2 DWT DWT (Complex Discrete Wavelet Transform CDWT) [ ] DWT Hilbert ( ) DWT DWT [8] CDWT Hilbert 1/2 2 Hilbert [9] CDWT [10] Meyer (Perfect Tran

Size: px
Start display at page:

Download "2 DWT DWT (Complex Discrete Wavelet Transform CDWT) [ ] DWT Hilbert ( ) DWT DWT [8] CDWT Hilbert 1/2 2 Hilbert [9] CDWT [10] Meyer (Perfect Tran"

Transcription

1 Translation-Invariance Complex Discrete Wavelet Transform (Zhong Zhang) * (Hiroshi Toda) * * (Toyohashi University of Technology) 1 (Discrete Wavelet Transform DWT) DWT Mallat[1] (Multi Resolution Analysis MRA) DWT [2] ( ) MRA DWT DWT Mallat[2] (Matching Pursuit) Femandes [3]

2 2 DWT DWT (Complex Discrete Wavelet Transform CDWT) [ ] DWT Hilbert ( ) DWT DWT [8] CDWT Hilbert 1/2 2 Hilbert [9] CDWT [10] Meyer (Perfect Translation Invariance PTI) Hilbert [11] ( ) ( ) 2 3 Hilbert [9] 4 CDWT 5 Meyer [11] CDWT 6 CDWT 2 $L^{2}(R)$ ( $R$ : ) $f(t)$ $\int_{-\infty}^{\infty} f(t) ^{2}dt<\infty$ (1)

3 3 21 $f(t)$ $g(t)$ $(f$ $g\}$ $\{f$ $g \rangle=\int_{-\infty}^{\infty}f(t)\overline{g(t)}dt$ (2) $\{f g\rangle$ $ \langle f(t) g(t)\}$ $\{f(u)$ $g(u)\rangle$ $\overline{g(t)}$ $g(t)$ $f(t)$ (Norm) $\Vert f\vert$ $\Vert f\vert=\sqrt{\langle ff\rangle}$ (3) $)$ $\psi_{k}(t)(k\in Z Z:$ $f(t)$ $g(t)= \sum_{k}\langle f$ $\psi_{k}\rangle\psi_{k}(t)$ (4) 1/2 $g(t)= \frac{1}{2}\sum_{k}\{f$ $\psi_{k}\rangle\psi_{k}(t)$ (5) $\psi_{k}(t)(k\in Z)$ $f(t)$ 22 $z$ $z$ $\{h_{n}\}$ $z$ $H_{z}(z)$ $H_{z}(z)$ $=$ $\sum_{n}h_{n}z^{-n}$ (6) $z=e^{i\omega}$ (6) $H_{\omega}(\omega)$ $H_{\omega}(\omega)$ $=$ $H_{z}(e^{i\omega})$ (7) $z$ $h_{n}$ $=$ $\frac{1}{2\pi i}\oint_{c}h_{z}(z)z^{n-1}dz$ (8)

4 4 $c$ 1 $H_{\omega}(\omega)$ $\{h_{n}\}$ $h_{n}$ $=$ $\frac{1}{2\pi}\int_{-\pi}^{\pi}h_{\omega}(\omega)e^{in\omega}d\omega$ (9) $\hat{f}(\omega)$ $f(t)$ $\hat{f}(\omega)$ $=$ $\int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt$ (10) $f(t)$ $=$ $\frac{1}{2\pi}\int_{-\infty}^{\infty}\hat{f}(\omega)e^{i\omega t}dw$ (11) 23 (Kronecker delta) $\delta_{kl}(k l\in Z)$ $\delta_{kl}$ $=$ $\{\begin{array}{ll}1 k=l0 k\neq l\end{array}$ (12) (Dirac delta function) $\delta(t)$ $\delta(t)=\{\begin{array}{ll}\infty t=00 t\neq 0\end{array}$ (13) $\int_{-\infty}^{\infty}\delta(t)dt=1$ (14) $f(t)$ $\int_{-\infty}^{\infty}\delta(t)f(t)dt=f(0)$ (15) 24 Hilbert $\psi^{r}(t)$ $\psi^{i}(t)$ Hilbert [6 9] $\hat{\psi}^{i}(\omega)$ $=$ $\{\begin{array}{ll}i\hat{\psi}^{r}(\omega) \omega<00 \omega=0-i\hat{\psi}^{r}(\omega) \omega>0\end{array}$ (16) $\hat{\psi}^{r}(0)=\hat{\psi}^{i}(0)=0$ (17)

5 5 (16) (17) $\hat{\psi}^{r}(\omega)+i\hat{\psi}^{i}(\omega)=\{\begin{array}{l}0 \omega\leq 02 \hat{\psi}^{r}(\omega) \omega>0\end{array}$ (18) (18) $\psi^{r}(t)$ $\psi^{i}(t)$ Hilbert [6 9] Hilbert 3 Hilbert [9] $]$ 31 $[$ $\phi(t)=\sum_{n}p_{n}\phi(2t-n)$ (19) $\psi(t)=\sum_{n}q_{n}\phi(2t-n)$ (20) $\phi(t)$ $\{q_{n}\}$ $\psi(t)$ 2 $\{p_{n}\}$ $q_{n}=(-1)^{1-n}p_{1-n}$ (21) $\{\phi(t-k)$ $\phi(t-l)\rangle=\delta_{kl}$ (22) $\{\psi(t-k)$ $\psi(t-l)\}=\delta_{kl}$ (23) $\{\psi(t-k)$ $\phi(t-l)\}=0$ (24) 1 $\Vert\phi(t)\Vert=\Vert\psi(t)\Vert=1$ (25)

