの概要. 設計実例 : H,F, 簡易電卓など ( 論理回路 Ⅰ) の期末試験 実施日 : 8/5( 金 ) : @ 教室 ( 定規 OK, 参照ダメ ) 成績評価 : 中間 5%, 期末 5% ( 出席率 8% 以上の学生が評価対象
Microsoft Word - 第2章 ブロック線図.doc
NAOSIE: Nagaaki Univriy' Ac il ディジタル制御システム Auhor() 辻, 峰男 Ciaion ディジタル制御システム ; 06 Iu Da 06 URL hp://hdl.handl.n/0069/3686 Righ hi documn i downloadd hp://naoi.lb.nagaaki-u.ac.jp 第 章ブロック線図. インパルス列を用いた z
break 文 switch ブロック内の実行中の処理を強制的に終了し ブロックから抜けます switch(i) 強制終了 ソースコード例ソースファイル名 :Sample7_1.java // 入力値の判定 import java.io.*; class Sample7_1 public stati
Java プログラミング Ⅰ 7 回目 switch 文と論理演算子 今日の講義で学ぶ内容 switch 文 論理演算子 条件演算子 条件判断文 3 switch 文 switch 文 式が case のラベルと一致する場所から直後の まで処理しますどれにも一致しない場合 default: から直後の まで処理します 式は byte, short, int, char 型 ( 文字または整数 ) を演算結果としますラベルには整数リテラル
1 ICT Foundation 命題論理の基礎 Copyright 2010, IT Gatekeeper Project Ohiw a Lab. All rights reserved.
1 ICT Foundation 命題論理の基礎 Copyright 2010, IT Gatekeeper Project Ohiw a Lab. All rights reserved. 2 論理学を学習する理由 コンピュータ科学の基礎として コンピュータに使われている論理回路を理解するための基礎となります今回は基礎的な論理回路を紹介する程度にとどめるプログラミングにも重要な概念 大学生の一般常識として
【FdData中間期末過去問題】中学数学3年(乗除/乗法公式/因数分解)
FdDt 中間期末 : 中学数学 年 : 式の計算 [ 多項式と単項式の乗除 / 多項式の乗法 /()() の展開 /(),(-) の展開 / ()(-) の展開 / 乗法公式全般 / 複数の公式を使う / 乗法公式全般 / 因数分解 : 共通因数 /()(-)/(±) /()()/ いろいろな因数分解 / 因数分解全般 ] [ 数学 年 pdf ファイル一覧 ] 多項式と単項式の乗除 [ 多項式と単項式の乗法
線積分.indd
線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+
Microsoft PowerPoint - 3.ppt [互換モード]
3. プッシュダウンオートマトンと文脈自由文法 1 3-1. プッシュダウンオートマトン オートマトンはメモリがほとんど無かった この制限を除いた機械を考える 理想的なスタックを利用できるようなオートマトンをプッシュダウンオートマトン (Push Down Automaton,PDA) という 0 1 入力テープ 1 a 1 1 0 1 スタッb 入力テープを一度走査したあと ク2 入力テプを度走査したあと
【FdData中間期末過去問題】中学数学1年(負の数/数直線/絶対値/数の大小)
FdData 中間期末 : 中学数学 年 : 正負の数 [ 正の数 負の数 / 数直線 / 正の数 負の数で量を表す / 絶対値 / 数の大小 / 数直線を使って ] [ 数学 年 pdf ファイル一覧 ] 正の数 負の数 [ 負の数 ] 次の文章中の ( ) に適語を入れよ () +5 や+8 のような 0 より大きい数を ( ) という () - や-7 のような 0 より小さい数を ( ) という
Microsoft PowerPoint - H22制御工学I-2回.ppt
制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し
2013年度 信州大・医系数学
03 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ () 式 + + a a a3 を満たす自然数の組 ( a, a, a3) で, a a a3とな るものをすべて求めよ () r を正の有理数とする 式 r + + a a a を満たす自然数の組 ( a, a, a3) で, 3 a a a3となるものは有限個しかないことを証明せよ ただし, そのよう な組が存在しない場合は 0 個とし,
Microsoft PowerPoint - 10.pptx
m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる
Microsoft Word - 数学Ⅰ
() 数と式 ア数と集合 ( ア ) 実数 数を実数まで拡張する意義を理解し 簡単な 無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい イ 整数 ウ ア 無理数 自然数 整数 有理数 無理数 実数のそれぞれ の集合について 四則演算の可能性について判断 できる ( 例 ) 下の表において,
代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1
代数 幾何 < ベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル :, 空間ベクトル : z,, z 成分での計算ができるようにすること ベクトルの内積 : os 平面ベクトル :,, 空間ベクトル :,,,, z z zz 4 ベクトルの大きさ 平面上 : 空間上 : z は 良く用いられる 5 m: に分ける点 : m m 図形への応用
Information Theory
前回の復習 情報をコンパクトに表現するための符号化方式を考える 情報源符号化における基礎的な性質 一意復号可能性 瞬時復号可能性 クラフトの不等式 2 l 1 + + 2 l M 1 ハフマン符号の構成法 (2 元符号の場合 ) D. Huffman 1 前回の練習問題 : ハフマン符号 符号木を再帰的に構成し, 符号を作る A B C D E F 確率 0.3 0.2 0.2 0.1 0.1 0.1
<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>
1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です
