数論的量子カオスと量子エルゴード性

Size: px
Start display at page:

Download "数論的量子カオスと量子エルゴード性"

Transcription

1 $\lambda$ (Shin-ya Koyama) ( (Toyo University))* $\lambdaarrow\infty$ $u_{\lambda}$ 2 ( ) $($ 1900, $)$ $*$ $ $ 2100

2 2 (1915 ) (1956 ) ( $)$ (1980 ) 3 $\lambda$ (1) : $GOE$ - (2) $u_{\lambda}$ If- $L^{\infty}-$ $\lambdaarrow\infty$ ( $L^{\infty}$- ) 2,3 $L^{\infty}-$ (3) $u_{\lambda}(z)$ $ u_{\lambda}(z) $ $z$ $\lambdaarrow\infty$ ) (

3 3 (3 ) (3) ( ) $\infty$ $L$ $L$ $L$ $L$ 2. $M$ ( $)$ $\lambda$, $u_{\lambda}$ $1A,$ $B$ $\lim_{\lambdaarrow\infty}\frac{\int_{a} u_{\lambda}(z) ^{2}\frac{dxdy}{y^{2}}}{\int_{B} u_{\lambda}(z) ^{2}\frac{dxdy}{y^{2}}}=\frac{vo1(A)}{vo1(B)}$ (1) $M$ ( ) $\frac{dxdy}{y^{2}}$ vol(a) $= \int_{a}\frac{dxdy}{y^{2}}$ 1

4 4 (1) $ u_{\lambda}(z) ^{2} \frac{dxdy}{y^{2}}$ $\frac{dxdy}{y^{2}}$ 2 $\lambdaarrow\infty$ $\lambda$ $\lambda$ $\lambda$ $u_{\lambda}$ ( $1O$ ) $\lambda=\frac{1}{4}+r^{2}$ $r$ (1) $\int_{a} u_{\lambda}(z) ^{2}\frac{dxdy}{y^{2}}\sim Cvo1(A)\log r$ $(rarrow\infty, C r )$. (2) (2) $L$- ( 14 ) $H$ $z=x+iy\in H,$ ${\rm Re}(s)>1,$ $\Gamma=SL(2, \mathbb{z})$, $\Gamma_{\infty}=\{\pm(\begin{array}{ll}1 b0 1\end{array}) b\in \mathbb{z}\}\subset\gamma$ $E(z, s)= \sum_{\gamma\in\gamma_{\infty}\backslash \Gamma}{\rm Im}(\gamma z)^{s}$ (3) $E(z, s)$

5 5 $E(z, s)=y^{s}+^{\hat{\zeta}(s-1)}y^{1-s} \hat{\zeta}(s)+\frac{2}{\hat{\zeta}(2s)}\sum_{n=1}^{\infty} n ^{s-\frac{1}{2}}\sigma_{1-2s}(n)e^{2\pi inx}k_{s-\frac{1}{2}}(2\pi n y)\sqrt{y}.$ (4) $\sigma_{s}(n)=\sum_{d n}d^{s}$ $\int_{a} E(z, \frac{1}{2}+ir) ^{2}\frac{dxdy}{y^{2}}\sim\frac{48}{\pi}vol(A)\log r (rarrow\infty)$ $A$ $M=\Gamma\backslash H$ $A$ $f_{a}(z)$ $\int_{a} E(z, \frac{1}{2}+ir) ^{2}\frac{dxdy}{y^{2}}=\int_{M}f_{A}(z) E(z, \frac{1}{2}+ir) ^{2}\frac{dxdy}{y^{2}}$ $f_{a}\in L^{2}(M)$ $\lambdaarrow\infty$ $L^{2}(M)$ ( ) 1 $M=SL(2, \mathbb{z})\backslash H$ ) ( $L^{2}(M)$ $\lim_{rarrow\infty}\int_{m^{u}}j(z) E(z, \frac{1}{2}+ir) ^{2}\frac{dxdy}{y^{2}}=0$ $J_{j}(r)= \int_{m}uj(z)e(z, \frac{1}{2}+ir)e(z, \frac{1}{2}-ir)\frac{dxdy}{y^{2}}$ (5)

6 6 $I_{j}(s)= \int_{m}u_{j}(z)e(z, \frac{1}{2}+ir)e(z, s)\frac{dxdy}{y^{2}}$. (6) $u_{j}$ (6) $E(z, s)$ (3): $E(z, s)= \sum_{\gamma\in\gamma_{\infty}\backslash \Gamma}{\rm Im}(\gamma z)^{s}$ $M=\Gamma\backslash H$ $H$ $I_{j}(s)= \int_{\gamma_{\infty}\backslash H}u_{j}(z)E(z, \frac{1}{2}+ir)y^{s}\frac{dxdy}{y^{2}}$ $= \int_{0}^{\infty}\int_{0}^{1}u_{j}(z)e(z, \frac{1}{2}+ir)y^{s}\frac{dxdy}{y^{2}}$ (7) $u_{j}(-\overline{z})=u_{j}(z)$ $u_{j}(-\overline{z})=-u_{j}(z)$ $E(z, s)=$ $E(1-\overline{z}, s)$ $u_{j}$ $u_{j}$ $I_{j}(s)\equiv 0$ $e^{2\pi inx}+e^{-2\pi inx}=2\cos(2\pi nx)$ $n$ $-n$ 8 $u_{j}(z)= \sqrt{y}\sum_{n=1}^{\infty}a_{j}(n)k_{ir_{j}}(2\pi n y)\cos(2\pi nx) (a_{j}(1)=1)$ (8) $\frac{1}{4}+r_{j}^{2}=\lambda_{j}$ $L$- $a_{j}(n)$ : $L(s, u_{j})= \sum_{n=1}^{\infty}\frac{a_{j}(n)}{n^{s}}$ $= \prod_{p}(1-\frac{a_{j}(p)}{p^{s}}+\frac{1}{p^{2s}})^{-1}$ (9)

