Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat

Size: px
Start display at page:

Download "Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat"

Transcription

1 Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{b}\mathrm{e}$ (Hiroshi Hierarchical Ising model 4 1 Hierarchical model $\backslash$ ) characteristic function Gauss approach $\phi^{4}$ 4 triviality trajectory $\phi^{4}$ model Ising model hierarchical [ ] 11 Hierarchical model Ising model 1 spin long range interaction Dyson [1] hierarchical model spin Hierarchical model Gaussian measure model \langle $2^{N}$ spin Hamiltonian $\phi_{\theta}$ $=$ $\phi_{\theta_{n}\ldots\theta_{1}}$ $\theta=(\theta_{n} \ldots \theta_{1})\in\{01\}^{n}$ (11) $H_{N}(\phi)$ $=$ $- \frac{1}{2}\sum_{n=1}^{n}(\frac{c}{4})^{n}\sum_{n+1}\theta_{n}\ldots\theta(\sum_{\theta_{n}\ldots\theta_{1}}\phi_{\theta}n\ldots\theta 1l^{2}$ (12) $h(\phi_{\theta})$ single spin distribution $<F>_{Nh}$ $=$ $\frac{1}{z_{nh}}\int d\phi F(\phi)\exp(-\beta H_{N}(\phi))\square h(\phi_{\theta})\theta$ (13) $Z_{Nh}$ $=$ $\int d\phi\exp(-\beta H_{N}(\phi))\prod_{\theta}h(\emptyset\theta)$ (14)

2 $\lambda$ 71 $\int_{\mathrm{r}}h(x)dx=1$ (15) (hierarchical model) $s$ Ising spin measure $h_{\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}(x)$ $=$ $\frac{1}{2}(\delta(x-s)+\delta(_{x+}s))$ (16) $\phi^{4}$ single spin measure $h_{\mu\lambda}(x)$ $=$ const $\exp(-\mu x-2\lambda x)4$ (17) $\mu=-2\lambda S^{2}$ $arrow$ $\infty$ (18) \langle hierarchical Ising model Hiercarchial Ising model infinite volume limit $0<c<2$ (19) $1<c<2$ (110) $\phi$ [1] spin $\beta>0$ $\beta=\frac{1}{c}-\frac{1}{2}$ (111) 12 Block spin Block spin $\phi $ $\phi_{\tau} $ $=$ $\frac{\sqrt{c}}{2}\sum_{1\theta_{1}=0}\phi_{\mathcal{t}\theta}1 \tau=(\tau_{n}-1 \ldots\tau_{1})$ (1J2) $\sum_{\theta_{n}\ldots\theta_{1}}\emptyset\theta_{n}\ldots\theta_{1}$ $= \sum_{\theta_{n\cdot\theta_{2}}}\frac{\sqrt{c}}{2}\phi \theta\theta N\ldots2$ (113)

3 72 $H_{N}(\phi)$ $=$ $H_{N-1}( \emptyset )-\frac{1}{2}\sum_{\mathcal{t}}\emptyset_{\mathcal{t}} 2$ (114) block spin $F(\phi)$ $F(\phi)$ $=$ $F (\emptyset^{j})$ (115) $<F>_{Nh}$ $=$ $<F >_{N-1iRh}$ (116) $\mathfrak{r}h(x)$ $=$ connst $\exp(\frac{\beta}{2}x)2i\mathrm{r}dyh(\frac{x}{\sqrt{c}}+y)h(\frac{x}{\sqrt{c}}-y)x\in \mathrm{r}$ (117) $h$ \langle $\mathfrak{r}$ h trajectory $h_{n}$ $=$ $\mathfrak{r}^{n}h_{0}$ $\mathfrak{r}$ 13 Gaussian trajectory Single spin measure Gauss trajectory $n=012$ $\ldots$ (118) $h_{0}(x)$ $=$ $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\exp(-\frac{\alpha_{0}}{2}x)2$ (119) $\mathrm{j}\mathfrak{i}^{n}h_{0}(x)$ $=$ $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\exp(-\frac{\alpha_{n}}{2}x)2$ (120) $\alpha_{n+1}$ $=$ $\frac{2}{c}\alpha_{n}-\beta$ (121) (111) $\alpha_{n}$ $=$ $( \frac{2}{c})^{n}(\alpha_{0^{-\frac{1}{2}}})+\frac{1}{2}$ (122) $\alpha_{n}>0$ (123) we -defined $\alpha_{0}>\frac{1}{2}$ (124) $\alpha_{0}=\frac{1}{2}$ infinite volume limit $h_{g}(x)$ $=$ $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\exp(-_{4}-x^{2})\perp$ (125) fixed point massless Gaussian measure

