,..,,.,,.,.,..,,.,,..,,,. 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download ",..,,.,,.,.,..,,.,,..,,,. 2"

Transcription

1 A.A. (1906) (1907) ,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1

2 ,..,,.,,.,.,..,,.,,..,,,. 2

3 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,, a 1, a 2,..., a n,...,. x a = z 1, , 1906, P.L. 3. 3

4 . 2 (z 1 + z z n ) 2,,. z1 2 + z zm 2 + 2z 1 z 2 + 2z 1 z z n 1 z n., z z k 0, (z 1 + z z n ) 2, z 1, z 2,..., z n 2,,, z z k, E(z 1 + z z n ) 2 < n k=1 Ez 2 k. 4, z, z,..., z (ω), z, p, p,..., p (ω)., z k, z = z, z,..., z (ω) a k, a k,..., a (ω) k., z z k, p z a k + p z a k + + p (ω) z (ω) a (ω) k., z, z k 0, p z + p z + + p (ω) p a k + p a k + + p (ω) z (ω), a (ω) k 4, E,, M.E.(=Mathematica Expectation). 4

5 ., a k > a k > > a (ω) k, 5, p (i) z (i) a (i) k < p (i) z (i) (i) p a (i) k = 0. 6, zn 2, n. z k, k, x 1 + x x k 1, E(z 1 + z z n ) 2 < n k=1 Ez 2 k,., (z 1 +z 2 + +z n ) 2 = z 2 1 +z z 2 n+2z 1 z 2 +2(z 1 +z 2 )z 3 +2(z 1 +z 2 +z 3 )z 4 +., x 1 + x x n, n, 1, 2, a, 2b a + b, a b. 5, P.L , Korkine Comptes Rendus,96 6,. 5

6 ,, a,, 1 a + b,, a, a + b. 2.,,,., x 1, x 2,..., x n,...,. x 1 + x x n, n, A., A, A p,, A p.,, p. 7,, p, p, p 1 p = q, 1 p = q, 1 p = q p = pp + qp. 8,,, p = p 1 p + p, p = 1 + p p p, p = p 1 p 1 p. x, x k, A, k, 0 1., a = a k = p 7, A p, n p = P (x n = 1). 8 p = P (x n = 1/x n 1 = 1) + P (x n = 1/x n 1 = 0). 6

7 ., x x k a k x k a k x + a k a z z k, Ex x k p 2. x x k, k A,,, A p, A, k A Rk., Ez z k = p(rk p), R k., k, R k. k = 1, R 1 = p, R 2 = R 1 p + (1 R 1 )p = p p + q p, R 3 = R 2 p + (1 R 2 )p, R m+1 = R m p + (1 R m )p = p + (p p )R m. R m+1 = p + (p p )R m,, R m = p + C(p p ) m, C R 1 = p., Ez z k = pq(p p ) k 7

8 , E(z 1 + z z k 1 )z k = pq ( p p + (p p ) (p p ) k 1)., p < p, (z 1 + z z k 1 )z k, E(z 1 + z z k 1 )z k < npq. p > p, (z 1 + z z k 1 )z k.,. pq(p p ) 1 p + p ( E(z 1 + z z n ) 2 < npq 1 + 2(p p ) ) < npq(1 + p p ) 1 p + p 1 p + p,., A, p,, z z k,,., k, A m P m,k. P m,k = V m,k + U m,k., U m,k V m,k P m,k. (1) U m,k A, (2) V m,k A, 8

9 ., ξ 9 Φ k = U 0,k + U 1,k ξ + U 2,k ξ U k 1,k ξ k 1 Ψ k = V 1,k ξ + U 2,k ξ V k,k ξ k Ω k = P 0,k + P 1,k ξ + P 2,k ξ P k,k ξ k = Ψk + Φk. Ω k, t t k., U m,k = q V m,k 1 + q U m,k 1 V m,k = p V m 1,k 1 + p U m 1,k 1. Φ k Ψ k, Φ k = q Ψ k 1 + q Φ k 1 Ψ k = p ξψ k 1 + p ξφ k 1. Φ Ψ, Φ k+1 (p ξ + q )Φ k + (p p )ξφ k 1 = 0 Ψ k+1 (p ξ + q )Ψ k + (p p )ξψ k 1 = 0. Ω k = Φ k + Ψ k Ω k+1 (p ξ + q )Ω k + (p p )ξω k 1 = 0. Ω k A + Bt 1 (p ξ + q )t + (p p )ξt 2 t t k., A B, t. A B, k k = 1, 2 Ω k. Ω 1 = q + pξ, 9. Ω 2 = qq + (qp + pq )ξ + pp ξ 2 9

10 ., Ω 0 = 1. t, 2, A + (B + p ξ + q )t = Ω 0 + Ω 1 t = 1 + (q + pξ)t. A = 1 B = (p p )ξ + q q, B = (p p )(qξ + p)., 1 + (p p )(qξ + p)t 1 (p ξ + q )t + (p p )ξt 2 = Ω 0 + Ω 1 t + Ω 2 t 2 +., 10.,,..,,. 1, x 1 + x x n +,, n 1), a, b. 2),., x 1 + x x k

11 , x k., (z 1 + z z k 1 )z k. (z 1 + z z n ) 2, n ( m n a ) 2P a,b m,n a + b m=0,., P a,b m,n n m, P a,b m,n = 1 2 n a(a + 1) (a + m 1)b(b + 1) (b + n m 1) 1 2 m 1 2 (n m)(a + b)(a + b + 1) (a + b + n 1).,. mp a,b m,n = m(m 1)P a,b m,n = n m=0 n m=0 na a + b P a+1,b m 1,n 1 n(n 1)a(a + 1) (a + b)(a + b + 1) P a+2,b m 2,n 2 mp a,b m,n = m(m 1)P a,b m,n =.,, m=0 n m=0 na a + b n(n 1)a(a + 1) (a + b)(a + b + 1) P a,b m,n = 1 n ( m n a ) Pm,n a,b a + b., : n m=0 ( 2na ) n m(m 1)Pm,n a,b a + b 1 m=0 11 mp a,b ( a ) 2P m,n + n 2 a,b a + b n m,n m=0 P a,b m,n.