7 7 2 (4) (8) (7) $I_{j}(s)= \int_{0}^{\infty}\int_{0}^{1}(y\sum_{n=1}^{\infty}a_{j}(n)k_{ir_{j}}(2\pi n y)\cos(2\pi nx))$ $(y^{\frac{1}{2}+ir}+y^{\frac{1}{2}-ir} \frac{\hat{\zeta}(ir)}{\hat{\zeta}(1+2ir)}+\frac{2\sqrt{y}}{\hat{\zeta}(1+2ir)}\sum_{m=1}^{\infty}\frac{\sigma_{-2ir}(m)}{m^{-ir}}e^{2\pi imx}k_{ir}(2\pi my))$ $y^{s} \frac{dxdy}{y^{2}}.$ $\int_{0}^{1}\cos(2\pi nx)dz=\{\begin{array}{ll}0 (n\neq 0)1 (n=0),\end{array}$ $\cos\alpha\cos\beta=\frac{1}{2}(\cos(\alpha+\beta)+\cos(\alpha-\beta))$ $n=m$ $ny\mapsto y$ $I_{j}(s)= \frac{2}{\hat{\zeta}(1+2ir)}(\sum_{n=1}^{\infty}\frac{\sigma_{-2ir}(n)a_{j}(n)}{n^{s-ir}})\int_{0}^{\infty}k_{ir}(2\pi y)k_{ir_{j}}(2\pi y)y^{s}\frac{dy}{y}$ $\int_{0}^{\infty}k_{ir}(2\pi y)k_{ir_{j}}(2\pi y)y^{s}\frac{dy}{y}=\frac{\gamma(\frac{s+ir_{j}+ir}{2})\gamma(\frac{s+ir_{j}-ir}{2})\gamma(\frac{s-ir_{j}+ir}{2})\gamma(\frac{s-ir_{j}-ir}{2})}{\pi^{s}\gamma(s)}$ $R(s)= \sum_{n=1}^{\infty}\frac{\sigma_{-2ir}(n)a_{j}(n)}{n^{s-ir}}$ $I_{j}(s)= \frac{2\pi^{-s}}{\hat{\zeta}(1+2ir)}\cross\frac{\gamma(\frac{s+ir_{j}+ir}{2})\gamma(\frac{s+ir_{j}-ir}{2})\gamma(\frac{s-ir_{j}+ir}{2})\gamma(\frac{s-ir_{j}-ir}{2})}{\gamma(s)}r(s)$

8 8 $R(s)$ : $J_{j}(r)=I_{j}( \frac{1}{2}-ir)$ $= \frac{2\pi^{-\frac{1}{2}+ir}\gamma(\frac{\frac{1}{2}+ir_{j}}{2})\gamma(\frac{\frac{1}{2}+ir_{j}-2ir}{2})\gamma(\frac{\frac{1}{2}-ir_{j}}{2})\gamma(\frac{\frac{1}{2}-ir_{j}-2ir}{2})l(\frac{1-2ir}{2},u_{j})l(\frac{1}{2},u_{j})}{\hat{\zeta}(1+2ir)\gamma(\frac{1}{2}-ir)\zeta(1-2ir)}.$ (11) $ \Gamma(\sigma+ir) \sim e^{-\pi r/2} r ^{\sigma-\frac{1}{2}} (rarrow\infty)$ (11) $=O( r ^{-1/2})$ (12) $\frac{1}{\zeta(1+2ir)}=o(\log r)$ (13)

9 9 (11) $L( \frac{1}{2}+ir, uj)$ (12), (13) $J_{j}(r)=O( \frac{l(\frac{1}{2}+ir,u_{j})}{ r ^{\frac{1}{2}}}) (rarrow\pm\infty)$ (14) $L$ $L( \frac{1}{2}+\dot{\iota}r, u_{j})=o( r ^{\frac{1}{2}}) (rarrow\pm\infty)$ $L( \frac{1}{2}+\dot{\iota}r, uj)=o( r ^{\frac{1}{2}-\delta}) (rarrow\pm\infty)$ $\delta>0$ (14) $J_{j}(r)=O( r ^{-\delta}) (rarrow\pm\infty)$ $\lim_{rarrow\pm\infty}j_{j}(r)=0$ $L( \frac{1}{2}+\dot{\iota}r, u_{j})=o( r ^{\frac{1}{3}+\epsilon}) (\forall\epsilon>0)$ (15) ( ) $h(y)$ $\infty$ $0$ $y$ $0$ $\infty$ $h(y)=o_{n}(y^{n})$ $(N\in \mathbb{z})$ ( $O_{N}$ $O$ $N$ ) $h(y)$ $y$ $N$ $H(s)= \int_{0}^{\infty}h(y)y^{-s}\frac{dy}{y}$ $h(y)$ $H(s)$ $s$ $r$