6 6 CDWT $n\in Z$ $\phi(n)$ $\{p_{n}\}$ $n_{0}\leq n\leq n_{1}\in Z$ (19) $0$ $\phi(t)$ [no $n_{1}$ ] $\phi(n)(n_{0}+1\leq n\leq n_{1}-1\in Z)$ (19) $t=n_{0}+1$ $n_{0}+2$ $\ldots$ $n_{1}-1$ $\phi(n_{0}+1)$ $\phi(n_{0}+2)$ $\ldots$ $\phi(n_{1}-1)$ $P(\phi(n_{1}-1)_{/}\phi(n_{0}+2)\phi(n_{0}+1)^{\backslash }=(\begin{array}{l}\phi(n_{0}+1)\phi(n_{0}+2)\vdots\phi(n_{1}-1)\end{array})$ (26) $P=[^{p}p_{n_{0}}^{no+1}0+3p_{n_{0}+5}p_{no+4}p_{no+2}pn_{0}p_{n_{0}+3}p_{no+1}0\cdot\cdot\cdotp_{n_{1}-1}0::)$ (27) (26) (27) $n\in Z$ $\phi(n)$ 1 $n-1 \sum_{n=no+1}^{1}\phi(n)$ $=$ $1$ (28) $\phi(n)$ $n\in Z$ 32 [9] $\psi^{r}(t)$ $\{p_{n}^{r}\}$ $\psi^{r}(t)$ Hilbert $\psi^{i}(t)$ $p_{n}^{i}$ $\psi^{r}(t)$ $\psi^{i}(t)$ Selesnick[6] $\psi^{r}(t)$ $\{p_{n}^{r}\}$ $\psi^{i}(t)$ $\{p_{n}^{i}\}$ $P_{\omega}^{I}(\omega)$ $=$ $P_{(d}^{R}(\omega)H_{\omega}(\omega)$ (29) $H_{d}(\omega)$ $=$ $e^{-i\omega/2}$ (30) 2 $\psi^{r}(t)$ $\psi^{i}(t)$ Hilbert $P_{\omega}^{R}(\omega)$ $P_{\omega}^{I}(\omega)$ $H_{\omega}(\omega)$ $\{p_{n}^{r}\}$ $\{p_{n}^{i}\}$ $\{h_{n}\}$

7 7 (6) (7) (30) (9) $H_{\omega}(\omega)$ $\omega$ $\{h_{n}\}$ $h_{n}$ $=$ $\frac{1}{2\pi}\int_{-\pi}^{\pi}h_{\omega}(\omega)e^{im_{4})}$ $= \frac{1}{2\pi}\int_{-\pi}^{\pi}e^{i(n-1/2)\omega}d\omega$ $=$ $\frac{1}{2\pi}[\frac{1}{i(n-1/2)}e^{i(n-1/2)\omega}]_{-\pi}^{\pi}$ $=$ $\frac{\sin\{(n-1/2)\pi\}}{(n-1/2)\pi}$ (31) (29) $p_{n}^{i}$ $=$ $\sum_{k}p_{k}^{r}h_{n-k}$ (32) $\{p_{n}^{i}\}$ $\{p_{n}^{r}\}$ (31) $\{h_{n}\}$ $\{p_{n}^{r}\}$ $\{p_{n}^{i}\}$ $\phi^{r}(t)$ $\phi^{i}(t)$ $\psi^{r}(t)$ $\psi^{i}(t)$ CDWT [ ] 1 Daubechies6 [12] $\{p_{n}^{r}\}(0\leq n\leq$ $11\in Z$ $\{p_{n}\}$ ) RI-Daubechies $0$ 6 1 (a) $\phi^{r}(t)$ $\phi^{i}(t)$ (b) $\psi^{r}(t)$ $\psi^{i}(t)$ (c) $ \hat{\psi}^{r}(\omega)+i\hat{\psi}^{i}(\omega) $ $\{p_{n}^{i}\}$ $0$ $n$ $-4\leq n\leq 15\in Z$ ( [9] ) $n$ $\psi^{r}(t)$ Hilbert (18) $\psi^{i}(t)$ $\omega<0$ $ \hat{\psi}^{r}(\omega)+i\hat{\psi}^{i}(\omega) =0$ 1 (c) $\omega<0$ $-660dB$ $0$ $\psi^{r}(t)$ $\psi^{i}(t)$ Hilbert 1 (a) $\phi^{r}(t)$ $\phi^{i}(t)$ 1/2 $-26dB$ ( $-1/2$ 2 $\phi^{i}(t)$ $\phi^{r}(t)$ $-26dB$ ) 1 [8] [9 10] Daubechies6 Daubechies 2 $\sim 10$ Symlet $4\sim 10$ Coiflet2 10[12] $\sim$ [9]

8 8 (a) Scaling function (b) Mother wavelet 2 $ \hat{\psi}^{r}(w)+i\hat{\psi}^{1}(a) $ 1 $0_{-0}$ - $0$ $w/\pi$ (c) Verification of Hilbert transform pair 1: RI-Daubechies 6 4 CDWT (CDWT) [10] CDWT CDWT 41 CDWT [10] $i$ $k$ $\phi_{jk}^{r}(t)$ $\phi_{jk}^{i}$ $\psi_{jk }^{R}$ $\psi_{jk}^{i}$ $\phi_{jk}^{r}(t)=$ $\phi_{jk}^{i}(t)=$ $2^{j}\phi^{R}(2^{j}t-k)$ (33) $2^{j}\phi^{I}(2^{j}t-k)$ (34) $\psi_{jk}^{r}(t)$ $=$ $\sqrt{2}j\psi^{r}(2^{j}t-k)$ (35) $\psi_{jk}^{i}(t)$ $=$ $\sqrt{2}j_{\psi^{i}(2^{j}t-k)}$ (36)

9 9 $g(t)$ CDWT $g(t)= \frac{1}{2}\sum_{jk}\{\{g$ $\psi_{jk}^{r}\}\psi_{jk}^{r}(t)+\langle g\psi_{jk}^{i}\rangle\psi_{jk}^{i}(t)\}$ (37) (37) $\infty$ (13) $\sim(15)$ $\delta(t)$ $f^{\phi}(t)$ $f^{\phi}(t)$ $=$ $\sum_{k}f_{k}^{\phi}\delta(t-k)$ (38) $\{f_{n}^{\phi}\}$ (38) $\{f_{n}\}$ $f^{\phi}(t)$ 1 1 $J(J<0\in Z)$ $J$ $\{d_{jk}^{r}\}$ $\{d_{jk}^{i}\}$ $\{c_{jk}^{r}\}$ $\{c_{jk}^{i}\}$ $f(t)= \sum_{j=j}^{-1}\sum_{k}\{d_{jk}^{r}\psi_{jk}^{r}(t)+d_{jk}^{i}\psi_{jk}^{i}(t)\}$ $+ \sum_{k}\{c_{jk}^{r}\phi_{jk}^{r}(t)+c_{jk}^{i}\phi_{jk}^{i}(t)\}$ (39) $d_{jk}^{r}= \frac{1}{2}\langle f^{\phi}$ $\psi_{jk}^{r}\}$ $d_{jk}^{i}= \frac{1}{2}\{f^{\phi}$ $\psi_{jk}^{i}\}\}$ (40) $c_{jk}^{r}= \frac{1}{2}\langle f^{\phi}$ $\phi_{jk}^{r}\rangle$ $c_{jk}^{i}= \frac{1}{2}\langle f^{\phi}$ $\phi_{jk}^{i}\}$ (41) (39) $f(t)$ $\{f_{n}\}$ $f_{n}=f(n)$ $n\in Z$ $\{f_{n}^{\phi}\}$ (38) $]$ 42 $[$10 (39) $\{f_{n}\}$ $\{f_{n}^{\phi}\}$ (38) [10] $s(t)$ $s(t)=s^{r}(t)+s^{i}(t)$ (42) $s^{r}(t)= \frac{1}{2}\sum_{m}\langle\delta(u)$ $\phi^{r}(u-m)\}\phi^{r}(t-m)$ (43) $s^{i}(t)= \frac{1}{2}\sum_{m}\langle\delta(u)$ $\phi^{i}(u-m)\}\phi^{i}(t-m)$ (44)