4 73 14 Dimensionality $m=12$ $\ldots$ $N$ $M_{m}(\phi)$ $=$ $\sum_{\theta_{m}\ldots\theta_{1}}\phi\theta_{n}\ldots\theta_{1}$ (126) $\chi m_{)}nh$ $=$ $\frac{1}{2^{m}}<m_{m}(\phi)>_{nh}$ (127) $xnnh$ spin susceptibility $\chi_{\lambda}$ $=$ $\sum_{x\in\lambda}<\emptyset(\mathrm{o})\emptyset(x)>$ (128) Block spin $\chi_{mnh}$ $=$ $\frac{2}{c}x_{m-1n-1\re}h$ (129) $h=h_{g}$ infinite volume limit $Narrow\infty$ $\chi_{m\infty}h_{g}$ $=$ $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}(\frac{2}{c})m$ (130) $\mathbb{z}^{d}(d>2)$ massless Gaussian model correlation decay $<\emptyset(x)\phi(y)>$ $\sim$ $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t} x-y ^{-d}+2$ $ x-y arrow \mathrm{o}\mathrm{o}$ (131) <r $<\phi(0)\emptyset(x)>$ const $r^{2}$ (132) $( \frac{2}{c})^{m}$ $=$ $r^{2}$ (133) $2^{m}\sim r^{d}$ spin $c=$ $2^{1-2/d}$ (134) $\beta=$ $\frac{1}{2}(2^{2/d}-1)$ (135) $c$ (134) hierarchical model $d$

5 $d\geq $d<4$ $d\geq $\mathcal{r}$ Fixed points (125) (Gaussian) fixed point (non-gaussian) fixed point [2 3 4] 4$ $\varphi_{g}$ non-gaussian fixed point 4 $d$ $\varphi_{g}$ non-gaussian fixed point 4$ $\varphi_{g}$ trajectory trivial $\phi^{4}$ $\phi^{4}$ Ising model triviality Ising model ( Gauss ) trajectory $[2 4]$ Gauss trajectory characteristic function 2 Characteristic function Single spin distribution $h_{n}\text{ }$ characteristic function $\varphi_{n}(\xi)$ $=$ $\int_{1\mathrm{r}}dxe^{-}hi\epsilon x(nx)$ (21) $\mathcal{r}\varphi_{n}$ $\varphi_{n+1}$ $=$ (22) $=$ $\mathcal{t}s$ (23) $Sg(\xi)$ $=$ $g( \frac{\sqrt{c}}{2}\xi)^{2}$ (24) $\mathcal{t}g(\xi)$ $=$ $\exp(-\frac{\beta}{2}\triangle)g(\xi)$ (25) Ising spin $h_{0}(x)$ $=$ $\frac{1}{2}(\delta(x-s)+\delta(x+s))$ (26) $\varphi_{0}(\xi)$ $=$ $\cos(s\xi)$ (27)

6 Dual $d=\infty$ $c=2\beta=0$ recursion $\varphi_{n+1}(\xi)$ $=$ $\varphi_{n}(\frac{\xi}{\sqrt{2}})^{2}$ (28) Ising spin $\varphi_{n}(\xi)$ $=$ $\cos^{2^{n}}(\frac{s\xi}{2^{n/2}})$ (29) $arrow$ $\exp(-\frac{s^{2}}{2}\xi 2)$ $narrow\infty$ (210) trajectory Gauss (trivial) ( ) (210) $ \xi <2^{n/2_{\frac{\pi}{2s}}}$ $\xi$ $\varphi_{n}(\xi)$ $=$ $\exp(-v_{n}(\xi))$ (211) $V_{n}(\xi)$ $=$ $\sum_{j=1}^{\infty}\mu^{()}2\mathrm{j}\xi^{2j}n$ $(\angle1\wedge 2)$ $\text{ }$ $V_{n}$ dual potential recursion $\mu_{2j}^{(n)}$ $=$ $2\mathrm{J}-j\mu_{2j}(n-1)$ $j=123$ $\ldots$ (213) $\xi^{2}$ marginal 4 irrelevant potential $V_{n}(\xi)$ $ \xi $ $<2^{n/2_{\frac{\pi}{2s}}}$ (214) continuum limit $\lim_{narrow\infty}v_{n}(\xi)$ $=$ $\frac{s^{2}}{2}\xi^{2}$ (215) $\mathit{1}\mathrm{r}$ continuum limit characteristic function $\xi=0$ characteristic function large field problem Ising spin (26) dual potential $V_{0}(\xi)$ $=$ $\frac{s^{2}}{2}\xi^{2}+\frac{s^{4}}{12}\xi^{4}+\frac{s^{6}}{45}\xi^{6}+\frac{17s^{8}}{2560}\xi^{8}+\cdots$ (216) (213) ( $d=\infty$ ) \langle