10 10 $\sigma+ir$ $\sigma\in \mathbb{r}$ $h(y)= \frac{1}{2\pi i}\int_{(\sigma)}h(s)y^{s}ds$ $\int_{(\sigma)}$ ${\rm Re}(s)=\sigma$ $h$ $F_{h}(z)= \sum_{\gamma\in\gamma_{\infty}\backslash \Gamma}h({\rm Im}(\gamma z))$ $h(y)=y^{s}$ (3) $1^{\lambda}$ $h(y)=o_{n}(y^{n})$. 2 $L^{2}(M)$ 2 $yarrow 0,$ $h(y)$ $\infty$ $yarrow 0,$ $\infty$ $E(z, s)$ $F_{h}(z)$ $E(z, s)$ $(\sigma)arrow(2)$ $F_{h}(z)= \frac{1}{2\pi i}\int_{(2)}h(s)e(z, s)ds$ 2 $M=SL(2, \mathbb{z})\backslash H$ $F(z)$ $rarrow\infty$ $\int_{m}f(z) E(z, \frac{1}{2}+ir) ^{2}\frac{dxdy}{y^{2}}\sim\frac{48}{\pi}(\int_{M}F(z)\frac{dxdy}{y^{2}})\log r$ $\infty$ $C^{\infty}(M)$

11 11 $\int_{m}f_{h}(z) E(z, \frac{1}{2}+ir) ^{2}\frac{dxdy}{y^{2}}$ $= \frac{1}{2\pi i}\int_{m}\int_{(2)}h(s)e(z, s)ds E(z, \frac{1}{2}+ir) ^{2}\frac{dxdy}{y^{2}}$ $= \frac{1}{2\pi i}\int_{0}^{\infty}\int_{(2)}h(s)y^{s}ds\int_{0}^{1} E(z, \frac{1}{2}+ir) ^{2}\frac{dxdy}{y^{2}}$ $= \frac{1}{2\pi i}\int_{0}^{\infty}\int_{(2)}h(s)y^{s}ds( y^{\frac{1}{2}+ir}+y^{\frac{1}{2}-ir}\frac{\hat{\zeta}(2ir)}{\hat{\zeta}(1+2ir)} ^{2}$ $+ \frac{2y}{\hat{\zeta}(1+2ir)} ^{2}\sum_{n=1}^{\infty} \sigma_{-2ir}(n)k_{ir}(2\pi ny) ^{2})\frac{dy}{y^{2}}$ $=F_{1}(r)$ $F_{2}(r)$. $F_{1}(r)= \frac{1}{2\pi i}\int_{0}^{\infty}$ (2) $H(s)y^{s}ds y^{\frac{1}{2}+ir}+y^{\frac{1}{2}-ir} \frac{\hat{\zeta}(2ir)}{\hat{\zeta}(1+2ir)} ^{2}\frac{dy}{y^{2}}$ $ \frac{\hat{\zeta}(2ir)}{\hat{\zeta}(1+2ir)} =1$ $F_{1}(r)=2 \int_{0}^{\infty}h(y)\frac{dy}{y}+$ ( ) (16) $r$ $F_{2}(r)= \frac{2}{\pi i \hat{\zeta}(1+2ir) ^{2}}$ (2) $H(s) \sum_{n=1}^{\infty}\frac{ \sigma_{-2ir}(n) ^{2}}{n^{s}}\int_{0}^{\infty} K_{ir}(2\pi y) ^{2}y^{s}\frac{dy}{y}ds.$ (17)

12 12 : $\sum_{n=1}^{\infty}\frac{ \sigma_{a}(n) ^{2}}{n^{s}}=\prod_{p}\sum_{k=0}^{\infty}\frac{\sigma_{a}(p^{k})\sigma_{-a}(p^{k})}{p^{ks}}$ $= \prod_{p}\sum_{k=0}^{\infty}\frac{1}{p^{ks}}(\frac{1-p^{a(k+1)}}{1-p^{a}})(\frac{1-p^{-a(k+1)}}{1-p^{-a}})^{2}$ $= \prod_{p}\frac{1}{(1-p^{a})(1-p^{-a})}\sum_{k=0}^{\infty}(2p^{-ks}-p^{(a-s)k+a}+p^{(-a-s)k-a})$ $= \prod_{p}\frac{1}{(1-p^{a})(1-p^{-a})}(\frac{2}{1-p^{-s}}-\frac{p^{a}}{1-p^{a-s}}-\frac{p^{-a}}{1-p^{-a-s}})$ $= \prod_{p}\frac{1+p^{-s}}{(1-p^{-s})(1-p^{-(s-a)})(1-p^{-(s+a)})}$ $= \prod_{p}\frac{1-p^{-2s}}{(1-p^{-s})^{2}(1-p^{-(s-a)})(1-p^{-(s+a)})}$ $= \frac{\zeta(s)^{2}\zeta(s-a)\zeta(s+a)}{\zeta(2s)}$. (18) $\Gamma$ (17) $y\}$ $F_{2}(r)= \frac{2}{\pi i \hat{\zeta}(1+2ir) ^{2}}$ (2) $H(s) \sum_{n=1}^{\infty}\frac{ \sigma_{-2ir}(n) ^{2}}{n^{s}}\int_{0}^{\infty} K_{ir}(2\pi y) ^{2}y^{s}\frac{dy}{y}ds$ $= \frac{2}{\pi i \hat{\zeta}(1+2ir) ^{2}}$ $\cross\int_{(2)}\frac{h(s)\zeta(s)^{2}\zeta(s+2ir)\zeta(s-2ir)\gamma(\frac{s}{2}+ir)\gamma(\frac{s}{2}-ir)\gamma(\frac{s}{2})^{2}}{\pi^{s}\zeta(2s)\gamma(s)}ds$ $= \frac{2}{\pi i \hat{\zeta}(1+2ir) ^{2}}\int_{(2)}B(s)ds$ (19) $B(s)= \frac{h(s)\zeta(s)^{2}\zeta(s+2ir)\zeta(s-2ir)\gamma(\frac{s}{2}+ir)\gamma(\frac{s}{2}-ir)\gamma(\frac{s}{2})^{2}}{\pi^{s}\zeta(2s)\gamma(s)}$ (20) $\Gamma$ ${\rm Re}(s)=1/2$ $H(\sigma+ir)$ $r$ (19) $s=1$