10 10 (15) (43) $s^{r}(t)$ $s^{r}(t)$ $=$ $\frac{1}{2}\sum_{m}\int_{-\infty}^{\infty}\delta(u)\overline{\phi^{r}(u-m)}du\phi^{r}(t-m)$ $=$ $\frac{1}{2}\sum_{m}\overline{\phi^{r}(-m)}\phi^{r}(t-m)$ (45) $s^{i}(t)$ $s^{i}(t)$ $=$ $\frac{1}{2}\sum_{m}\overline{\phi^{i}(-m)}\phi^{i}(t-m)$ (46) $s(t)$ $\{f_{n}\}$ $\delta_{n0}$ $\delta_{n0}$ $=$ $\{\begin{array}{ll}1 n=00 n\neq 0\end{array}$ (47) $(n\in Z)$ $\delta_{n0}$ $=$ $\sum_{k}\beta_{k}s(n-k)$ (48) (48) $n\in Z$ $\{\beta_{k}\}(k\in Z)$ $(k$ $n$ $\infty$ ) $\{f_{n}\}$ $s(t)$ ( $f_{n}=f(n)$ $n\in Z$ ) $f(t)$ $=$ $f_{n}^{\phi}$ $=$ $f_{k}^{\phi}s(t-k)$ (49) $\sum_{k}\beta_{k}f_{n-k}$ (50) $\phi^{r}(t-n)$ (49) (42) (45) (46) $\phi^{i}(t-n)$ $f(t)= \sum_{k}\{c_{0k}^{r}\phi^{r}(t-k)+c_{0k}^{i}\phi^{i}(t-k)\}$ (51) $c_{0k}^{r}= \frac{1}{2}\sum_{m}\overline{\phi^{r}(-m)}f_{k-m}^{\phi}$ (52) $c_{0k}^{i}= \frac{1}{2}\sum_{m}\overline{\phi^{i}(-m)}f_{k-m}^{\phi}$ (53)

11 $[$ $]$ 43 $[$10 (42) $\sim(53)$ $\{c_{0k}^{r}\}$ $\{c_{0k}^{i}\}$ $a_{n}^{r}$ $=$ $\frac{1}{\sqrt{2}}\overline{p_{-n}^{r}}$ $b_{n}^{r}= \frac{1}{\sqrt{2}}\overline{q_{n}^{\underline{r}}}$ (54) $a_{n}^{i}$ $=$ $\frac{1}{\sqrt{2}}\overline{p_{-n}^{i}}$ $b_{n}^{i}= \frac{1}{\sqrt{2}}\overline{q_{-n}^{i}}$ (55) $\{a_{n}^{i^{-}}\}$ $\{a_{n}^{r}\}$ $\{b_{n}^{r}\}$ (52) (53) $\{c_{0n}^{r}\}$ $\{c_{0n}^{i}\}$ CDWT [ ] $c_{j-1n}^{r}= \sum_{k}a_{2n-k}^{r}c_{jk}^{r}$ $d_{j-1n}^{r}= \sum_{k}b_{2n-k}^{r}c_{jk}^{r}$ (56) $c_{j-1n}^{i}= \sum_{k}a_{2n-k}^{i}c_{jk}^{i}$ $d_{j-1n}^{i}= \sum_{k}b_{2n-k}^{i}c_{jk}^{i}$ (57) $J$ (39) $\sim(41)$ $\{d_{jk}^{r}\}$ $\{d_{j}^{i_{k}}\}$ $\{c_{jk}^{r}\}$ $\{c_{j\text{ }}^{I}\}$ $]$ 44 $[$10 $g_{n}^{r}$ $=$ $h_{n}^{r}=$ (58) $g_{n}^{i}$ $=$ $\frac{1}{\sqrt{2}}p_{n}^{i}$ $h_{n}^{i}= \frac{1}{\sqrt{2}}q_{n}^{i}$ (59) $\{g_{n}^{i}\}$ $\{g_{n}^{r}\}$ $\{h_{n}^{r}\}$ $\{h_{n}^{i}\}$ $]$ $c_{jn}^{r}= \sum_{k}\{g_{n-2k}^{r}c_{j-1k}^{r}+h_{n-2k}^{r}d_{j-1k}^{r}\}$ (60) $c_{jn}^{i}= \sum_{k}\{g_{n-2k}^{i}c_{j-1k}^{i}+h_{n-2k}^{i}d_{j-1k}^{i}\}$ (61) 43 $\{d_{jk}^{r}\}$ $\{d_{j}^{i_{k}}\}$ $\{c_{jk}^{r}\}$ $\{c_{j_{1}k}^{i}\}$ $0$ $\{c_{0n}^{r}\}$ $f(t)$ (51) $\{f_{n}\}$ $f_{n}=f(n)$ $n\in Z$

12 Meyer 2 Meyer 1/2 (Perfect Translation Invariance PTI) CDWT 4 CDWT 51 Meyer Meyer 1 $\phi^{m}(t)$ $\hat{\phi}^{m}(\omega)=\{\begin{array}{ll}1 \omega \leqq 2\pi/30 \omega \geqq 4\pi/3\end{array}$ (62) $ \hat{\phi}^{m}(\omega-2\pi) ^{2}+ \hat{\phi}^{m}(\omega) ^{2}=1$ $\frac{2\pi}{3}<\omega<\frac{4\pi}{3}$ (63) $\hat{\phi}^{m}(\omega)$ (63) $2\pi/3< \omega <4\pi/3$ Meyer Daubechies[12] $\hat{\phi}^{m}(\omega)$ $=$ $\cos\{\frac{\pi}{2}\nu(\frac{3}{2\pi} \omega -1)\}$ (64) $\nu(x)$ $=$ $x^{4}(35-84x+70x^{2}-20x^{3})$ (65) $\hat{\phi}^{m}(\omega)$ $\phi^{m}(t)$ Meyer Meyer $\{p_{n}^{m}\}$ $\phi^{m}(t)$ [11] $p_{n}^{m}$ $=$ $\phi^{m}(\frac{n}{2})$ (66) Meyer $\phi^{m}(t)$ $b\in R$ $\phi^{b}(t)$ $\phi^{b}(t)$ $=$ $\phi^{m}(t-b)$ $b\in R$ (67)