7 terms $\tilde{\mu}_{2j}^{(n)}$ $d<\infty$ $\mathcal{t}$ $d<\infty(\beta>0)$ (25) operator dual potential $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{v}\mathrm{a}\mathrm{n}\mathrm{t}/\mathrm{i}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{v}\mathrm{a}\mathrm{n}\mathrm{t}$ $\xi^{2}$ $\xi^{4}$ $d>4$ relevant irrelevant $\xi^{2}$ $\xi^{4}$ $d=4$ relevant marginal $\xi^{6}$ irrelevant $\xi^{2}$ $\xi^{4}$ $d<4$ relevant $d$ relevant part non-gaussian fixed point \langle trajectory [ ] 23 Dual potential $(n)$ $=$ $\frac{\mu_{2j}}{(\mu_{2}^{(n)})^{j}}$ $j=23$ $\ldots$ (217) $\tilde{\mu}_{2j}^{(n)}$ Ising trajectory dual potential plot : $(\mu_{2}\tilde{\mu}_{4})$ : $(\mu_{2}\tilde{\mu}_{4}\tilde{\mu}_{6})$ $d=2$

8 trajectory $\tilde{\mu}_{4}^{(0)}$ $\tilde{\mu}_{6}^{(0)}$ 77 $d_{=}$ -q $d_{-=}4$ $d_{=_{\sim}^{t}}\mathrm{i}$ $s$ $s=101112$ $\ldots$ $\mu_{2}^{(0)}$ $=$ $s^{2}/2$ (218) $=$ 1/3 (219) $=$ 8/45 (220) Gaussian fixed point (125) $\varphi_{g}(\xi)$ $ \exp(-\xi^{2})$ (221) (22) fixed point $(1 0)$ (or (1 ) $0$ $\mathrm{o})$

9 $d\geq 78 $d>2$ $\mu_{2}^{(0)}$ trajectory $(00)$ ( ) $\mu_{2}^{(0)}$ trajectory ( ) $\mu_{2}^{(0)}$ (critical point) trajectory $(00)$ (critical trajectory) (non-)triviality $d<4$ critical trajectory non-gaussian fixed point [ trajectory nontrivial continuum limit ] 4$ critical trajectory Gaussian fixed point (triviality) 3 Triviality $d\geq 4$ Characteristic function [7] hierarchical Ising model triviality idea (1) Characteristic function Gauss \langle (2) Ising critical trajectory Gauss computer 31 Characteristic function Ising dual potential Dual potential Taylor : $\mu_{2j}^{(n)}$ $\geq$ $0$ $j\geq 1$ (31) bound Dual potential Taylor 4 bound] : [Newman s $\mu_{2j}^{(n)}$ $\leq$ $\frac{\perp\tau}{j}(2\mu_{4}^{(n)})j/2$ $j\geq 3$ (32) $\mathrm{p}\mathrm{r}\mathrm{o}_{\mathrm{p}^{-}}$ Characteristic function [ spin Lee-Yang erty] [6]

10 79 32 Newman s bound (32) $V_{n}$ Taylor $narrow\infty$ $\mu_{4}^{(n)}arrow 0$ $\mu_{4}^{(n)}$ $0$ $0$ triviality Gauss $\mu_{2j}$ critical trajectory Gauss computer 33 Taylor (31) operator $T$ (25) $g_{t}$ $g_{t}(\xi)$ $=$ $\exp(-t\triangle)g(\xi)$ (33) $Tg$ $=$ $g_{\beta/2}$ (34) $\frac{d}{dt}g_{t}(\xi)$ $=$ $-\triangle g_{t}(\xi)$ (35) $g_{0}(\xi)$ $=$ $g(\xi)$ (36) $g_{t}(\xi)$ $=\exp(-v_{t}(\xi))$ (37) $V_{t}$ $\frac{d}{dt}v_{t}$ $=$ $(\nabla V_{t})^{2}-\triangle Vt$ (38) $V_{t}$ Taylor (38) 2 Taylor [ upper bound (38) lower bound ] $d\geq 4$ hierarchical Ising model triviality computer as- [7] sisted proof upper bound