13 13 $F_{2}(r)= \frac{4{\rm Res}_{s=1}B(s)}{ \hat{\zeta}(1+2ir) ^{2}}+\frac{2}{\pi i \hat{\zeta}(1+2ir) ^{2}}\int_{(1/2)}B(s)ds+O(r^{-1})$. (21) $O(r^{-1})$ $s=1\pm 2ir$ $B(s)$ $tarrow\infty$ (21) $\zeta(\frac{1}{2}+ir)=o(r^{\frac{1}{6}+\epsilon})$ $,$ $B(s)$ $\zeta(s+2ir)\zeta(s-2ir)$ $\frac{2}{\pi i \hat{\zeta}(1+2ir) ^{2}}\int_{(1/2)}B(s)ds=O((r^{\frac{1}{3}+\epsilon})^{2}r^{-1/2})=O(r^{-\frac{1}{6}+\epsilon})$ $\epsilon$ ( ). (21) $s=1$ $G(s)= \frac{h(s)\zeta(s+2ir)\zeta(s-2ir)\gamma(\frac{s}{2}+ir)\gamma(\frac{s}{2}-ir)\gamma(\frac{s}{2})^{2}}{\pi^{s}\zeta(2s)\gamma(s)}$ $B(s)=\zeta(s)^{2}G(s)$ $2_{\gamma}$ $\zeta(s)$ $sarrow 1$ $\zeta(s)=\frac{1}{s-1}+\gamma+o(s-1) (sarrow 1)$. $B(s)$ $B(s)=( \frac{1}{s-1}+\gamma+o(s-1))^{2}(g(1)+g (1)(s-1)+O(s-1)^{3})$ $(s-1)^{-1}$ ${\rm Res}_{s=1}B(s)=2G(1)\gamma+G (1)$ $G$ ${\rm Res}_{s=1}B(s)=G(1)(2 \gamma+\frac{g }{G}(1))$ (22) 2 $\gamma=\lim_{narrow\infty}(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log n)= \cdots$

14 14 $\frac{g }{G}(1)=\frac{H }{H}(1)+\frac{\zeta (1+2ir)}{\zeta(1+2ir)}+\frac{\zeta (1-2ir)}{\zeta(1-2ir)}$ $+ \frac{\gamma (\frac{1}{2}+ir)}{\gamma(\frac{1}{2}+ir)}+\frac{\gamma (\frac{1}{2}-ir)}{\gamma(\frac{1}{2}-ir)}+c.$ $C$ $r$ - $\triangleright\grave{}$ $\frac{\zeta (1+2ir)}{\zeta(1+2ir)}=O(\frac{\log r}{\log\log r})$ $\frac{\gamma }{\Gamma}(\frac{1}{2}+\dot{\iota}r)\sim\log r$ (22) $2\log r$ $G(1)= \frac{h(1) \zeta(1+2ir)\gamma(\frac{1}{2}+ir) ^{2}\Gamma(\frac{1}{2})^{2}}{\pi\zeta(2)}$ $= \frac{h(1)\pi \hat{\zeta}(1+2ir) ^{2}}{\zeta(2)}$ $= \frac{6}{\pi}h(1) \hat{\zeta}(1+2ir) ^{2}$ ${\rm Res}_{s=1}B(s)= \frac{6}{\pi}h(1) \hat{\zeta}(1+2ir) ^{2}(2\log r+o(\frac{\log r}{\log\log r}))$ (21) $\frac{4{\rm Res}_{s=1}B(s)}{ \hat{\zeta}(1+2ir) ^{2}}=\frac{48H(1)}{\pi}\log r+o(1)$. $H(1)= \int_{0}^{\infty}h(y)\frac{dy}{y^{2}}=\int_{m}f_{h}(z)\frac{dxdy}{y^{2}}$ ( )

15 15 3 $F$ $M$ $\int_{m}f(z)d\mu_{r}(z)\sim\frac{48}{\pi}(\int_{m}f(z)\frac{dxdy}{y^{2}})\log r (rarrow\infty)$. $O$ $F$ $\epsilon>0$ $\Vert G-F\Vert_{\infty}<\epsilon$ $G$ $G=G_{1}+G_{2}$ $G_{1}$ $G_{2}$ $G_{1}$ 1 $rarrow\infty$ $G_{2}$ 2 $H=G-F$ $rarrow\infty$ ( ) 1 $SL(2, \mathbb{z})$ $A$ $f_{a}$ $F(z)$ ( ) 1995 W. Luo and P. Sarnak: Quantum ergodicity of Eigenfunctions on $PSL_{2}(\mathbb{Z})/H_{2}$ Publications Mathematiques de L IHES 81 (1995) ( 14 ) 1

16 16 3. $\Gamma_{j}(j=1,2,3, \ldots)$ $SL(2, \mathbb{r})$ $H=\{x+iy y>0\}$ $M_{j}=\Gamma_{j}\backslash H$ $M_{j}$ $\varphi_{j}:m_{j}arrow M_{j+1}$ $f_{j}:m_{j}arrow \mathbb{c}$ $M_{j}$ $d\mu j$ $d \mu_{j}:= f_{j}(z) ^{2}dz, dz=\frac{dxdy}{y^{2}}$ 1( ) $f_{j}:m_{j}arrow \mathbb{c}$ (equidistributed) $A_{1},$ $B_{1}\subset M_{1}$ $\lim_{jarrow\infty}\frac{\int_{a_{j}}d\mu_{j}}{\int_{b_{j}}d\mu_{j}}=\frac{\int_{a_{1}}dz}{\int_{b_{1}}dz}$ $A_{j}=\varphi_{j-1}0\varphi_{j-2}\circ\cdots\circ\varphi_{1}(A_{1})$ 1