12 , n ( m n a a + b m=0 ) P a,b m,n = nab(n + a + b) (a + b) 2 (a + b + 1).,., ε, ε m n a a + b +ε, n 1.. β., ξ = ( a ) 2 a + b ( m n a ) 2 a + b ( b ) 2 a + b.,,., ξβ > ab (a + b) 2 (a + b + 1) ξ2 ab ξ < (a + b) 2 (a + b + 1), β., m µ, (a 1)n b + 1 (a + b 2)µ (a 1)n + a 1 (a + b 2)µ., µ, n, n a a 1 a + 1 a + b 2., n, m n a 1 a + b 2 ( m ) 2., n g a g = a + b 12

13 ,, n ab, 0 (a + b) 2 (a + b + 1). a = b = 1, m = 0, 1, 2, 3,..., n, 1,. n ,.,,,,. x 1, x 2,..., x k, x k+1,..., k, x k, x k+1 x 1, x 2,..., x k 1.,,, β, γ,...., p,, p,β, p,γ,..., p β,, p β,β, p β,γ, , x k, x k+1, p x k, x k+1., x k = β 13

14 , x k+1 = γ p β,γ.,, k., x k x 1, x 2, x 3,..., β, γ,..., p (k), p (k) β, p(k) γ,.... p,, p,β, p,γ,..., p β,, p β,β, p β,γ, ,., p, + p,β + p,γ + = 1 p β, + p β,β + p β,γ + = p (k), p (k) β, p(k) γ,..., p (k) + p (k) β + p (k) γ + = 1, k., p, p β, p γ,... 14

15 , p (k), p (k) β, p(k) γ,..., p (k+1) p (k+1) β = p, p (k) = p,β p (k) p β, p (k) β +, + p β,β p (k) β +,. x 1, x 2,... x k,..., a k x k. A (i), A (i) β, A(i) γ,..., x k =, x k = β, x k = γ,... x k+i.,. a k = p (k) a k+i = p (k) A (i) A (i) A (i) β + p (k) β + p(k) γ γ +, β = p, A (i 1) = p β,a (i 1) + p (k) β A(i) β + p,β A (i 1) β + p β,β A (i 1) β , + p(k) γ A (i) γ +, a k+i, A (i), A (i) β, A(i) γ, p,γ A (i 1) γ +, + p β,γ A (i 1) γ +,

16 , i,.,, a k+i A (i), A (i) β, A(i) γ,...., A (i 1)., A (i 1), A (i 1) γ,... β, A (i) A (i) β A (i) A (i) β = (p, p β, )A (i 1) + (p,β p β,β )A (i 1) β +., (p, p β, ) + (p,β p β,β ) + = 0 p, p β,, p,β p β,β,...,,., 1., p,, p,β, p,γ,..., p β,, p β,β, p β,γ,...., A (i 1), A (i 1), A (i 1) γ,..., β (i 1) A (i 1), A (i 1), A (i 1) γ,... β 16

17 , A (i) A (i) β < h (i 1)., h p, p β,, p,β p β,β,..., 1. A (i), A (i) β, A(i) γ,...,., A (i) A (i) β, A (i), A (i) β, A(i) γ,... (i), (i) < H (i 1)., H 0 1., (i) i 0., i, a k+i, A (i), A (i) β, A(i) γ,...,., (i), (i) < CH i., C H 0 < H < 1. 2 (x 1 a 1 + x 2 a x n a n ) 2 17

18 , x k a k = z k, 2., Ez k (z 1 + z z k 1 ) < D(H + H H k 1 ) E(x 1 a 1 + x 2 a x n a n ) 2 < Gn., D G., (x 1 a 1 + x 2 a x n a n ) 2 (x 1 + x x n na) 2, 2., (a 1 a + a 2 a + + a n na) 2 a = im i a k+i., n,., n, ( x1 + x x n n ) 2 a 0.,., ε η, ε < x 1 + x x n n a < ε, n 1 η.,,

19 ( ) a 1 < a 2 < < a n, b 1 > b 2 > > b n, p j, j = 1, 2,..., n j, k (a j a k )(b j b k ) < 0, p j p k j, k p j p k (aj a k )(bj b k ) = 2 j j,k p k a k b k 2 j p j a j p k a k < 0 k, p k a k b k < k k p k a k p k b k k., a j = z (j), b j = a (j) k, j = 1, 2,..., ω. 19

20 A.A (Buetin de Académie Impériae des Sciences de St.-Pétersbourg) ,,. 11.,. 12, 2.,, 13,, 14.,,,,, 15,,.,.,..,, E E,, p., E, E,, 11,, , P.L , e x2 d m e x2 dx = 0 Buetin de Académie m des Sciences de St-Pétersbourg, 15 20