11 80 References [1] F J Dyson Exisitence of a Phase-Transision in a One-Dimensional Ising Ferromagnet Commun Math Phys [2] Ya G Sinai Theory of Phase Transition: Rigorous Results Pergamon Press 1982 [3] P Collet J-P Eckmann A Renormalization Group Analysis of the Hierarchical Model in Statistical Mechanics Springer Lecture Note in Physics 74 [4] K Gawedzki A Kupiainen Non-Gaussian Fixed Point of the Block Spin Transformation Hierarchical Model Approximation Commun Math Phys [5] HKoch PWittwer A Non-Gaussian Renormalization Group Fixed Point for Hierarchical Scalar Lattice Field Theories Commun Math Phys [6] $\mathrm{c}\mathrm{m}$newman Inequalities for Ising medels and field theories which obey the Lee- Yang theorem Commun Math Phys [7] THara THattori HWatanabe in preparation

untitled

untitled 1 Constructive field theory and renormalization group Hiroshi WATANABE 1 2001 7,. 1 2 2 Euclidean field theory 3 2.1...................................... 4 2.2..................................... 6 3

More information

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê .. 1 10-11 Nov., 2016 1 email:keiichi.r.ito@gmail.com, ito@kurims.kyoto-u.ac.jp ( ) 10-11 Nov., 2016 1 / 45 Clay Institute.1 Construction of 4D YM Field Theory (Jaffe, Witten) Jaffe, Balaban (1980).2 Solution

More information

スケーリング理論とはなにか? - --尺度を変えて見えること--

スケーリング理論とはなにか?  - --尺度を変えて見えること-- ? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40 Outline Outline 1 2 3 4 ( ) What is scaling theory?

More information

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3 Title 異常磁気能率を伴うディラック方程式 ( 量子情報理論と開放系 ) Author(s) 小栗栖, 修 Citation 数理解析研究所講究録 (1997), 982: 41-51 Issue Date 1997-03 URL http://hdl.handle.net/2433/60922 Right Type Departmental Bulletin Paper Textversion

More information

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原 正顯 Citation 数理解析研究所講究録 (1997) 990 125-134 Issue Date 1997-04 URL http//hdlhandlenet/2433/61094 Right Type Departmental Bulletin Paper

More information

1 Point 2 Point 3 Point 5 490,000 10 20 25 35 1,059,000 2,235,500 2,890,500 4,449,500 777,000 1,554,000 3,108,000 3,885,000 3,885,000 4,132,000106.3 6

1 Point 2 Point 3 Point 5 490,000 10 20 25 35 1,059,000 2,235,500 2,890,500 4,449,500 777,000 1,554,000 3,108,000 3,885,000 3,885,000 4,132,000106.3 6 '16-WE07-091 201605 1 Point 2 Point 3 Point 5 490,000 10 20 25 35 1,059,000 2,235,500 2,890,500 4,449,500 777,000 1,554,000 3,108,000 3,885,000 3,885,000 4,132,000106.3 63.0 68.1 71.9 74.4 114.5 40 500

More information

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 ro 980 1997 44-55 44 $\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{i}$ $-$ (Ko Ma $\iota_{\mathrm{s}\mathrm{u}\mathrm{n}}0$ ) $-$. $-$ $-$ $-$ $-$ $-$ $-$ 40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 46 $-$. $\backslash

More information

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$ 1051 1998 59-69 59 Reynolds (SUSUMU GOTO) (SHIGEO KIDA) Navier-Stokes $\langle$ Reynolds 2 1 (direct-interaction approximation DIA) Kraichnan [1] (\S 31 ) Navier-Stokes Navier-Stokes [2] 2 Navier-Stokes

More information

ver.1, 1994 ver.2, 1996 ver.3.0.7, ver.3.1.0, ver.3.2.0, I HP ϕ

ver.1, 1994 ver.2, 1996 ver.3.0.7, ver.3.1.0, ver.3.2.0, I HP ϕ e-mail: hara@math.nagoya-u.ac.jp ver.1, 1994 ver., 1996 ver.3.0.7, 1999.0.1 ver.3.1.0, 000.01.01 ver.3..0, 001.03.11 I HP 1 1.1 ϕ 4 -....................................... 1.............................................

More information

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 4.2 4.2.1 [ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 z = 6 z = 8 zn/2 1 2 N i z nearest neighbors of i j=1

More information

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1 1040 1998 143-153 143 (Masatake MORI) 1 $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}$ (11) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1+x)3/4}$ 1974 [31 8 10 11] $I= \int_{a}^{b}f(\mathcal{i})d_{x}$

More information

( ) URL: December 2, 2003

( ) URL:   December 2, 2003 ( ) URL: http://dbs.c.u-tokyo.ac.jp/~fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp December 2, 2003 Today s Contents Summary 2003/12/02 1 Cannella Mydosh(1972) Edwards Anderson(1975): Model Hamiltonian:

More information

一般相対性理論に関するリーマン計量の変形について

一般相対性理論に関するリーマン計量の変形について 1896 2014 137-149 137 ( ) 1 $(N^{4}, g)$ $N$ 4 $g$ $(3, 1)$ $R_{ab}- \frac{1}{2}rg_{ab}=t_{ab}$ (1) $R_{ab}$ $g$ $R$ $g$ ( ) $T_{ab}$ $T$ $R_{ab}- \frac{1}{2}rg_{ab}=0$ 4 $R_{ab}=0$ $\mathbb{r}^{3,1}$