13 13 $b\in R$ $\phi^{b}(t)$ $\psi^{b}(t)$ $\{p_{n}^{b}\}$ [11] $p_{n}^{b}$ $=$ $\phi^{m}(\frac{n-b}{2})$ (68) $\{p_{n}^{b}\}$ $\{p_{n}^{m}\}$ $P_{\omega}^{b}(\omega)$ [11] $P_{\omega}^{M}(\omega)$ $P_{\omega}^{b}(\omega)$ $=$ $P_{\omega}^{M}(\omega)e^{-ib\omega}$ (69) 52 [11] $b$ (69) 2 2 $b_{1}$ $b_{2}$ $P_{\omega}^{b_{1}}(\omega)$ $P_{\omega}^{b_{2}}(\omega)$ Hilbert $b_{1}$ $b_{2}$ Selesnick[6] Hilbert $b_{1}$ $b_{2}$ (29) (30) 1/2 $b_{1}=b$ $b_{2}=b+1/2$ (70) (69) $b$ $P_{\omega}^{R}(\omega)$ $=$ $P_{\omega}^{b}(\omega)$ $=P_{\omega}^{M}(\omega)e^{-ib\omega}$ (71) $P_{\omega}^{I}(\omega)$ $=$ $P_{\omega}^{b+1/2}(\omega)=P_{\omega}^{M}(\omega)e^{-i(b+1/2)\omega}$ (72) (71) (72) $P_{\omega}^{M}(\omega)$ $P_{\omega}^{I}(\omega)$ $=$ $P_{\omega}^{R}(\omega)e^{-i\omega/2}$ (73) (29) (30) Selesnick Hilbert (71) (72) (68) $p_{n}^{r}$ $=p_{n}^{b}$ $= \phi^{m}(\frac{n-b}{2})$ (74) $p_{n}^{i}$ $=p_{n}^{b+1/2}= \phi^{m}(\frac{n-b-1/2}{2})$ (75) (67) Meyer $\phi^{m}(t)$ $\phi^{r}(t)$ $=$ $\phi^{b}(t)$ $=\phi^{m}(t-b)$ (76) $\phi^{i}(t)$ $=$ $\phi^{b+1/2}(t)=\phi^{m}(t-b-\frac{1}{2})$ (77)

14 14 (a) $b=0$ (b) $b=1/4$ (c) $b=1/2$ 2: PTI $\phi^{r}(t)$ 1/2 $\phi^{i}(t)$ [8] Hilbert $\psi^{r}(t)$ $=$ $\psi^{b}(t)$ (78) $\psi^{i}(t)$ $=$ $\psi^{b+1/2}(t)$ (79) (74) $\psi^{i}(t)$ $\sim(77)$ $\{p_{n}^{i}\}$ $\phi^{r}(t)$ $\phi^{i}(t)$ (20) $b$ 2 $0\leqq b\leqq 1/2$ $b=0$ $\psi^{r}(t)$ $\psi^{i}(t)$ $b=1/2$ $b=1/4$ Kingsbury [5] 1/4 53 CDWT CDWT 4 CDWT (42) $s(t)$ [11] $s(n)=\delta_{n0}$ $n\in Z$ (80) (80) CDWT 42 (38) $\delta(t)$

15 $[$ $f^{\phi}(t)$ $\{f_{n}\}$ $f^{\phi}(t)$ $=$ $\sum_{m}f_{m}\delta(t-m)$ (81) $f^{\phi}(t)$ $\phi^{i}$ $\phi^{r}(t-n)$ ( $n$ ) $f(t)= \sum_{k}\{c_{0k}^{r}\phi^{r}(t-k)+c_{0k}^{i}\phi^{i}(t-k)\}$ (82) $c_{0k}^{r}= \frac{1}{2}\langle f^{\phi}(t)$ $\phi^{r}(t-k)\rangle$ (83) $c_{0k}^{i}= \frac{1}{2}\langle f^{\phi}(t)$ $\phi^{i}(t-k)\}$ (84) (82) $f(t)$ $f_{n}=$ $]$ $f(n)$ $n\in Z$ (83) (84) (81) (15) (82) $\sim(84)$ n $\}$ $f(t)= \sum_{k}\{c_{0k}^{r}\phi^{r}(t-k)+c_{0k}^{i}\phi^{i}(t-k)\}$ (85) $c_{0k}^{r}= \frac{1}{2}\sum_{m}\overline{\phi^{r}(-m)}f_{k-m}$ (86) $c_{0k}^{i}= \frac{1}{2}\sum_{m}\overline{\phi^{i}(-m)}f_{k-m}$ (87) (86) (87) $\{c_{0k}^{r}\}$ $\{c_{0k}^{i}\}$ $0$ $\{c_{0n}^{r}\}$ $\{c_{0n}^{i}\}$ $f(t)$ (85) $\{f_{n}\}$ $f_{n}=f(n)$ $n\in Z$ 6CDWT 1998 Kingsbury [4 5] CDWT CDWT DWT CDWT Kingsbury [5] 1/4 Hilbert Selesnick [6] CDWT Hilbert CDWT CDWT

16 16 Hilbert Hilbert CDWT CDWT CDWT [8] [9] CDWT [10] CDWT Meyer [11] CDWT DWT DWT 3 CDWT 6 [5] [1] S Mallat: A Theory for Multiresolution Signal Decomposition: The Wavelet Representation IEEE Trans on Patten Analysis and Machine Intelligence Vol11 No7 $ (1989)$ [2] S G Mallat and Z Zhang: Matching pursuits with time-frequency dictionaries; IEEE Transactions on Signal Processing Vol41 No12 $ (1993)$ [3] F C A Femandes I W Selesnick R L C Spaendonck and C S Burrus: Complex wavelet transforms with allpass filters; Signal Processing Vol33 No8 $ (2003)$ [4] JFA Magarey and NG Kingsbury: Motion estimation using a complexvalued wavelet transform; IEEE Trans on Signal Processing Vol46 No4 $ (1998)$ [5] N Kingsbury: Complex wavelets for shift invariant analysis and filtering of signals; Joumal of Applied and Computational Harmonic Analysis Vol10 No3 $ (2001)$