21 p 1.,, E,, E p 2.,,,,. E, F., 1 p, 1 p 1, 1 p 2,, q, q 1, q 2,.,. E F, p q. p, p 1, p 2,, p = pp 1 + qp 2 (1),., E,,. p, p 1, p 2, q, q 1, q 2, δ = p 1 p 2 (2) p, q, δ. (1) q = 1 p, q 1 = 1 p 1, q 2 = 1 p 2 (3) 21

22 { p 1 = p + δq, p 2 = p δq, q 1 = q δq q 2 = q + δq (4).,, n E.,. P m,k, E k m.,, P m,k Pm,k o P m,k, E k,., P m,k = Pm,k o + P m,k (5). ϕ k = P 0 m,kξ m, ψ k = P m,kξ m, ω k = P m,k ξ m (6), ξ., (5). ω k = ϕ k + ψ k (7), k k + 1,,. { P o m,k+1 = q 1P m,k + q 2P o m,k P m,k+1 = p 1P m 1,k + p 2P o m 1,k, (8) {. ϕ k+1 = q 1 ψ k + q 2 ϕ k ψ k+1 = p 1 ξψ k + p 2 ξϕ k (9) 22

23 , (9) ϕ ψ,. { ϕ k+2 (p 1 ξ + q 2 )ϕ k+1 + (p 1 p 2 )ξϕ k = 0, ψ k+2 (p 1 ξ + q 2 )ψ k+1 + (p 1 p 2 )ξψ k = 0. ω k+2 (p 1 ξ + q 2 )ω k+1 + (p 1 p 2 )ξω k = 0 (10), t, ω 0 Ω(ξ, t) = ω 0 + ω 1 t + ω 2 t 2 + ω 3 t (11) ω 2 (p 1 ξ + q 2 )ω 1 + (p 1 p 2 )ξω 0 = 0 (12), Ω(ξ, t) = L 0 + L 1 t 1 (p 1 ξ + q 2 )t + (p 1 p 2 )ξt 2 L 0 = ω 0, L 1 = ω 1 (p 1 ξ + q 2 )ω 0., ω 1 = pξ + q, ω 2 = pp 1 ξ 2 + (pq 1 + qp 2 )ξ + qq 2, (12) ω 0 = 1,. L 0 = 1, L 1 = (p p 1 )ξ + q q 2 Ω(ξ, t), (4) Ω(ξ, t) =., ω n. 1 δ(qξ + p)t 1 tpξ + q + δ(qξ + p)t + δξt 2 (13) 23

24 . Ω(ξ, t) (13) n E., n E m (13), k m k P m,n., (m pn) k P m,n., m pn., pn m., m(m 1) (m i + 1), d i ω n dξ i ξ = 1., d i Ω(ξ, t) dξ i ξ = 1, t. ξ = 1, { } d i Ω(ξ, t) dξ i = 1 2 i pti (1 t) 2 ξ=1 { } p 1 t + δq 1 δt (14)., i,. i = 1, 2, 3, 4 24

25 , E(m) = np, E ( m(m 1) ) = n(n 1)p 2 + 2pqδ ( n 1 + (n 2)δ + (n 3)δ ), E ( m(m 1)(m 2) ) = n(n 1)(n 2)p 3 + 6p 2 qδ ( (n 1)(n 2) + (n 2)(n 3)δ +... ) + 6pq 2 δ 2( n 2 + 2(n 3)δ + 3(n 4)δ 2... ), E ( m(m 1)(m 2)(m 3) ) = n(n 1)(n 2)(n 3)p p 3 qδ ( (n 1)(n 2)(n 3) + (n 2)(n 3)(n 4)δ +... ) + 36p 2 q 2 δ 2( (n 2)(n 3) + 2(n 3)(n 4)δ +... ) + 24pq 3 δ 3( n 3 + 3(n 3)(n 4)δ + 6(n 5)δ 2... ). (14),, m(m 1)... (m i + 1).,,,.. t { } d i Ω(ξ, t) dξ i ξ=1 t n. (14),. (i 1)(i 2) (i j) 1 2 j t i (1 t) i j+1 (1 δt) j 1 2 i pi j (δq) j t i (1 t) i j+1 (1 δt) j t, t n (n j)(n j 1) (n i + 1) 1 2 (i j) (n j 1)(n j 2) (n i) + jδ 1 2 (i j)) 25

26 j((j + 1) 2 n j 2)(n j 3) (n i 1) + δ +, (i j).,.,, n j. n j., (n j λ)(n j λ 1) (n i λ + 1)., n (0 n., C 0 n i j + C 1 n i j 1 + C 2 n i j 2 + C i j (15)., δ n j, n. δ 2 < 1,. δ 2,.,. C 0, C 1, C 2,...,,., 1 2 (i j)c 0 = (1 δ) j (16)., (1 δ) j, n j. n, (16) C 0., m(m 1) (m i + 1) n. 26

27 , δ n 1, n., δ n 1., m(m 1) (m i + 1), p q, p, q i, p n,., n p, n p, [(m, i)] 0, 16 [(m, i)] 0 = (np) i + i(i 1) δq 1 δ (np)i 1 + i(i 1)2 (i 2) ( δq ) 2(np) i δ + i(i 1)2 (i 2) 2 (i j + 1) 2 (i j) ( δq ) j(np) i j + (17) 1 2 j 1 δ. δ, δ n 1,., m., m,. m i = m(m 1) (m i + 1) + A 1,i m(m 1) (m i + 2) + + A j,i m(m 1) (m i + j + 1) + (18) A 1,i, A 2,i,..., A i 1,1 m, p + q = 1., (17) q. 17 A j,i. d i f(e x ) dx i = e xi f (i) (e x ) + A 1,i e (i 1)x f (i 1) (e x ) + A 2,i e (i 2)x f (i 2) (e x ) + 27