More information

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$ 1075 1999 127-142 127 (Shintaro Yamashita) 7 (Takashi Watanabe) $\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{m}\mathrm{u}\mathrm{f}\mathrm{a}\rangle$ (Ikuo 1 1 $90^{\mathrm{o}}$ ( 1 ) ( / \rangle (

More information

Title 脳波を記述する積分方程式について ( 関数方程式の定性的理論とその現象解析への応用 ) Author(s) 鈴木, 貴 ; 久保, 明達 Citation 数理解析研究所講究録 (2001), 1216: 1-12 Issue Date URL

Title 脳波を記述する積分方程式について ( 関数方程式の定性的理論とその現象解析への応用 ) Author(s) 鈴木, 貴 ; 久保, 明達 Citation 数理解析研究所講究録 (2001), 1216: 1-12 Issue Date URL Title 脳波を記述する積分方程式について ( 関数方程式の定性的理論とその現象解析への応用 ) Author(s) 鈴木 貴 ; 久保 明達 Citation 数理解析研究所講究録 (2001) 1216: 1-12 Issue Date 2001-06 URL http://hdlhandlenet/2433/41198 Right Type Departmental Bulletin Paper

More information

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M 1445 2005 88-98 88 Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of Mathematics Shimane University 1 2 $(\mathit{4}_{p}(\dot{x}))^{\circ}+\alpha\phi_{p}(\dot{x})+\beta\phi_{p}(x)=0$

More information

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法 1848 2013 132-146 132 Fuminori Sakaguchi Graduate School of Engineering, University of Fukui ; Masahito Hayashi Graduate School of Mathematics, Nagoya University; Centre for Quantum Technologies, National

More information

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3 1084 1999 124-134 124 3 1 (SUGIHARA Kokichi),,,,, 1, [5, 11, 12, 13], (2, 3 ), -,,,, 2 [5], 3,, 3, 2 2, -, 3,, 1,, 3 2,,, 3 $R$ ( ), $R$ $R$ $V$, $V$ $R$,,,, 3 2 125 1 3,,, 2 ( ), $[2, 4]$, $[21, 25]$,

More information

14 6. $P179$ 1984 r ( 2 $arrow$ $arrow$ F 7. $P181$ 2011 f ( 1 418[? [ 8. $P243$ ( $\cdot P260$ 2824 F ( 1 151? 10. $P292

14 6. $P179$ 1984 r ( 2 $arrow$ $arrow$ F 7. $P181$ 2011 f ( 1 418[? [ 8. $P243$ ( $\cdot P260$ 2824 F ( 1 151? 10. $P292 1130 2000 13-28 13 USJC (Yasukuni Shimoura I. [ ]. ( 56 1. 78 $0753$ [ ( 1 352[ 2. 78 $0754$ [ ( 1 348 3. 88 $0880$ F ( 3 422 4. 93 $0942$ 1 ( ( 1 5. $P121$ 1281 F ( 1 278 [ 14 6. $P179$ 1984 r ( 2 $arrow$

More information

Key Words: average behavior, upper and lower bounds, Mori-Tanaka theory, composites, polycrystals

Key Words: average behavior, upper and lower bounds, Mori-Tanaka theory, composites, polycrystals Key Words: average behavior, upper and lower bounds, Mori-Tanaka theory, composites, polycrystals (Q)1=C1(E)1, (0)2=C2(E)2 (4) QQQ= fi(o)1+f2(2+(1-fi-f2)(o)m E=flIE1+12(6)2+(1-fl-f2)(E)D (5a) (5b) (E)i=1E/D+-y,

More information

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m} 1209 2001 223-232 223 (Kazuo Iida) (Youichi Murakami) 1 ( ) ( ) ( ) (Taylor $)$ [1] $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}\mathrm{m}$ $02\mathrm{m}\mathrm{m}$ Whitehead and Luther[3] $\mathrm{a}1[2]$

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

ビジネス交渉術入稿.indd

ビジネス交渉術入稿.indd Part1 1 1 6 1 2 8 1 3 10 1 4 12 1 5 14 Part1 16 Part2 Part2 Part3 2 1 18 2 2 20 2 3 22 2 4 24 2 5 26 2 6 28 2 7 30 2 8 32 2 Contents 2 9 34 2 10 36 2 11 38 40 Part3 3 1 42 3 2 44 3 3 46 3 4 48 3 5 50 3