17 17 1( (Luo-Sarnak[4] 1995) ) $M_{j}=SL(2, \mathbb{z})\backslash H(\forall j=1,2,3, \ldots),$ $\varphi j$ $E(z, s)$ $SL(2, \mathbb{z})$ $\in \mathbb{r}$ $f_{j}(z)=e(z, \frac{1}{2}+it_{j})$ Koyama[1] 3 Truelsen [6] 2 ( (Lindenstrauss[3], Soundararajan[5]) ) 1 $M_{j},$ $M_{j}$ $\varphi J$ $0=\lambda_{0}<\lambda_{1}\leq$ $\lambda_{2}\leq\cdots$ $\lambda_{j}$ $f_{j}(z)(\vert f_{j}\vert_{2}=1)$ $f_{j}(z)$ $M$ ( Lindenstrauss Soundararajan 1 ) 3 ( (Koyama[2] 2009) $q_{1}=1$ $qj(j=2,3, \ldots)$ $M_{j}=\Gamma_{0}(qj)\backslash H$ $\pi J$ : $M_{j}arrow M_{1}$ $\psi_{j}$ : $M_{1}arrow M_{j+1}$ $\varphi_{j}:m_{j}arrow^{\pi_{j}}m_{1}arrow^{\psi_{j}}m_{j+1}$ $t\in \mathbb{r}$ $E_{q_{j},\nu_{j}}(z, s)$ $f_{j}(z)=e_{q_{j},\nu_{j}}(z, \frac{1}{2}+it)$ $\Gamma_{0}(qj)$ $vj$ $v_{j}$ 3 2 (S. Koyama and S. Nak jima) $q_{j}=j(j=2,3, \ldots)$ $M_{j}=\Gamma_{0}(qj)\backslash H$ $\psi_{j}$ : $\pi j$ : $M_{1}arrow M_{j+1}$ $M_{j}arrow M_{1}$ $\varphi_{j}:m_{j}arrow^{\pi_{j}}m_{1}arrow^{\psi_{j}}m_{j+1}$ $t\in \mathbb{r}$ $E_{q_{j},\nu_{j}}(z, s)$ $f_{j}(z)=e_{q_{j},\nu_{j}}(z, \frac{1}{2}+it)$ $\Gamma_{0}(qj)$ $\nu j$ $vj$

18 ( ) [1] S. Koyama: Quantum ergodicity of Eisenstein series for arithmetic 3-manifolds. Communications in Mathematical Physics 215 (2000), no. 2, [2] S. Koyama: Equidistribution of Eisenstein series in the level aspect. Commumications in Mathematical Physics 289 (2009), no. 3, [3] E. Lindenstrauss: Invariant measures and arithmetic quantum unique ergodicity. Annals of Mathematics 163 (2006) no. 1, [4] L. Wen Zhi and P. Sarnak: Quantum ergodicity $PSL_{2}(\mathbb{Z})\backslash H^{2}$ of eigenfunctions on. Inst. Hautes Etudes Sci. Publ. Math. 81 (1995) [5] K. Soundararajan: Quantum unique ergodicity $SL2(\mathbb{Z})\backslash H$ for. Annals of Mathematics 172 (2010) no. 2, [6] J.L. Truelsen: Quantum unique ergodicity of Eisenstein series on the Hilbert modular group over a totally real field. Forum Math. 23 (2011), no. 5.

DS II 方程式で小振幅周期ソリトンが関わる共鳴相互作用

DS II 方程式で小振幅周期ソリトンが関わる共鳴相互作用 1847 2013 157-168 157 $DS$ II (Takahito Arai) Research Institute for Science and Technology Kinki University (Masayoshi Tajiri) Osaka Prefecture University $DS$ II 2 2 1 2 $D$avey-Stewartson $(DS)$ $\{\begin{array}{l}iu_{t}+pu_{xx}+u_{yy}+r

More information

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+ 1160 2000 259-270 259 (Kohji Matsumoto) 1 [18] 1999 $- \mathrm{b}^{\backslash }$ $\zeta(s \alpha)$ Hurwitz $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+n)^{-S}$ $\zeta_{1}(s \alpha)=\zeta(s \alpha)-\alpha^{-}s$

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

Toyo University 1 2 Toyo University Toyo University 3 2 5 201022 4 Toyo University Toyo University 5 6 Toyo University Toyo University 7 20 1 1 1 1 21 4 21 8 Toyo University Toyo University 9 10 Toyo University

More information

untitled

untitled Y = Y () x i c C = i + c = ( x ) x π (x) π ( x ) = Y ( ){1 + ( x )}( 1 x ) Y ( )(1 + C ) ( 1 x) x π ( x) = 0 = ( x ) R R R R Y = (Y ) CS () CS ( ) = Y ( ) 0 ( Y ) dy Y ( ) A() * S( π ), S( CS) S( π ) =

More information

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理) 1713 2010 72-87 72 Introduction to the theory of delay differential equations (Rinko Miyazaki) Shizuoka University 1 $\frac{dx(t)}{dt}=ax(t)$ (11), $(a$ : $a\neq 0)$ 11 ( ) $t$ (11) $x$ 12 $t$ $x$ $x$

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu) $\mathrm{s}$ 1265 2002 209-219 209 DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ) (Jinghui Zhu) 1 Iiitroductioii (Xiamen Univ) $c$ (Fig 1) Levi-Civita