28 A j,i A 1,i = i(i 1), A j,j = 0, A j,i+1 = A j,i + (i j + 1)A j 1,i (19) 2. A 1,2 = 1 A 1,3 = 3, A 2,3 = 1 A 1,4 = 6, A 2,4 = 7, A 3,4 = 1 A 1,5 = 10, A 2,5 = 25, A 3,5 = 15, A 4,5 = 1 A 1,6 = 15, A 2,6 = 65, A 3,6 = 90, A 4,6 = 31, A 5,6 = 1 A 1,7 = 21, A 2,7 = 140, A 3,7 = 350, A 4,7 = 301, A 5,7 = 63, A 6,7 = 1 A 1,8 = 28, A 2,8 = 266, A 3,8 = 1050, A 4,8 = 1701, A 5,8 = 966, A 6,8 = 127, A 7,8 = 1. (19), A i,j = i(i 1) (i j) ( i j 1 + i j 2 + βi j 3 + ) 2 4 2j (20).,, β,... i. (20), (18) A j,i., (20) A j,0, A j,2, A j,2,..., A j,j 1, A j,j. (18), m(m 1) (m i + 1), m i. m i, n., δ, n., δ, n 1. 28

29 , p q, i, p n., n p, n p, [m i ] 0,, (17) (18) [m i ] 0 = (np) i + A 1,i (np) i 1 + A 2,i (np) i { i(i 1)(np) i 1 + A 1,i (i 1)(i 2)(np) i i(i 1) 2 (i j + 1) 2 (i j) (np) i j 1 2 j + (i 1)(i 2) 2 (i j) 2 (i j 1) + A 1,i 1 2 j + ( δq ) j 1 δ + } δq 1 δ (np) i j 1 (21), (21), (17).., m pn. (m np) k = m k km k 1 pn +,., (m pn) k k(k 1) m k 2 (pn) 2 + (22) 1 2 R (k) k nk + R (k) k 1 nk R (k) i n i + (23) 29

30 ., R (k) k, R(k) k 1,..., R(k) i,..., p, q, δ, δ, n, δ n 1., R (k) i p q k. p i, (m pn) k (23),., (23),., δ n δ n 1,. E F, (23) (m pn) k. E F, m n m, (4), p q, q p., m pn n m qn. m pn ±.,.,,., k, (m pn) k, p, q. k,. 30

31 (23), p, q, R (k) i,., R (k) i, k, p i, q i,, p + q = 1,., R (k) i 2i., p q R i (k), R (k) i k,. (24), (23), p q 2i k (24) (m pn) k, k 2, k = 2 1,, n. R (2 1) 2 1 = R (2 1) 2 2, k = 2 = = R (2 1) = 0 R (2) 2., R (2) = R (2) 2 1 = = R(2) +1 = 0 ( m np ) 2 1 im E = 0, (25) n n ( m np ) 2 im E = im R (2) n n n. (26). a 0 p + a 1 p q + a 2 p q a 1 p q 1 + a p q +b 0 p +1 + b 1 p +1 q + b 2 p +1 q b 1 p +1 q

32 , p, q. a 0 p + a 1 p q + a 2 p q a 1 p q 1 + a p q, p q., (1 p), (1 p) 1, 1 p, 1, a 0 p + a 1 p q + a 2 p q a 1 p q 1 + a p q, (a 0 + a a )p q S = a 0 p (1 p) + a 1 p (1 p) 1 q + + a p q (27). p, q. p q R 2. p +1, q +1, p + q = 1, p q 2., R (2) S = 0,. R (2) = (a 0 + a a )p q (28) a 0 p + a 1 p q + a 2 p q a p q 32

33 , (m pn) 2, n p, n.,, [(m pn) 2 ] 0 [(m pn) 2 ] 0 = [m 2 ] pn[m2 1 ] 0 + 2(2 1) [m 2 2 ] a 0 p + a 1 p q + a 2 p q 2 ; + a p q, [m 2 ] 0, [m 2 1 ] 0, [m 2 2 ] 0,., (21), n., a 0, a 1,..., a.,. a j : ( δ ) 1 δ = ( + j)( + j 1)2 ( + 1) 2 A j,2 j! 2 ( + j 1)( + j 2) 2 2 ( 2) 1 j! 2(2 1) ± 2(2 1) ( + 2) ( 1)! ( + j 2)( + j 3) 2 8 1) 2 ( 2) A j,2 2 j! j + 1)j 2 (j 1) A j,+1 j! 33

34 , (20), 18 a j = 2 (x + j )(x + j 1) 2 (x + 1) 2 (x ) ( δ x=0 A j,x j! 1 δ = 2 x 2 ( δ ) j j!2 4 2( j) 1 δ ( 1) ( j + 1) ( 2δ ) j = (2 1) j! 1 δ, ( a 0 + a 1 + a a = (2 1) 1 + 2δ ). (29) 1 δ,, (16). δ,. (29), n, ) j a 0 + a 1 + a a. (28),.,,, ( 1 + δ ) im n R(2) = (2 1) 1 δ pq ( m pn ) 2 ( 1 + δ ) im E = (2 1) n n 1 δ pq (30) ( m pn ) 2 1 im E = 0 n n ( m pn ) 2 ( 1 + δ ) im E = (2 1) n n 1 δ pq.,, np + t 1 2pq 1 + δ 1 δ n < m < np + t 2 2pq 1 + δ 1 δ n 18 k x=0f(x) = f(k) k 1 k(k 1) f(k 1) + f(k 2) ± f(0)