More information

$w_{ij}^{\infty}(t)=\delta_{ij},$ $i\leq j,$ $w_{ij}^{0}(t)=0,$ $i>j$ $w_{ii}(t)\neq 0,$ $i=1,$ $\ldots,$ $n$ $W_{\infty}(t),$ $W_{0}(t)$ (14) $L(f)=W

$w_{ij}^{\infty}(t)=\delta_{ij},$ $i\leq j,$ $w_{ij}^{0}(t)=0,$ $i>j$ $w_{ii}(t)\neq 0,$ $i=1,$ $\ldots,$ $n$ $W_{\infty}(t),$ $W_{0}(t)$ (14) $L(f)=W , 2000 pp72-87 $\overline{n}b_{+}/b_{+}$ e-mail: ikeka@math scikumamoto-uacjp September 27, 2000 \S 1 Introduction $\#_{dt}^{1}d^{2}=\exp(q_{2}-q_{1})$ $arrow_{dt}^{d^{2}}2=\exp(q_{3}-q_{2})-\exp(q_{2}-q_{1})$

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a double $\mathrm{j}\mathrm{s}\mathrm{t}$ $\mathrm{q}$ 1505 2006 1-13 1 / (Kinji Kimura) Japan Science and Technology Agency Faculty of Science Rikkyo University 1 / / 6 1 2 3 4 5 Kronecker 6 2 21 $\mathrm{p}$

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義 email: takahash@sci.u-hyogo.ac.jp August 3, 2009 Title of Lecture: SCR Spin Fluctuation Theory 2 / 179 Part I Introduction Introduction Stoner-Wohlfarth Theory Stoner-Wohlfarth Theory Hatree Fock Approximation

More information

P1-1 P1-2 P1-3 P1-4 P1-5 P1-6 P3-1 P3-2 P3-3 P3-4 P3-5 P3-6 P5-1 P5-2 P5-3 P5-4 P5-5 P5-6 P7-1 P7-2 P7-3 P7-4 P7-5 P7-6 P9-1 P9-2 P9-3 P9-4 P9-5 P9-6 P11-1 P11-2 P11-3 P11-4 P13-1 P13-2 P13-3 P13-4 P13-5

More information

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析) 1748 2011 48-57 48 (Hiroshi Iwasaki) Faculty of Mathematics and Physics Kanazawa University quasi-static Biot 1 : ( ) (coup iniury) (contrecoup injury) 49 [9]. 2 2.1 Navier-Stokes $\rho(\frac{\partial

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

点集合置換法による正二十面体対称準周期タイリングの作成 (準周期秩序の数理)

点集合置換法による正二十面体対称準周期タイリングの作成 (準周期秩序の数理) 1725 2011 1-14 1 (Nobuhisa Fujita) Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 1. (Dirac peak) (Z-module) $d$ (rank) $r$ r $\backslash$ (Bravais lattice) $d$ $d$ $r$

More information

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III. Masafumi Udagawa Dept. of Physics, Gakushuin University Mar. 8, 16 @ in Gakushuin University Reference M. U., L. D. C. Jaubert, C. Castelnovo and R. Moessner, arxiv:1603.02872 Outline I. Introduction:

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川 正行 Citation 数理解析研究所講究録 (1993) 830: 244-253 Issue Date 1993-04 URL http://hdlhandlenet/2433/83338 Right Type Departmental Bulletin Paper

More information

(Keiko Harai) (Graduate School of Humanities and Sciences Ochanomizu University) $\overline{\mathrm{b} \rfloor}$ (Michie Maeda) (De

(Keiko Harai) (Graduate School of Humanities and Sciences Ochanomizu University) $\overline{\mathrm{b} \rfloor}$ (Michie Maeda) (De Title 可測ノルムに関する条件 ( 情報科学と函数解析の接点 : れまでとこれから ) こ Author(s) 原井 敬子 ; 前田 ミチヱ Citation 数理解析研究所講究録 (2004) 1396: 31-41 Issue Date 2004-10 URL http://hdlhandlenet/2433/25964 Right Type Departmental Bulletin Paper

More information

表1_表4

表1_表4 HN- 95 HN- 93 HN- 90 HN- 87 HN- 85 HN- 82 HN- 80 HN- 77 HN- 75 HN- 72 HN- 70 HN- 67 HN- 65 HN- 60 HN- 55 HN- 50 HN- 45 HN- 40 HN- 35 HN- 30 HN- 25 HN- 20 HN- 15 HN- 10 H02-80H H02-80L H02-70T H02-60H H05-60F

More information

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable), .... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

1 1 Emmons (1) 2 (2) 102

1 1 Emmons (1) 2 (2) 102 1075 1999 101-116 101 (Yutaka Miyake) 1. ( ) 1 1 Emmons (1) 2 (2) 102 103 1 2 ( ) : $w/r\omega$ $\text{ }$ 104 (3) $ $ $=-$ 2- - $\mathrm{n}$ 2. $\xi_{1}(=\xi),$ $\xi 2(=\eta),$ $\xi 3(=()$ $x,$ $y,$ $z$

More information

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2 hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2...................................