17 17 [6] I W Selesnick: The design of approximate Hilbert transform pairs of wavelet bases; IEEE Trans on Signal Processing Vol50 No5 $ (2002)$ [7] : RI-Spline 2 :RI-Spline ; Vo139 No 7 $ (2003)$ [8] : 1 : ;Joumal of Signal Processing Vol11 No5 $ (2007)$ [9] : 2 : :Joumal of Signal Processing Vol11 No5 $ (2007)$ [10] : 3 : ;Journal of Signal Processing Vol11 No 5 $ (2007)$ [11] : ; Joumal of Signal Processing Vol12 No2 $ (2008)$ $[$12 $]$ I Daubechies: Ten lectures on wavelets SIAM Philadelphia 1992 [13] C K Chui : (1993) [14] : ; 2005

1 -- 9 -- 6 6--1 (DFT) 009 DFT: Discrete Fourier Transform 6--1--1 N x[n] DFT N 1 X[k] = x[n]wn kn, k = 0, 1,, N 1 (6 ) n=0 1) W N = e j π N W N twidd

1 -- 9 -- 6 6--1 (DFT) 009 DFT: Discrete Fourier Transform 6--1--1 N x[n] DFT N 1 X[k] = x[n]wn kn, k = 0, 1,, N 1 (6 ) n=0 1) W N = e j π N W N twidd 1 -- 9 6 009 (DFT) 6-1 DFT 6- DFT FFT 6-3 DFT 6-4 6-5 c 011 1/(0) 1 -- 9 -- 6 6--1 (DFT) 009 DFT: Discrete Fourier Transform 6--1--1 N x[n] DFT N 1 X[k] = x[n]wn kn, k = 0, 1,, N 1 (6 ) n=0 1) W N = e

More information

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system Study of Health Monitoring of Vehicle Structure by Using Feature Extraction based on Discrete Wavelet Transform Akihisa TABATA *4, Yoshio AOKI, Kazutaka ANDO and Masataka KATO Department of Precision Machinery

More information

ds2.dvi

ds2.dvi 1 Fourier 2 : Fourier s(t) Fourier S(!) = s(t) = 1 s(t)e j!t dt (1) S(!)e j!t d! (2) 1 1 s(t) S(!) S(!) =S Λ (!) Λ js T (!)j 2 P (!) = lim T!1 T S T (!) = T=2 T=2 (3) s(t)e j!t dt (4) T P (!) Fourier P

More information

,, ( ), ( ), ( ), ( ) 2, ( 2 ) $L^{2}$ ( ) I, $L^{2}(-\infty, \infty)$ II, I, $L^{\infty}(-\infty, \infty)$ I 1 $n$ $f(t)\in L^{2

,, ( ), ( ), ( ), ( ) 2, ( 2 ) $L^{2}$ ( ) I, $L^{2}(-\infty, \infty)$ II, I, $L^{\infty}(-\infty, \infty)$ I 1 $n$ $f(t)\in L^{2 Title ヘビサイドケーブル, トムソンケーブルと関連するソボレフ型不等式の最良定数 ( 可積分数理の新潮流 ) Author(s) 亀高, 惟倫 ; 武村, 一雄 ; 山岸, 弘幸 ; 永井, 敦 ; 渡辺, Citation 数理解析研究所講究録 (2009), 1650: 136-153 Issue Date 2009-05 URL http://hdlhandlenet/2433/140769

More information

REJECT}\grave{}$ $\grave{}\ovalbox{\tt\small -, ) $I$ Characteristics and modeling of averaging waveforms of Auditory Brainstem Res

REJECT}\grave{}$ $\grave{}\ovalbox{\tt\small -, ) $I$ Characteristics and modeling of averaging waveforms of Auditory Brainstem Res 聴性脳幹反応加算時間経過波形のウェーブレット変換に Titleよる再構成波形の特徴とモデル化について ( ウェーブレット解析とサンプリング理論 ) Author(s) 井川, 信子 Citation 数理解析研究所講究録 (2015), 1972: 23-41 Issue Date 2015-11 URL http://hdl.handle.net/2433/224327 Right Type Departmental

More information

318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) (a) (c) ) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) (1

318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) (a) (c) ) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) (1 Vol.52, No.6, 317/329 2016 Mathematical Model and Analysis on Human s Handwork and Their Application to Brush Motion and Junkatsu of Japanese Calligraphy Tadamichi Mawatari and Kensuke Tsuchiya There is

More information

数論的量子カオスと量子エルゴード性

数論的量子カオスと量子エルゴード性 $\lambda$ 1891 2014 1-18 1 (Shin-ya Koyama) ( (Toyo University))* 1. 1992 $\lambdaarrow\infty$ $u_{\lambda}$ 2 ( ) $($ 1900, $)$ $*$ $350-8585$ 2100 2 (1915 ) (1956 ) ( $)$ (1980 ) 3 $\lambda$ (1) : $GOE$

More information

[FX18]シリーズカタログ

[FX18]シリーズカタログ ICR (db) 6 5 3 2 ICR 1 ICR IEEE spec 2 4 6 8 1 Z (Ohms) 11 15 1 95 Impedance 9.2.4.6.8 1 Time (ns) 213.9 FX18-6 S -.8 SH FX18-6 P -.8 SH FX18-6 P -.8 SV 1 FX18-6 S -.8 SV 15 FX18-6 PS -.8 H 15 Signal

More information

2008 : 80725872 1 2 2 3 2.1.......................................... 3 2.2....................................... 3 2.3......................................... 4 2.4 ()..................................