35 , n, 1 π t2 t 1 e t2 dt., n, m E, p, q, t 1, t 2, δ..,, A.M..,, E,,.,, E p, p,..., p (n)..., (1), p (n) = p 1 p (n 1) + p 2 (1 p (n 1) ) (31)., p (n) = p + (p p)δ n 1 (32)., p, n p (n).,,., n E ω n, ω k+2 (p 1 ξ + q 2 )ω k+1 + (p 1 p 2 )ξω k =

36 Ω(ξ, t),,., ω 1 pξ +q p ξ + q., Ω(ξ, t),. (ξ, t) = (p p)(ξ 1)t 1 [pξ + q + δ(qξ + p)]t + δξt 2 (33) Ω(ξ, t),.,, Ω(ξ, t) (ξ, t)., m(m 1) (m i + 1), t t n ξ = 1 d i (ξ, t) dξ i. (33),., [ d i (ξ, t) dξ i ]ξ=1 = i!(p p)t i [ p (1 t)(1 δt) 1 t + δq ] i 1 (34) 1 δt m(m 1) (m i + 1),, p p n., p n, p q i 1., (m pn) k, p p,, p, n, p, q k 1. 36

37 , E F, p q, q p, p q = 1 p,, E(m pn) k,,.,, (m pn) k, n k/2, n 0., A.M., n ( m pn n ) 2 1 ( m pn ) 2 n., E,,. 37

38 , 1906 (1), 1951,, (2). (2),., (1) Independence.. (1) Rasprostranenie zakona bo~xih qise na veiqiny, zaviswie drug ot druga (2) Issedavanie zameqateago suqa zavisimyh ispytani 1907, 61-80) 38

受賞講演要旨2012cs3

受賞講演要旨2012cs3 アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C( 3 3.1 3.1.1 1 1 A P a 1 a P a P P(a) a P(a) a P(a) a a 0 a = a a < 0 a = a a < b a > b A a b a B b B b a b A a 3.1 A() B(5) AB = 5 = 3 A(3) B(1) AB = 3 1 = A(a) B(b) AB AB = b a 3.1 (1) A(6) B(1) () A(

More information

働く女性の母性健康管理、母性保護に関する法律のあらまし

働く女性の母性健康管理、母性保護に関する法律のあらまし 17 1 3 3 12 3 13 10 19 21 22 22 23 26 28 33 33 35 36 38 39 1 I 23 2435 36 4/2 4/3 4/30 12 13 14 15 16 (1) 1 2 3 (2) 1 (1) (2)(1) 13 3060 32 3060 38 10 17 20 12 22 22 500 20 2430m 12 100 11 300m2n 2n

More information

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä 2009 8 26 1 2 3 ARMA 4 BN 5 BN 6 (Ω, F, µ) Ω: F Ω σ 1 Ω, ϕ F 2 A, B F = A B, A B, A\B F F µ F 1 µ(ϕ) = 0 2 A F = µ(a) 0 3 A, B F, A B = ϕ = µ(a B) = µ(a) + µ(b) µ(ω) = 1 X : µ X : X x 1,, x n X (Ω) x 1,,

More information

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α 2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,

More information

3 3 i

3 3 i 00D8102021I 2004 3 3 3 i 1 ------------------------------------------------------------------------------------------------1 2 ---------------------------------------------------------------------------------------2

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

Note5.dvi

Note5.dvi 12 2011 7 4 2.2.2 Feynman ( ) S M N S M + N S Ai Ao t ij (i Ai, j Ao) N M G = 2e2 t ij 2 (8.28) h i μ 1 μ 2 J 12 J 12 / μ 2 μ 1 (8.28) S S (8.28) (8.28) 2 ( ) (collapse) j 12-1 2.3 2.3.1 Onsager S B S(B)

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

橡Taro11-卒業論文.PDF

橡Taro11-卒業論文.PDF Recombination Generation Lifetime 13 9 1. 3. 4.1. 4.. 9 3. Recombination Lifetime 17 3.1. 17 3.. 19 3.3. 4. 1 4.1. Si 1 4.1.1. 1 4.1.. 4.. TEG 3 5. Recombination Lifetime 4 5.1 Si 4 5.. TEG 6 6. Pulse

More information

31 33

31 33 17 3 31 33 36 38 42 45 47 50 52 54 57 60 74 80 82 88 89 92 98 101 104 106 94 1 252 37 1 2 2 1 252 38 1 15 3 16 6 24 17 2 10 252 29 15 21 20 15 4 15 467,555 14 11 25 15 1 6 15 5 ( ) 41 2 634 640 1 5 252

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

平成18年度弁理士試験本試験問題とその傾向

平成18年度弁理士試験本試験問題とその傾向 CBA CBA CBA CBA CBA CBA Vol. No. CBA CBA CBA CBA a b a bm m swkmsms kgm NmPa WWmK σ x σ y τ xy θ σ θ τ θ m b t p A-A' σ τ A-A' θ B-B' σ τ B-B' A-A' B-B' B-B' pσ σ B-B' pτ τ l x x I E Vol. No. w x xl/ 3

More information

AHPを用いた大相撲の新しい番付編成

AHPを用いた大相撲の新しい番付編成 5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i

More information

S = k B (N A n c A + N B n c B ) (83) [ ] B A (N A N B ) G = N B µ 0 B (T,P)+N Aψ(T,P)+N A k B T n N A en B (84) 2 A N A 3 (83) N A N B µ B = µ 0 B(T,