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

表面科学会誌_090617

表面科学会誌_090617 229-8558 5-10-1 Friction of Macroscopic Systems from Paper and Rock to Eatrthquake Hiroshi MATSUKAWA Department of Physics and Mathematics, Aoyama Gakuin University 5-10-1 Fuchinobe, Sagamihara 229-8558,

More information

流体とブラックホールの間に見られる類似性・双対性

流体とブラックホールの間に見られる類似性・双対性 1822 2013 56-68 56 (MIYAMOTO, Umpei) Department of Physics, Rikkyo University 1 : ( $)$ 1 [ 1: ( $BH$ ) 57 2 2.1 3 $(r, \theta, \phi)$ $t$ 4 $(x^{a})_{a=0,1,2,3}:=$ $c$ $(ct, r, \theta, \phi)$ $x^{a}$

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

Anderson ( ) Anderson / 14

Anderson ( ) Anderson / 14 Anderson 2008 12 ( ) Anderson 2008 12 1 / 14 Anderson ( ) Anderson 2008 12 2 / 14 Anderson P.W.Anderson 1958 ( ) Anderson 2008 12 3 / 14 Anderson tight binding Anderson tight binding Z d u (x) = V i u

More information

EGunGPU

EGunGPU Super Computing in Accelerator simulations - Electron Gun simulation using GPGPU - K. Ohmi, KEK-Accel Accelerator Physics seminar 2009.11.19 Super computers in KEK HITACHI SR11000 POWER5 16 24GB 16 134GFlops,

More information

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539 43-50 Issue Date 2007-02 URL http//hdlhandlenet/2433/59070 Right Type Departmental

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp April 30, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 260 Today s Lecture: Itinerant Magnetism 60 / 260 Multiplets of Single Atom System HC HSO : L = i l i, S = i s i, J = L +

More information

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm 995 1997 11-27 11 3 3 Euclid (Reiko Aiyama) (Kazuo Akutagawa) (CMC) $H$ ( ) $H=0$ ( ) Weierstrass $g$ 1 $H\neq 0$ Kenmotsu $([\mathrm{k}])$ $\mathrm{s}^{2}$ 2 $g$ CMC $P$ $([\mathrm{b}])$ $g$ Gauss Bryant

More information

1 2 3 4 5 6 7 1 2 8 1 2 3 4 9 1 1 1 10 1 2 3 11 1 2 3 12 4 5 6 7 13 14 15 4 13 57 16 17 18 19 13 5 7 8 6 4 20 1 2 3 4 5 6 21 22 1 2 3 4 5 6 23 24 1 2 5 3 6 7 4 25 26 27 28 29 30 1 23 4 57 31 32 33 34 35

More information

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsutomu * 1/Mori, Hideki * 1 Ishikawa, Satoshi * 1/Shin,

More information

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録 Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木 達夫 Citation 数理解析研究所講究録 (2004) 1408: 97-109 Issue Date 2004-12 URL http://hdlhandlenet/2433/26142

More information

}$ $q_{-1}=0$ OSTROWSKI (HASHIMOTO RYUTA) $\mathrm{d}\mathrm{c}$ ( ) ABSTRACT Ostrowski $x^{2}-$ $Dy^{2}=N$ $-$ - $Ax^{2}+Bx

}$ $q_{-1}=0$ OSTROWSKI (HASHIMOTO RYUTA) $\mathrm{d}\mathrm{c}$ ( ) ABSTRACT Ostrowski $x^{2}-$ $Dy^{2}=N$ $-$ - $Ax^{2}+Bx Title 2 元 2 次不定方程式の整数解の OSTROWSKI 表現について ( 代数的整数論とその周辺 ) Author(s) 橋本 竜太 Citation 数理解析研究所講究録 (2000) 1154 155-164 Issue Date 2000-05 URL http//hdlhandlenet/2433/64118 Right Type Departmental Bulletin Paper

More information

情報教育と数学の関わり

情報教育と数学の関わり 1801 2012 68-79 68 (Hideki Yamasaki) Hitotsubashi University $*$ 1 3 [1]. 1. How To 2. 3. [2]. [3]. $*E-$ -mail:yamasaki.hideki@r.hit-u.ac.jp 2 1, ( ) AND $(\wedge)$, $OR$ $()$, NOT $(\neg)$ ( ) [4] (