More information

量子フィードバック制御のための推定論とその応用

量子フィードバック制御のための推定論とその応用 834 203 96-08 96 * Naoki Yamamoto Department of Applied Physics and Physico-Informatics Keio University PID ( ) 90 POVM (i) ( ) ( ), (ii) $(y(t))$ (iii) $(u(t))$ 3 223-8522 3-5-3 $f$ $t$ 97 [,2] [3] [4]

More information

教科専門科目の内容を活用する教材研究の指導方法 III : TitleTeam 2 プロジェクト ( 数学教師に必要な数学能力に関連する諸問題 ) Author(s) 青山, 陽一 ; 神, 直人 ; 曽布川, 拓也 ; 中馬, 悟朗 Citation 数理解析研究所講究録 (2013), 1828

教科専門科目の内容を活用する教材研究の指導方法 III : TitleTeam 2 プロジェクト ( 数学教師に必要な数学能力に関連する諸問題 ) Author(s) 青山, 陽一 ; 神, 直人 ; 曽布川, 拓也 ; 中馬, 悟朗 Citation 数理解析研究所講究録 (2013), 1828 教科専門科目の内容を活用する教材研究の指導方法 III : TitleTeam 2 プロジェクト ( 数学教師に必要な数学能力に関連する諸問題 Author(s 青山, 陽一 ; 神, 直人 ; 曽布川, 拓也 ; 中馬, 悟朗 Citation 数理解析研究所講究録 (2013, 1828: 61-85 Issue Date 2013-03 URL http://hdl.handle.net/2433/194795

More information

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

(MIRU2008) HOG Histograms of Oriented Gradients (HOG) (MIRU2008) 2008 7 HOG - - E-mail: katsu0920@me.cs.scitec.kobe-u.ac.jp, {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human

More information

~ ~.86 ~.02 ~.08 ~.01 ~.01 ~.1 6 ~.1 3 ~.01 ~.ω ~.09 ~.1 7 ~.05 ~.03 ~.01 ~.23 ~.1 6 ~.01 ~.1 2 ~.03 ~.04 ~.01 ~.1 0 ~.1 5 ~.ω ~.02 ~.29 ~.01 ~.01 ~.11 ~.03 ~.02 ~.ω 本 ~.02 ~.1 7 ~.1 4 ~.02 ~.21 ~.I

More information

Duplicate Near Duplicate Intact Partial Copy Original Image Near Partial Copy Near Partial Copy with a background (a) (b) 2 1 [6] SIFT SIFT SIF

Duplicate Near Duplicate Intact Partial Copy Original Image Near Partial Copy Near Partial Copy with a background (a) (b) 2 1 [6] SIFT SIFT SIF Partial Copy Detection of Line Drawings from a Large-Scale Database Weihan Sun, Koichi Kise Graduate School of Engineering, Osaka Prefecture University E-mail: sunweihan@m.cs.osakafu-u.ac.jp, kise@cs.osakafu-u.ac.jp

More information

2014 3 10 5 1 5 1.1..................................... 5 2 6 2.1.................................... 6 2.2 Z........................................ 6 2.3.................................. 6 2.3.1..................

More information

表1_表4

表1_表4 HN- 95 HN- 93 HN- 90 HN- 87 HN- 85 HN- 82 HN- 80 HN- 77 HN- 75 HN- 72 HN- 70 HN- 67 HN- 65 HN- 60 HN- 55 HN- 50 HN- 45 HN- 40 HN- 35 HN- 30 HN- 25 HN- 20 HN- 15 HN- 10 H02-80H H02-80L H02-70T H02-60H H05-60F

More information

(1970) 17) V. Kucera: A Contribution to Matrix Ouadratic Equations, IEEE Trans. on Automatic Control, AC- 17-3, 344/347 (1972) 18) V. Kucera: On Nonnegative Definite Solutions to Matrix Ouadratic Equations,

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1 1040 1998 143-153 143 (Masatake MORI) 1 $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}$ (11) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1+x)3/4}$ 1974 [31 8 10 11] $I= \int_{a}^{b}f(\mathcal{i})d_{x}$

More information

untitled

untitled 17 2 Realization on the Direct Two-dimensional Wavelet Transform 1060341 2006 3 10 2 JPEG JPEG2000 [1] X-Y X 1 Y 1 VGA 1 1MBte LSI LSI 2 2 5/3 [2][3] 2 5/3 9/7 7 7 N X M Y 32N M 10N M X-Y 9/7 4 1.67 1

More information

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C) (MIRU2011) 2011 7 890 0065 1 21 40 105-6691 1 1 1 731 3194 3 4 1 338 8570 255 346 8524 1836 1 E-mail: {fukumoto,kawasaki}@ibe.kagoshima-u.ac.jp, ryo-f@hiroshima-cu.ac.jp, fukuda@cv.ics.saitama-u.ac.jp,

More information

Gaze Head Eye (a) deg (b) 45 deg (c) 9 deg 1: - 1(b) - [5], [6] [7] Stahl [8], [9] Fang [1], [11] Itti [12] Itti [13] [7] Fang [1],

Gaze Head Eye (a) deg (b) 45 deg (c) 9 deg 1: - 1(b) - [5], [6] [7] Stahl [8], [9] Fang [1], [11] Itti [12] Itti [13] [7] Fang [1], 1 1 1 Structure from Motion - 1 Ville [1] NAC EMR-9 [2] 1 Osaka University [3], [4] 1 1(a) 1(c) 9 9 9 c 216 Information Processing Society of Japan 1 Gaze Head Eye (a) deg (b) 45 deg (c) 9 deg 1: - 1(b)

More information

自動残差修正機能付き GBiCGSTAB$(s,L)$法 (科学技術計算アルゴリズムの数理的基盤と展開)

自動残差修正機能付き GBiCGSTAB$(s,L)$法 (科学技術計算アルゴリズムの数理的基盤と展開) 1733 2011 149-159 149 GBiCGSTAB $(s,l)$ GBiCGSTAB(s,L) with Auto-Correction of Residuals (Takeshi TSUKADA) NS Solutions Corporation (Kouki FUKAHORI) Graduate School of Information Science and Technology

More information

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z + 3 3D 1,a) 1 1 Kinect (X, Y) 3D 3D 1. 2010 Microsoft Kinect for Windows SDK( (Kinect) SDK ) 3D [1], [2] [3] [4] [5] [10] 30fps [10] 3 Kinect 3 Kinect Kinect for Windows SDK 3 Microsoft 3 Kinect for Windows

More information

1(a) (b),(c) - [5], [6] Itti [12] [13] gaze eyeball head 2: [time] [7] Stahl [8], [9] Fang [1], [11] 3 -

1(a) (b),(c) - [5], [6] Itti [12] [13] gaze eyeball head 2: [time] [7] Stahl [8], [9] Fang [1], [11] 3 - Vol216-CVIM-22 No18 216/5/12 1 1 1 Structure from Motion - 1 8% Tobii Pro TX3 NAC EMR ACTUS Eye Tribe Tobii Pro Glass NAC EMR-9 Pupil Headset Ville [1] EMR-9 [2] 1 Osaka University Gaze Head Eye (a) deg