S = k B (N A n c A + N B n c B ) (83) [ ] B A (N A N B ) G = N B µ 0 B (T,P)+N Aψ(T,P)+N A k B T n N A en B (84) 2 A N A 3 (83) N A N B µ B = µ 0 B(T, 8.5 [ ] 2 A B Z(T,V,N) = d 3N A p N A!N B!(2π h) 3N A d 3N A q A d 3N B p B d 3N B q B e β(h A(p A,q A ;V )+H B (p B,q B ;V )) = Z A (T,V,N A )Z B (T,V,N B ) (74) F (T,V,N)=F A (T,V,N A )+F B (T,V,N

More information

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin ( ) 205 6 Fourier f : R C () (2) f(x) = a 0 2 + (a n cos nx + b n sin nx), n= a n = f(x) cos nx dx, b n = π π f(x) sin nx dx a n, b n f Fourier, (3) f Fourier or No. ) 5, Fourier (3) (4) f(x) = c n = n=

More information

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r 4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =

More information

untitled

untitled 2007 1 1 3 2 14 3 25 4-30 5 36 6 41 7 47 8 51 9 60 10 65 2 1 3 4 1 1 1 4 Gross Domestic Product 1 5,000 5,000 5 System of National Accounts Gross National Product (5 23 6 7 http://www.stat.go.jp/data/io/system.htm

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 1 21 10 5 1 E-mail: qliu@res.otaru-uc.ac.jp 1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 B 1.1.3 boy W ID 1 2 3 DI DII DIII OL OL 1.1.4 2 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.2.1 1. 2. 3 1.2.2

More information

1 P2 P P3P4 P5P8 P9P10 P11 P12

1 P2 P P3P4 P5P8 P9P10 P11 P12 1 P2 P14 2 3 4 5 1 P3P4 P5P8 P9P10 P11 P12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 & 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1! 3 2 3! 4 4 3 5 6 I 7 8 P7 P7I P5 9 P5! 10 4!! 11 5 03-5220-8520

More information

合併後の交付税について

合併後の交付税について (1) (2) 1 0.9 0.7 0.5 0.3 0.1 2 3 (1) (a), 4 (b) (a), (c) (a) 0.9 0.7 0.5 0.3 0.1 (b) (d),(e) (f) (g) (h) (a) (i) (g) (h) (j) (i) 5 (2) 6 (3) (A) (B) (A)+(B) n 1,000 1,000 2,000 n+1 970 970 1,940 3.0%

More information

福岡大学人文論叢47-3

福岡大学人文論叢47-3 679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.

More information

2

2 1 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

木オートマトン•トランスデューサによる 自然言語処理

木オートマトン•トランスデューサによる   自然言語処理 木オートマトン トランスデューサによる 自然言語処理 林 克彦 NTTコミュニケーション科学基礎研究所 hayashi.katsuhiko@lab.ntt.co.jp n I T 1 T 2 I T 1 Pro j(i T 1 T 2 ) (Σ,rk) Σ rk : Σ N {0} nσ (n) rk(σ) = n σ Σ n Σ (n) Σ (n)(σ,rk)σ Σ T Σ (A) A

More information

日本糖尿病学会誌第58巻第2号

日本糖尿病学会誌第58巻第2号 β γ Δ Δ β β β l l l l μ l l μ l l l l α l l l ω l Δ l l Δ Δ l l l l l l l l l l l l l l α α α α l l l l l l l l l l l μ l l μ l μ l l μ l l μ l l l μ l l l l l l l μ l β l l μ l l l l α l l μ l l

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

情報幾何入門

情報幾何入門 情 報 幾 何 入 門 赤 穂 昭 太 郎 産 業 技 術 総 合 研 究 所 脳 神 経 情 報 研 究 部 門 情 報 幾 何 情 報 処 理 を 幾 何 的 に 図 で 理 解 する 世 の 中 データ 情 報 処 理 結 果 モデル 情 報 幾 何 から 導 かれる 結 論 多 くのモデルは 平 ら である 多 くのアルゴリズムは 平 らなモデルに まっすぐ 射 影 を 下 ろしたものになっている

More information

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656 SPring-8 PF( ) ( ) UVSOR( HiSOR( SPring-8.. 3. 4. 5. 6. 7. E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8

More information

136 pp p µl µl µl

136 pp p µl µl µl 135 2006 PCB C 12 H 10-n Cl n n 1 10 CAS No. 42 PCB: 53469-21-9, 54 PCB: 11097-69-1 0.01 mg/m 3 PCB PCB 25 µg/l 136 pp p µl µl µl 137 1 γ 138 1 γ γ γ µl µl µl µl µl µl µl l µl µl µl µl µl l 139 µl µl µl

More information

2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5

2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5 1D000425-2 1 2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5 3 29 29 29 30 31 31 32 35 35 35 36 41 41 41 46 48 48 48 52 57 4 700 13 1988 4 5 4 5 21 1 1 3 4 5 6 21 10 1888

More information

経済論集 46‐2(よこ)(P)☆/2.三崎

経済論集 46‐2(よこ)(P)☆/2.三崎 1 2 1869 11 17 5 10 1 3 1914 5 15 5 1872 9 12 3 1870 1 26 14 1881 11 11 12 6 11 1878 5 9 13 1880 6 17 1 15 1882 1 2 3 11 1828 2 26 24 1891 4 22 2 1849 12 1 3 1856 pp 20 21. 1971 p.429. 1973 1, pp.440 444.

More information

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3.....................................

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3..................................... 1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3........................................... 1 17.1................................................