More information

* KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1. $\mathrm{n}\mathrm{p}$ (SCP) 1,..,,,, $[1][5][10]$, [11], [4].., Fishe

* KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1. $\mathrm{n}\mathrm{p}$ (SCP) 1,..,,,, $[1][5][10]$, [11], [4].., Fishe 1114 1999 211-220 211 * KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1 $\mathrm{n}\mathrm{p}$ (SCP) 1 $[1][5][10]$ [11] [4] Fisher Kedia $m=200$ $n=2000$ [8] Beasley Gomory f- $m=400$ $n=4000$

More information

References: 3 June 21, 2002 K. Hukushima and H. Kawamura, Phys.Rev.E, 61, R1008 (2000). M. Matsumoto, K. Hukushima,

References: 3 June 21, 2002 K. Hukushima and H. Kawamura, Phys.Rev.E, 61, R1008 (2000). M. Matsumoto, K. Hukushima, References: 3 mailto:hukusima@issp.u-tokyo.ac.jp June 21, 2002 K. Hukushima and H. Kawamura, Phys.Rev.E, 61, R1008 (2000). M. Matsumoto, K. Hukushima, and H. Takayama, cond-mat/0204225. Typeset by FoilTEX

More information

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Summary Previously, the authors developed the plastic

More information

$\bullet$ I $\bullet$ II be (On the Stability of Newmark s method) CHIBA, $\mathrm{f}\mathrm{u}\mathrm{m}\mathrm{i}\mathrm{h}\mathr

$\bullet$ I $\bullet$ II be (On the Stability of Newmark s method) CHIBA, $\mathrm{f}\mathrm{u}\mathrm{m}\mathrm{i}\mathrm{h}\mathr TitleOn the Stability of Newmark's $\bet Author(s) CHIBA, Fumihiro; KAKO, Takashi Citation 数理解析研究所講究録 (1998), 1040: 39-44 Issue Date 1998-04 URL http://hdlhlenet/2433/62040 Right Type Departmental Bulletin

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

( ) I( ) TA: ( M2)

( ) I( ) TA: ( M2) ( ) I( ) TA: ( M) 015 7 17 , 7 ( ) I( ).., M. (hatomura@spin.phys.s.u-tokyo.ac.jp).,,.. Keywords: 1. (gas-liquid phase transition). (critical point) 3. (lattice gas model) (Ising model) H = ϕ 0 i,j n i

More information

main.dvi

main.dvi CDMA 1 CDMA ( ) CDMA CDMA CDMA 1 ( ) Hopfield [1] Hopfield 1 E-mail: okada@brain.riken.go.jp 1 1: 1 [] Hopfield Sourlas Hopfield [3] Sourlas 1? CDMA.1 DS/BPSK CDMA (Direct Sequence; DS) (Binary Phase-Shift-Keying;

More information

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

p01.qxd

p01.qxd 2 s 1 1 2 6 2 POINT 23 23 32 15 3 4 s 1 3 2 4 6 2 7003800 1600 1200 45 5 3 11 POINT 2 7003800 7 11 7003800 8 12 9 10 POINT 2003 5 s 45700 3800 5 6 s3 1 POINT POINT 45 2700 3800 7 s 5 8 s3 1 POINT POINT

More information

株主通信:第18期 中間

株主通信:第18期 中間 19 01 02 03 04 290,826 342,459 1,250,678 276,387 601,695 2,128,760 31,096 114,946 193,064 45,455 18,478 10,590 199,810 22,785 2,494 3,400,763 284,979 319,372 1,197,774 422,502 513,081 2,133,357 25,023

More information

1003shinseihin.pdf

1003shinseihin.pdf 1 1 1 2 2 3 4 4 P.14 2 P.5 3 P.620 6 7 8 9 10 11 13 14 18 20 00 P.21 1 1 2 3 4 5 2 6 P7 P14 P13 P11 P14 P13 P11 3 P13 7 8 9 10 Point! Point! 11 12 13 14 Point! Point! 15 16 17 18 19 Point! Point! 20 21

More information

ワタベウェディング株式会社

ワタベウェディング株式会社 1 2 3 4 140,000 100,000 60,000 20,000 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 5 6 71 2 13 14 7 8 9 10 11 12 1 2 2 point 1 point 2 1 1 3 point 3 4 4 5 6 point 4 point 5 point 6 13 14 15 16 point 17

More information

untitled

untitled 1 2 3 4 5 6 7 Point 60,000 50,000 40,000 30,000 20,000 10,000 0 29,979 41,972 31,726 45,468 35,837 37,251 24,000 20,000 16,000 12,000 8,000 4,000 0 16,795 22,071 20,378 14 13 12 11 10 0 12.19 12.43 12.40

More information