More information

数理解析研究所講究録 第1977巻

数理解析研究所講究録 第1977巻 1977 2015 33-44 33 Ding-Iohara-Miki modular double Yosuke Saito Osaka City University Advanced Mathematical Institute 2015 9 30 Ding-Iohara-Miki Ruijsenaars Ding-Iohara-Miki Ding-Iohara-Miki modular double

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

$\lambda$ INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT (SHOICHIRO TAKAKUWA) 1. INTROD

$\lambda$ INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT (SHOICHIRO TAKAKUWA) 1. INTROD INFINITELY MANY SOLUTIONS OF NONLIN TitleELLIPTIC EQUATIONS WITH CRITICAL SO EXPONENT Author(s) 高桑, 昇一郎 Citation 数理解析研究所講究録 (1991), 770: 171-178 Issue Date 1991-11 URL http://hdl.handle.net/2433/82356

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 1398 2004 137-148 137 cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 W. Kohnen } $SL_{2}(\mathbb{Z})$ 1 1 2 1 1 1 \sigma

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

2 DWT DWT (Complex Discrete Wavelet Transform CDWT) [ ] DWT Hilbert ( ) DWT DWT [8] CDWT Hilbert 1/2 2 Hilbert [9] CDWT [10] Meyer (Perfect Tran

2 DWT DWT (Complex Discrete Wavelet Transform CDWT) [ ] DWT Hilbert ( ) DWT DWT [8] CDWT Hilbert 1/2 2 Hilbert [9] CDWT [10] Meyer (Perfect Tran 1622 2009 1-17 1 Translation-Invariance Complex Discrete Wavelet Transform (Zhong Zhang) * (Hiroshi Toda) * * (Toyohashi University of Technology) 1 (Discrete Wavelet Transform DWT) DWT Mallat[1] (Multi

More information

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法 1848 2013 132-146 132 Fuminori Sakaguchi Graduate School of Engineering, University of Fukui ; Masahito Hayashi Graduate School of Mathematics, Nagoya University; Centre for Quantum Technologies, National

More information

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1 1040 1998 143-153 143 (Masatake MORI) 1 $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}$ (11) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1+x)3/4}$ 1974 [31 8 10 11] $I= \int_{a}^{b}f(\mathcal{i})d_{x}$

More information

431 a s a s a s d a s a 10 d s 11 f a 12 g s 13 a 14 a 15

431 a s a s a s d a s a 10 d s 11 f a 12 g s 13 a 14 a 15 431 a s a s a s d a sa 10ds 11fa 12gs 13a 14a 15 a s d f g h a s d 10f 11g a 12h s 13j a 14k s 15 432 433 10 11 12 13 14 15 10 11 12 13 14 15 434 10 11 12 13 14 15 10 11 12 13 14 15 10 11 12 13 14 15 435

More information

381

381 P381 P386 P396 P397 P401 P423 P430 P433 P435 P437 P448 P451 P452 381 382 383 384 385 3.0mm 5.0mm 3.0mm 5.0mm SK SK3.0mm SK5.0mm 3.0mm PUR PUR3.0mm 2.0mm 2.0mm3.0mm 2.5mm 2.5mm3.0mm 3.0mm 5.0mm 3.0mm 1.8mm

More information

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2 1155 2000 104-119 104 (Masatake Mori) 1 $=\mathrm{l}$ 1970 [2, 4, 7], $=-$, $=-$,,,, $\mathrm{a}^{\mathrm{a}}$,,, $a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (11), $z=\alpha$ $c_{0}+c_{1}(z-\alpha)+c2(z-\alpha)^{2}+\cdots$

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

Title 井草氏の結果の多変数化 : 局所ゼータ関数がガンマ関数の積で書ける場合について ( 概均質ベクトル空間の研究 ) Author(s) 天野, 勝利 Citation 数理解析研究所講究録 (2001), 1238: 1-11 Issue Date URL

Title 井草氏の結果の多変数化 : 局所ゼータ関数がガンマ関数の積で書ける場合について ( 概均質ベクトル空間の研究 ) Author(s) 天野, 勝利 Citation 数理解析研究所講究録 (2001), 1238: 1-11 Issue Date URL Title 井草氏の結果の多変数化 : 局所ゼータ関数がガンマ関数の積で書ける場合について ( 概均質ベクトル空間の研究 ) Author(s) 天野 勝利 Citation 数理解析研究所講究録 (2001) 1238: 1-11 Issue Date 2001-11 URL http://hdlhandlenet/2433/41569 Right Type Departmental Bulletin

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

aisatu.pdf

aisatu.pdf 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

LDU (Tomoyuki YOSHIDA) 1. [5] ( ) Fisher $t=2$ ([71) $Q$ $t=4,6,8$ $\lambda_{i}^{j}\in Z$ $t=8$ REDUCE $\det[(v-vs--ki+j)]_{0\leq i,

LDU (Tomoyuki YOSHIDA) 1. [5] ( ) Fisher $t=2$ ([71) $Q$ $t=4,6,8$ $\lambda_{i}^{j}\in Z$ $t=8$ REDUCE $\det[(v-vs--ki+j)]_{0\leq i, Title 組合せ論に現れたある種の行列式と行列の記号的 LDU 分解 ( 数式処理における理論と応用の研究 ) Author(s) 吉田, 知行 Citation 数理解析研究所講究録 (1993), 848 27-37 Issue Date 1993-09 URL http//hdl.handle.net/2433/83664 Right Type Departmental Bulletin Paper

More information

* (Ben T. Nohara), (Akio Arimoto) Faculty of Knowledge Engineering, Tokyo City University * 1 $\cdot\cdot

* (Ben T. Nohara), (Akio Arimoto) Faculty of Knowledge Engineering, Tokyo City University * 1 $\cdot\cdot 外力項付常微分方程式の周期解および漸近周期解の初期 Title値問題について ( 力学系 : 理論から応用へ 応用から理論へ ) Author(s) 野原, 勉 ; 有本, 彰雄 Citation 数理解析研究所講究録 (2011), 1742: 108-118 Issue Date 2011-05 URL http://hdl.handle.net/2433/170924 Right Type Departmental

More information

III

III III http://www.manabino-academ.com . = k...................................... = k p + q................................. = a + b c + d.................................. 4.4..........................................