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

第 1 章 書 類 の 作 成 倍 角 文 字 SGML 系 書 類 のみ 使 用 できます 文 字 修 飾 改 行 XML 系 書 類 では 文 字 修 飾 ( 半 角 / 下 線 / 上 付 / 下 付 )と 改 行 が 使 用 できます SGML 系 書 類 では 文 字 修 飾 ( 半 角

第 1 章 書 類 の 作 成 倍 角 文 字 SGML 系 書 類 のみ 使 用 できます 文 字 修 飾 改 行 XML 系 書 類 では 文 字 修 飾 ( 半 角 / 下 線 / 上 付 / 下 付 )と 改 行 が 使 用 できます SGML 系 書 類 では 文 字 修 飾 ( 半 角 1.2 HTML 文 書 の 作 成 基 準 1.2.2 手 続 書 類 で 使 用 できる 文 字 全 角 文 字 手 続 書 類 で 使 用 できる 文 字 種 類 文 字 修 飾 について 説 明 します 参 考 JIS コードについては 付 録 J JIS-X0208-1997 コード 表 をご 覧 ください XML 系 SGML 系 共 通 JIS-X0208-1997 情 報 交 換 用

More information

1 44

1 44 16 SMBC 1 44 2 44 3 44 1 1,000 2,000 4 44 16 16 5 44 6 44 7 44 8 44 9 44 10 44 11 44 12 44 13 44 14 44 15 44 16 44 17 44 SMBC 18 44 19 44 3 20 44 PL IPO M&A 21 44 8 22 44 1 23 44 2 DES 24 44 25 44 3 3

More information

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2.

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2. 213 12 1 21 5 524 3-5465-74 nkiyono@mail.ecc.u-tokyo.ac.jp http://lecture.ecc.u-tokyo.ac.jp/~nkiyono/index.html 3 2 1 3.1 ρp, t EP, t BP, t JP, t 35 P t xyz xyz t 4 ε µ D D S S 35 D H D = ε E B = µ H E

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2

A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2 1 2012.8 e-mail: tatekawa (at) akane.waseda.jp 1 2005-2006 2 2009 1-2 3 x t x t 2 2.1 17 (I. Newton) C. Huygens) 19 (T. Young) 1 A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday)

More information

国土技術政策総合研究所 研究資料

国土技術政策総合研究所 研究資料 5 章 慣 性 航 法 複 合 演 算 処 理 5- 処 理 フロー 慣 性 航 法 複 合 演 算 処 理 の 全 体 処 理 フローを 図 5-- に 示 す GPS 観 測 データの 取 得 取 得 取 得 できず RK-GPS IMU 観 測 データの 取 得 慣 性 航 法 演 算 誤 差 方 程 式 の 導 出 位 置 オフセット 処 理 アンビギュイティの 状 態 決 定 未 決 定

More information

001-007 扉・口絵・目次

001-007 扉・口絵・目次 1 6 6 7 1 a a a a 2 a a a 3 4 5 a 6 7 8 9 10 a 11 a a a 12 13 14 15 a 16 17 18 19 20 21 22 23 24 b b 25 b 26 27 aa 28 r r 29 a s d f 30 b b 31 32 33 1 34 35 36 37 38 6 39 6 40 41 42 43 44 45 7 47 48

More information

untitled

untitled 58 59 60 61 62 63 64 65 12 20 2.45 3.0 30 50 13.24.7 5mm SS CSS MS HMS CS 66 CSS SS 2.45 3.0 50 30 2.0 2.0 F.2.5 JIS A 5001 1995 67 1 130mm 2 75m 3 75m75m 60 75m 68 69 PK1 PK2 PK3 PK4 MK1 MK2 MK3 MN1 25

More information

Grund.dvi

Grund.dvi 24 24 23 411M133 i 1 1 1.1........................................ 1 2 4 2.1...................................... 4 2.2.................................. 6 2.2.1........................... 6 2.2.2 viterbi...........................

More information

3 - { } / f ( ) e nπ + f( ) = Cne n= nπ / Eucld r e (= N) j = j e e = δj, δj = 0 j r e ( =, < N) r r r { } ε ε = r r r = Ce = r r r e ε = = C = r C r e + CC e j e j e = = ε = r ( r e ) + r e C C 0 r e =

More information

9 1: 12 2006 $O$,,, ( ), BT $2W6$ 22,, BT [7] BT, 12, $\xi_{1}=$ $(x_{11}, x_{12}, \ldots,x_{112}),$ $\xi_{2}=(x_{21}, x_{22}, \ldots, x_{212})$ $i$ $

9 1: 12 2006 $O$,,, ( ), BT $2W6$ 22,, BT [7] BT, 12, $\xi_{1}=$ $(x_{11}, x_{12}, \ldots,x_{112}),$ $\xi_{2}=(x_{21}, x_{22}, \ldots, x_{212})$ $i$ $ $\iota$ 1584 2008 8-20 8 1 (Kiyoto Kawai), (Kazuyuki Sekitani) Systems engineering, Shizuoka University 3 10, $2N6$ $2m7$,, 53 [1, 2, 3, 4] [9, 10, 11, 12], [8] [6],, ( ) ( ), $\ovalbox{\tt\small REJECT}\backslash

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

J表紙.dpt

J表紙.dpt 1 1. 1.1 440V 63A 1 2 3 4 5 6 IEC 61058-1 IEC 61058-2 IEC 61058-2 1.2 1.3 1.4 IEC 60669 IEC 61058-2 1.5 1.6 IEC 60730 2. IEC 61058 1 IEC 60034-1 1996 1 1 1997 2 1999 1 IEC 60038 1983 IEC IEC 60050(151)

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1........................... 2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................