More information

2

2 1 2 3 4 5 6 ( ) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 6+ 6-5 2 6-5- 6-5+ 5-5- 5- 22 6+ 6-6+ 6-6- S-P time 10 5 2 23 S-P time 5 2 5 2 ( ) 5 2 24 25 26 1 27 28 29 30 95 31 ( 8 2 ) http://www.kishou.go.jp/know/shindo/kaisetsu.html

More information

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation

More information

GSP_SITA2017_web.key

GSP_SITA2017_web.key ytnk@cc.tuat.ac.jp 25 DFT spectrum 2 15 1 5 1 2 3 Frequency index 4 5 25 15 1 DFT spectrum 2 5 1 2 3 Frequency index 4 5 .8 GFT spectrum.6 1.4.2 5 1 15 Graph frequency (eigenvalue) 1 GFT

More information

,..,,.,,.,.,..,,.,,..,,,. 2

,..,,.,,.,.,..,,.,,..,,,. 2 A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,

More information

1 -- 9 -- 3 3--1 LMS NLMS 2009 2 LMS Least Mean Square LMS Normalized LMS NLMS 3--1--1 3 1 AD 3 1 h(n) y(n) d(n) FIR w(n) n = 0, 1,, N 1 N N = 2 3--1-

1 -- 9 -- 3 3--1 LMS NLMS 2009 2 LMS Least Mean Square LMS Normalized LMS NLMS 3--1--1 3 1 AD 3 1 h(n) y(n) d(n) FIR w(n) n = 0, 1,, N 1 N N = 2 3--1- 1 -- 9 3 2009 2 LMS NLMS RLS FIR IIR 3-1 3-2 3-3 3-4 c 2011 1/(13) 1 -- 9 -- 3 3--1 LMS NLMS 2009 2 LMS Least Mean Square LMS Normalized LMS NLMS 3--1--1 3 1 AD 3 1 h(n) y(n) d(n) FIR w(n) n = 0, 1,, N

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 0 1 2 3 4 5 6 1964 1978 7 0.0015+0.013 8 1 π 2 2 2 1 2 2 ( r 1 + r3 ) + π ( r2 + r3 ) 2 = +1,2100 9 10 11 1.9m 3 0.64m 3 12 13 14 15 16 17 () 0.095% 0.019% 1.29% (0.348%) 0.024% 0.0048% 0.32% (0.0864%)

More information

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1000101_ 1000102_ 1000103_ 1000301_ 1000302_ 1000303_ 1000401_ 1000402_ 1000403_ 1000701_ 1000702_ 1000703_ 1000801_ 1000802_ 1000803_ 1000901_ 1000902_ 1000903_ 1001001_ 1001002_ 1001003_ 1001101_ 1001102_

More information

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu) $\mathrm{s}$ 1265 2002 209-219 209 DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ) (Jinghui Zhu) 1 Iiitroductioii (Xiamen Univ) $c$ (Fig 1) Levi-Civita

More information

LECTURES 27 138 130 211 19 96 46 143 16 29 26 89 138 100 16 173 126 148 40 99 56 83 102 400 9 24 253 85 160 734 25 761 655 814 211 97 13 94 9 22 101 88 14 40 19 98 139 21 487 313 7 48 1037 23 12

More information

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation

More information

Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Progress in Qualitative Theory of Fun

Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Progress in Qualitative Theory of Fun 1786 2012 128-142 128 Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Masakazu Onitsuka) Department of General Education Miyakonojo National

More information

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 4 2010 9 3 3 4-1 Lucas-Kanade 4-2 Mean Shift 3 4-3 2 c 2013 1/(18) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 -- 4 4--1 2010 9 4--1--1 Optical Flow t t + δt 1 Motion Field

More information

sp3.dvi

sp3.dvi 3 15 5 22 1 2 1.1... 2 1.2... 4 1.3... 5 1.4... 8 1.5 (Matlab )... 11 2 15 2.1... 15 2.2... 16 2.3... 17 3 19 3.1... 19 3.2... 2 3.3... 21 3.4... 22 3.5... 23 3.6... 24 3.7... 25 3.8 Daubechies... 26 4

More information

2.R R R R Pan-Tompkins(PT) [8] R 2 SQRS[9] PT Q R WQRS[10] Quad Level Vector(QLV)[11] QRS R Continuous Wavelet Transform(CWT)[12] Mexican hat 4

2.R R R R Pan-Tompkins(PT) [8] R 2 SQRS[9] PT Q R WQRS[10] Quad Level Vector(QLV)[11] QRS R Continuous Wavelet Transform(CWT)[12] Mexican hat 4 G-002 R Database and R-Wave Detecting System for Utilizing ECG Data Takeshi Nagatomo Ikuko Shimizu Takeshi Ikeda Akio Sashima Koichi Kurumatani R R MIT-BIH R 90% 1. R R [1] 2 24 16 Tokyo University of

More information

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [ RI-002 Encoding-oriented video generation algorithm based on control with high temporal resolution Yukihiro BANDOH, Seishi TAKAMURA, Atsushi SHIMIZU 1 1T / CMOS [1] 4K (4096 2160 /) 900 Hz 50Hz,60Hz 240Hz

More information

Accuracy Improvement by Compound Discriminant Functions for Resembling Character Recognition Takashi NAKAJIMA, Tetsushi WAKABAYASHI, Fumitaka KIMURA,

Accuracy Improvement by Compound Discriminant Functions for Resembling Character Recognition Takashi NAKAJIMA, Tetsushi WAKABAYASHI, Fumitaka KIMURA, Journal Article / 学 術 雑 誌 論 文 混 合 識 別 関 数 による 類 似 文 字 認 識 の 高 精 度 化 Accuracy improvement by compoun for resembling character recogn 中 嶋, 孝 ; 若 林, 哲 史 ; 木 村, 文 隆 ; 三 宅, 康 二 Nakajima, Takashi; Wakabayashi,

More information

Plural bookkeep using Exchange Algebra Yuji Onuki (University of tsukuba) Key Words:,,, 1 Deguchi(2004) 2 (1984) Staszkiewicz(2011) SNA n n r 1,1 < Na

Plural bookkeep using Exchange Algebra Yuji Onuki (University of tsukuba) Key Words:,,, 1 Deguchi(2004) 2 (1984) Staszkiewicz(2011) SNA n n r 1,1 < Na Plural bookkeep using Exchange Algebra Yuji Onuki (University of tsukuba) Key Words:,,, 1 Deguchi(2004) 2 (1984) Staszkiewicz(2011) SNA n n r 1,1 < Name 1,1, > +r 1,2 < Name 1,2, > + + r 1,k1 < Name 1,k1,