More information

162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om

162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om 1256 2002 161-171 161 $L$ (Hirofumi Nagoshi) Research Institute for Mathematical Sciences, Kyoto Univ. 1. $L$ ( ) 2. ( 0 1 ) $X_{1},$ $X_{2},$ $X_{3},$ $\cdots$ $n^{-1/2}(x_{1}+$ $X_{2}+\cdots+X_{n})$

More information

CRA3689A

CRA3689A AVIC-DRZ90 AVIC-DRZ80 2 3 4 5 66 7 88 9 10 10 10 11 12 13 14 15 1 1 0 OPEN ANGLE REMOTE WIDE SET UP AVIC-DRZ90 SOURCE OFF AV CONTROL MIC 2 16 17 1 2 0 0 1 AVIC-DRZ90 2 3 4 OPEN ANGLE REMOTE SOURCE OFF

More information

数理解析研究所講究録 第1908巻

数理解析研究所講究録 第1908巻 1908 2014 78-85 78 1 D3 1 [20] Born [18, 21] () () RIMS ( 1834) [19] ( [16] ) [1, 23, 24] 2 $\Vert A\Vert^{2}$ $c*$ - $*:\mathcal{x}\ni A\mapsto A^{*}\in \mathcal{x}$ $\Vert A^{*}A\Vert=$ $\Vert\cdot\Vert$

More information

Painlev\ e V Yang-Mills (Tetsu MASUDA) 1 Yang-Mills (ASDYM ), $\partial_{z}a_{w}-\partial_{w}a_{z}+[a_{z},a_{w}]=0$, $\partial_{\ov

Painlev\ e V Yang-Mills (Tetsu MASUDA) 1 Yang-Mills (ASDYM ), $\partial_{z}a_{w}-\partial_{w}a_{z}+[a_{z},a_{w}]=0$, $\partial_{\ov 1650 2009 59-74 59 Painlev\ e V Yang-Mills (Tetsu MASUDA) 1 Yang-Mills (ASDYM ) $\partial_{z}a_{w}-\partial_{w}a_{z}+[a_{z}a_{w}]=0$ $\partial_{\overline{z}}a_{\overline{u}}$ $-\partial_{\overline{w}}a_{\dot{z}}+[a_{\overline{z}}

More information

,, ( ), ( ), ( ), ( ) 2, ( 2 ) $L^{2}$ ( ) I, $L^{2}(-\infty, \infty)$ II, I, $L^{\infty}(-\infty, \infty)$ I 1 $n$ $f(t)\in L^{2

,, ( ), ( ), ( ), ( ) 2, ( 2 ) $L^{2}$ ( ) I, $L^{2}(-\infty, \infty)$ II, I, $L^{\infty}(-\infty, \infty)$ I 1 $n$ $f(t)\in L^{2 Title ヘビサイドケーブル, トムソンケーブルと関連するソボレフ型不等式の最良定数 ( 可積分数理の新潮流 ) Author(s) 亀高, 惟倫 ; 武村, 一雄 ; 山岸, 弘幸 ; 永井, 敦 ; 渡辺, Citation 数理解析研究所講究録 (2009), 1650: 136-153 Issue Date 2009-05 URL http://hdlhandlenet/2433/140769

More information

$2_{\text{ }}$ weight Duke-Imamogle weight Saito-Kurokawa lifting ( ) weight $2k-2$ ( : ) Siegel $k$ $k$ Hecke compatible liftin

$2_{\text{ }}$ weight Duke-Imamogle weight Saito-Kurokawa lifting ( ) weight $2k-2$ ( : ) Siegel $k$ $k$ Hecke compatible liftin $2_{\text{ }}$ weight 1103 1999 187-199 187 Duke-Imamogle weight Saito-Kurokawa lifting ( ) weight $2k-2$ ( : ) Siegel $k$ $k$ Hecke compatible lifting $([\mathrm{k}\mathrm{u}])$ 1980 Maass [Ma2], Andrianov

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm 995 1997 11-27 11 3 3 Euclid (Reiko Aiyama) (Kazuo Akutagawa) (CMC) $H$ ( ) $H=0$ ( ) Weierstrass $g$ 1 $H\neq 0$ Kenmotsu $([\mathrm{k}])$ $\mathrm{s}^{2}$ 2 $g$ CMC $P$ $([\mathrm{b}])$ $g$ Gauss Bryant

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

日本糖尿病学会誌第58巻第1号

日本糖尿病学会誌第58巻第1号 α β β β β β β α α β α β α l l α l μ l β l α β β Wfs1 β β l l l l μ l l μ μ l μ l Δ l μ μ l μ l l ll l l l l l l l l μ l l l l μ μ l l l l μ l l l l l l l l l l μ l l l μ l μ l l l l l l l l l μ l l l l

More information

FR 34 316 13 303 54

FR 34 316 13 303 54 FR 34 316 13 303 54 23 ( 1 14 ) ( 3 10 ) 8/4 8/ 100% 8 22 7 12 1 9 8 45 25 28 17 19 14 3/1 6/27 5000 8/4 12/2930 1 66 45 43 35 49 25 22 20 23 21 17 13 20 6 1 8 52 1 50 4 11 49 3/4/5 75 6/7/8 46 9/10/11