More information

WPA(Win Probability Added) 1 WPA WPA ( ) WPA WPA WPA WPA WPA

WPA(Win Probability Added) 1 WPA WPA ( ) WPA WPA WPA WPA WPA 21 4 25 1 31 WPA(Win Probability Added) 1 WPA WPA ( ) WPA WPA WPA WPA WPA 1 1 2 WPA 3 2.1 WPA(Win Probability Added)................................. 3 2.2........................... 3 2.2.1...................................

More information

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

閨75, 縺5 [ ィ チ573, 縺 ィ ィ 39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,

More information

20_zairyou.pdf

20_zairyou.pdf 平 成 29 年 4 月 入 学 及 び 平 成 28 年 9 月 入 学 大 学 院 修 士 課 程 専 門 職 学 位 課 程 入 学 試 験 物 質 理 工 学 院 材 料 系 筆 答 専 門 試 験 科 目 想 定 問 題 平 成 28 年 1 月 東 京 工 業 大 学 出 題 される 分 野 問 題 数 等 本 想 定 問 題 の 内 容 は 実 際 の 試 験 問 題 とは 異 なる

More information

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 n =3, 200 2 10 1 1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 a, b (a, b) =1a b 1 x 2 + y 2 = z 2, (x, y) =1, x 0 (mod 2) (1.1) x =2ab, y = a 2 b 2, z =

More information

高齢化の経済分析.pdf

高齢化の経済分析.pdf ( 2 65 1995 14.8 2050 33.4 1 2 3 1 7 3 2 1980 3 79 4 ( (1992 1 ( 6069 8 7079 5 80 3 80 1 (1 (Sample selection bias 1 (1 1* 80 1 1 ( (1 0.628897 150.5 0.565148 17.9 0.280527 70.9 0.600129 31.5 0.339812

More information

note01

note01 γ 5 J, M α J, M α = c JM JM J, M c JM e ipr p / M p = 0 M J(J + 1) / Λ p / M J(J + 1) / Λ ~ 1 / m π m π ~ 138 MeV J P,I = 0,1 π 1, π, π 3 ( ) ( π +, π 0, π ) ( ), π 0 = π 3 π ± = m 1 π1 ± iπ ( ) π ±,

More information

4 4 P.4 77 111 78 P.78 9 8 91 P.648 P.71 719 P.77 P.747 18 4 111 7 P.887 P.8479 67 18 6 P.7 77 P.76478 4 P.486 9 4 47 111 7 P.467 P.6879 787 8 4 8 1 1 6 7 8 9 EF RP RPL RP F E 47 D RP DE 184 1818 D D D

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

2002 7 i 1 1 2 3 2.1............................. 3 2.1.1....................... 5 2.2............................ 5 2.2.1........................ 6 2.2.2.................... 6 2.3...........................

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,

More information

「数列の和としての積分 入門」

「数列の和としての積分 入門」 7 I = 5. introduction.......................................... 5........................................... 7............................................. 9................................................................................................

More information

untitled

untitled Y = Y () x i c C = i + c = ( x ) x π (x) π ( x ) = Y ( ){1 + ( x )}( 1 x ) Y ( )(1 + C ) ( 1 x) x π ( x) = 0 = ( x ) R R R R Y = (Y ) CS () CS ( ) = Y ( ) 0 ( Y ) dy Y ( ) A() * S( π ), S( CS) S( π ) =

More information

情報幾何入門

情報幾何入門 情 報 幾 何 で 見 る 機 械 学 習 赤 穂 昭 太 郎 産 業 技 術 総 合 研 究 所 人 間 情 報 研 究 部 門 情 報 数 理 研 究 グループ ( 兼 : 人 工 知 能 研 究 センター 機 械 学 習 研 究 チーム 目 次 情 報 幾 何 とは 確 率 分 布 の 距 離 と 曲 がった 空 間 双 対 平 坦 性 指 数 分 布 族 e と m 部 分 空 間 と 射

More information

4

4 4 5 6 7 + 8 = ++ 9 + + + + ++ 10 + + 11 12 WS LC VA L WS = LC VA = LC L L VA = LC L VA L 13 i LC VA WS WS = LC = VA LC VA VA = VA α WS α = VA VA i WS = LC VA i t t+1 14 WS = α WS + WS α WS = WS WS WS =

More information

21 1 1 1 2 2 5 7 9 11 13 13 14 18 18 20 28 28 29 31 31 34 35 35 36 37 37 38 39 40 56 66 74 89 99 - ------ ------ -------------- ---------------- 1 10 2-2 8 5 26 ( ) 15 3 4 19 62 2,000 26 26 5 3 30 1 13

More information

憲法h1out

憲法h1out m n mnm mnn m m m m m m. x x x ax bxc a x x bb ac a fxax bxc fxx x ax bxca b ac x x ax bxca x x x.x x x x x x xxx x x xxx x x xxx x x xx x x x axbcxdacx adbcxbd x xxx m n mnm mnn m m m m m m m m

More information

~ ~.86 ~.02 ~.08 ~.01 ~.01 ~.1 6 ~.1 3 ~.01 ~.ω ~.09 ~.1 7 ~.05 ~.03 ~.01 ~.23 ~.1 6 ~.01 ~.1 2 ~.03 ~.04 ~.01 ~.1 0 ~.1 5 ~.ω ~.02 ~.29 ~.01 ~.01 ~.11 ~.03 ~.02 ~.ω 本 ~.02 ~.1 7 ~.1 4 ~.02 ~.21 ~.I

More information