More information

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3) (MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost

More information

ウェーブレット分数を用いた金融時系列の長期記憶性の分析

ウェーブレット分数を用いた金融時系列の長期記憶性の分析 TOPIX E-mail: masakazu.inada@boj.or.jp wavelet TOPIX Baillie Gourieroux and Jasiak Elliott and Hoek TOPIX I (0) I (1) I (0) I (1) TOPIX ADFAugmented Dickey-Fuller testppphillips-perron test I (1) I (0)

More information

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理) 1713 2010 72-87 72 Introduction to the theory of delay differential equations (Rinko Miyazaki) Shizuoka University 1 $\frac{dx(t)}{dt}=ax(t)$ (11), $(a$ : $a\neq 0)$ 11 ( ) $t$ (11) $x$ 12 $t$ $x$ $x$

More information

広報さっぽろ 2016年8月号 厚別区

広報さっぽろ 2016年8月号 厚別区 8/119/10 P 2016 8 11 12 P4 P6 P6 P7 13 P4 14 15 P8 16 P6 17 18 19 20 P4 21 P4 22 P7 23 P6 P7 24 25 26 P4 P4 P6 27 P4 P7 28 P6 29 30 P4 P5 31 P5 P6 2016 9 1 2 3 P4 4 P4 5 P5 6 7 8 P4 9 10 P4 1 b 2 b 3 b

More information

音響問題における差分法を用いたインパルス応答解析予測手法の検討 (非線形波動現象の数理と応用)

音響問題における差分法を用いたインパルス応答解析予測手法の検討 (非線形波動現象の数理と応用) 1701 2010 72-81 72 Impulse Response Prediction for Acoustic Problem by FDM ( ), ) TSURU, Hideo (Nittobo Acoustic Engineering Co. Ltd.) IWATSU, Reima(Tokyo Denki University) ABSTRACT: The impulse response

More information

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat 1134 2000 70-80 70 Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{b}\mathrm{e}$ (Hiroshi

More information

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原 正顯 Citation 数理解析研究所講究録 (1997) 990 125-134 Issue Date 1997-04 URL http//hdlhandlenet/2433/61094 Right Type Departmental Bulletin Paper

More information

Netcommunity SYSTEM αNX typeS/typeM 取扱説明書

Netcommunity SYSTEM αNX typeS/typeM 取扱説明書 2 3 4 5 6 7 1 2 3 4 5 6 8 3 3-38 1 2 3 4 5 9 1 2 3 10 4 5 11 6 12 1 1-2 1 1-3 1 1-4 1 1-5 1 1-6 1 1-7 1 1 1-8 1 1-9 1 100 10 TEN 1 1-10 1 1-11 1 1-12 1 1-13 1 1-14 1 1 2 7 8 9 1 3 4 5 6 1-15 1 1 7 2 3

More information

89 91 93 95 97 99 101 103 105 107 109 111 113 115 H 117 119 l l 121 l l 123 125 127 129 l l l l 131 kl kl kl kl 133 135 137 139 141 143 145 147 149 151 153 155 157 159

More information

株式会社日清製粉グループ本社 第158期中間事業報告書

株式会社日清製粉グループ本社 第158期中間事業報告書 C O N T E N T S...1...3...5...7...9...11...12...13...14 1 2 3 4 3.7% 5.8% 8.5% 70,100kL 81.2% 0.8% 25 20 15 10 5 0 9.18 9.54 9.74 9.62 9.65 9.71 21.04 21.97 22.44 22.23 8.54 22.31 22.45 20.41 15 12 9 6

More information

H(ω) = ( G H (ω)g(ω) ) 1 G H (ω) (6) 2 H 11 (ω) H 1N (ω) H(ω)= (2) H M1 (ω) H MN (ω) [ X(ω)= X 1 (ω) X 2 (ω) X N (ω) ] T (3)

H(ω) = ( G H (ω)g(ω) ) 1 G H (ω) (6) 2 H 11 (ω) H 1N (ω) H(ω)= (2) H M1 (ω) H MN (ω) [ X(ω)= X 1 (ω) X 2 (ω) X N (ω) ] T (3) 72 12 2016 pp. 777 782 777 * 43.60.Pt; 43.38.Md; 43.60.Sx 1. 1 2 [1 8] Flexible acoustic interface based on 3D sound reproduction. Yosuke Tatekura (Shizuoka University, Hamamatsu, 432 8561) 2. 2.1 3 M

More information

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 : Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]

More information

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法 1848 2013 132-146 132 Fuminori Sakaguchi Graduate School of Engineering, University of Fukui ; Masahito Hayashi Graduate School of Mathematics, Nagoya University; Centre for Quantum Technologies, National

More information

[1] SBS [2] SBS Random Forests[3] Random Forests ii

[1] SBS [2] SBS Random Forests[3] Random Forests ii Random Forests 2013 3 A Graduation Thesis of College of Engineering, Chubu University Proposal of an efficient feature selection using the contribution rate of Random Forests Katsuya Shimazaki [1] SBS

More information

IPSJ SIG Technical Report Vol.2014-ICS-175 No /3/14 Modified Stochastic Cell Transmission Model 1,a) 1,b) 1,c) Cell Transmission Model CTM Stoc

IPSJ SIG Technical Report Vol.2014-ICS-175 No /3/14 Modified Stochastic Cell Transmission Model 1,a) 1,b) 1,c) Cell Transmission Model CTM Stoc Modified Stochastic Cell Transmission Model 1,a) 1,b) 1,c) Cell Transmission Model CTM Stochastic Cell Transmission Model SCTM CTM SCTM Modified Stochastic Cell Transmission Model MSCTM MSCTM CTM 1. Cell

More information

みさき_1

みさき_1 2 3 4 5 6 7 1F 2F 8 9 10 11 17 18 19 20 21 22 23 24 31 25 26 27 28 29 30 8 1 2 3 4 5 6 7 6 8 7 16 7 8 9 10 11 12 14 15 13 17 23 Vol.41 8 6 20 11 7 15 7 23 7 7 7 16 23 23 8 13 18:00 22:00 722

More information

H21_report

H21_report vol.4 1 2 6 10 14 18 20 22 24 25 1 2 2172 73 3 21925 926 21125 126 4 5 6 21629 630 7 21107 108 21127 128 8 9 10 21616 617 11 211026 1027 211213 1214 12 13 14 21713 714 15 2194 95 211031 111 16 17 18 19

More information