More information

#2 3 USA FCC Milgrom Willson FCC FCC USA NFS Market Design USA CO A. Roth #4

#2 3 USA FCC Milgrom Willson FCC FCC USA NFS Market Design USA CO A. Roth #4 #1 ( ) 1 1. 2. 3. Yahoo! 4. #2 #2 3 USA FCC Milgrom Willson FCC FCC USA NFS Market Design USA CO A. Roth #4 #3 #1 #5 #2 200 1 2 1 1000 1000 2 2000 2000 #6 #4 #3 200 500 1000 1000 2000 #7 1 2 1 8 #5 2007

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 0 1 2 3 4 5 6 1964 1978 7 0.0015+0.013 8 1 π 2 2 2 1 2 2 ( r 1 + r3 ) + π ( r2 + r3 ) 2 = +1,2100 9 10 11 1.9m 3 0.64m 3 12 13 14 15 16 17 () 0.095% 0.019% 1.29% (0.348%) 0.024% 0.0048% 0.32% (0.0864%)

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

1000

1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 SL 1000 1000 1000 1000 1000 1000 1000 1000 1000 ( 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

More information

2013 5

2013 5 12 (SL) (L) (SL) 2013 5 5 29 () 4 ( ) 7 17 20 ( ) 2 14. 4.17 14. 5. 1 14. 5.22 14. 6. 5 14. 4.17 14. 5. 1 14. 5. 8 14. 5.22 14. 4.17 14. 5. 1 14. 5.22 14. 6. 5 4 10 7 7 10 7 31 8 14.4.10 14.7.10 14.7.31

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl L A TEX ver.2004.11.18 1 L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sample2 3) /staff/kaede work/www/math/takase sample1.tex

More information

2 / 37

2 / 37 INTA No.00149 1 / 37 2 / 37 3 / 37 4 / 37 5 / 37 6 / 37 7 / 37 8 / 37 9 / 37 10 / 37 11 / 37 12 / 37 13 / 37 14 / 37 15 / 37 16 / 37 17 / 37 18 / 37 19 / 37 20 / 37 21 / 37 November.2008 22 / 37 23 / 37

More information

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib ( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson

More information

日本糖尿病学会誌第58巻第3号

日本糖尿病学会誌第58巻第3号 l l μ l l l l l μ l l l l μ l l l l μ l l l l l l l l l l l l l μ l l l l μ Δ l l l μ Δ μ l l l l μ l l μ l l l l l l l l μ l l l l l μ l l l l l l l l μ l μ l l l l l l l l l l l l μ l l l l β l l l μ

More information

NetR36_CD01-CD24_190512A.indd

NetR36_CD01-CD24_190512A.indd 36 Vol. 63 0 553 29 0 7 51 5129 5130 51 51 5133 5134 5158 9 515898 555 515911 5 515912 30 515915 5 515916 5 60-600017 24 600018 24 600019 24 600020 24 600070 24 6000 24 600072 24 6000 24 600129 24 600181

More information

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 9 π 046 Vol.69-1 January 2016 204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 β γ α / α / 048 Vol.69-1 January 2016 π π π / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 049 β 050 Vol.69-1

More information

曲面のパラメタ表示と接線ベクトル

曲面のパラメタ表示と接線ベクトル L11(2011-07-06 Wed) :Time-stamp: 2011-07-06 Wed 13:08 JST hig 1,,. 2. http://hig3.net () (L11) 2011-07-06 Wed 1 / 18 ( ) 1 V = (xy2 ) x + (2y) y = y 2 + 2. 2 V = 4y., D V ds = 2 2 ( ) 4 x 2 4y dy dx =

More information

Series

Series 5 1000 3000 5000 R 3000 1000 5000 C D 683 1000 3000 5000 Series 1000 1000 3000 5000 3000 5000 1000 3000 5000 684 685 1000 3000 5000 Series A B ØØ ØØ ØØ Ø R C D 1000 3000 5000 Series 1000 3000 5000 DXT170

More information

P1-1 P1-2 P1-3 P1-4 P1-5 P1-6 P3-1 P3-2 P3-3 P3-4 P3-5 P3-6 P5-1 P5-2 P5-3 P5-4 P5-5 P5-6 P7-1 P7-2 P7-3 P7-4 P7-5 P7-6 P9-1 P9-2 P9-3 P9-4 P9-5 P9-6 P11-1 P11-2 P11-3 P11-4 P13-1 P13-2 P13-3 P13-4 P13-5

More information

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N $\mathbb{q}$ 1097 1999 69-81 69 $\mathrm{m}$ 2 $\mathrm{o}\mathrm{d}\mathfrak{p}$ ray class field 2 (Fuminori Kawamoto) 1 INTRODUCTION $F$ $F$ $K/F$ Galois $G:=Ga\iota(K/F)$ Galois $\alpha\in \mathit{0}_{k}$

More information

have is The explicit upper bound of the multiple integral of $S(t)$ on the Riemann Hypothesis Takahiro Wakasa Graduate School of Ma

have is The explicit upper bound of the multiple integral of $S(t)$ on the Riemann Hypothesis Takahiro Wakasa Graduate School of Ma The explicit upper bound of the mul Titlethe Riemann Hypothesis (Analytic Nu Theory through Approximation As Author(s) Wakasa, Takahiro Citation 数理解析研究所講究録 (2014), 1874: 12-21 Issue Date 2014-01 URL http://hdlhlenet/2433/195548

More information

受賞講演要旨2012cs3

受賞講演要旨2012cs3 アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α

More information