表紙(会員用)

Size: px
Start display at page:

Download "表紙(会員用)"

Transcription

1 ISSN VOL. 31 NO. 1 ACTINOMYCETOLOGICA CTINOMYCETOLO GIC 2017 VOL. 31 NO. 1 公開 actino.jp/ Published by The Society for Actinomycetes Japan

2 SAJ NEWS Vol. 31, No. 1, 2017 Contents Outline of SAJ: Activities and Membership S 2 List of new scientific names and nomenclatural changes in the phylum Actinobacteria validly published in 2016 Award Lecture (Dr. Shumpei Asamizu) S 30 Publication of Award Lecture (Dr. Shumpei Asamizu) S 41 Award Lecture (Dr. Takashi Kawasaki) S 42 Publication of Award Lecture (Dr. Takashi Kawasaki) S 47 60th Regular Colloquim S 48 The 2017 Annual Meeting of the Society for Actinomycetes Japan S 49 Online access to The Journal of Antibiotics for SAJ members S 50 S 3 S1

3 Outline of SAJ: Activities and Membership The Society for Actinomycetes Japan (SAJ) was established in 1955 and authorized as a scientific organization by Science Council of Japan in The Society for Applied Genetics of Actinomycetes, which was established in 1972, merged in SAJ in SAJ aims at promoting actinomycete researches as well as social and scientific exchanges between members domestically and internationally. The Activities of SAJ have included annual and regular scientific meetings, workshops and publications of The Journal of Antibiotics (the official journal, joint publication with Japan Antibiotics Research Association), Actinomycetologica (Newsletter) and laboratory manuals. Contributions to International Streptomyces Project (ISP) and International Symposium on Biology of Actinomycetes (ISBA) have also been SAJ's activities. In addition, SAJ have occasional special projects such as the publication of books related to actinomycetes: Atlas of Actinomycetes, 1997, Identification Manual of Actinomycetes, 2001 and Digital Atlas of Actinomycetes, 2002 ( These activities have been planned and organized by the board of directors with association of executive committees consisting of active members who belong to academic and nonacademic organizations. The SAJ Memberships comprise active members, student members, supporting members and honorary members. Currently (as of Dec. 31, 2016), SAJ has about 423 active members including student members, 22 oversea members, 11 honorary members, 3 oversea honorary members, 1 special member and 13 supporting members. The SAJ members are allowed to join the scientific and social meetings or projects (regular and specific) of SAJ on a membership basis and to browse The Journal of Antibiotics from a link on the SAJ website and will receive each issue of Actinomycetologica, currently published in June and December. Actinomycete researchers in foreign countries are welcome to join SAJ. For application of SAJ membership, please contact the SAJ secretariat (see below). Annual membership fees are currently 5,000 yen for active members, 3,000 yen for student members and 20,000 yen or more for supporting members (mainly companies), provided that the fees may be changed without advance announcement. The current members (April March 2018) of the Board of Directors are: Masayuki Hayakawa (Chairperson; Univ. of Yamanashi), Tohru Dairi (Vice Chairperson; Hokkaido Univ.), Tomohiko Tamura (Secretary General; NITE), Takayuki Kajiura (Ajinomoto Co., Inc.), Jun Ishikawa (NIID), Hiroyasu Onaka (Tokyo Univ.), Yojiro Anzai (Toho Univ.), Yoshimitsu Hamano (Fukui Pref. Univ.), Masayuki Igarashi (Institute of Microbial Chemistry), Akira Arisawa (MicroBiopharm Japan Co., Ltd.), Takuji Nakashima (Kitasato Univ.), Masaaki Kizuka (Daiichi Sankyo Co., Ltd.), Hisashi Kawasaki (Tokyo Denki Univ.), Takuji Kudo (RIKEN) Atsuko Matsumoto (Kitasato Univ.), Hideki Yamamura (Univ. of Yamanashi), and Hideyuki Muramatsu (Institute of Microbial Chemistry). The members of the Advisory Board are: Yuzuru Mikami, Akira Yokota, Hiroyuki Osada, and Keiko Ochiai. Copyright: The copyright of the articles published in Actinomycetologica is transferred from the authors to the publisher, The Society for Actinomycetes Japan, upon acceptance of the manuscript. The SAJ Secretariat c/o Culture Collection Division, Biological Resource Center, National Institute of Technology and Evaluation (NBRC) 2-5-8, Kazusakamatari, Kisarazu, Chiba , Japan Phone: Fax: info@actino.jp S2

4 List of new scientific names and nomenclatural changes in the phylum Actinobacteria validly published in 2016 NEW ORDER Egibacterales Zhang et al. 2016, ord. Type genus: Egibacter Zhang et al : A member of the class Nitriliruptoria. Egicoccales Zhang et al. 2016, ord. Type genus: Egicoccus Zhang et al : A member of the class Nitriliruptoria. NEW FAMILY Egibacteraceae Zhang et al. 2016, fam. Type genus: Egibacter Zhang et al : A member of the order Egibacterales. Egicoccaceae Zhang et al. 2016, fam. Type genus: Egicoccus Zhang et al : A member of the order Egicoccales. Parviterribacteraceae Foesel et al. 2016, fam. Type genus: Parviterribacter Foesel et al : A member of the order Solirubrobacterales. NEW GENUS Acidipropionibacterium Scholz and Kilian 2016, gen. Type species: Acidipropionibacterium jensenii (van Niel 1928) Scholz and Kilian : A member of the family Propionibacteriaceae. Actinocrispum Hatano et al. 2016, gen. Type species: Actinocrispum wychmicini Hatano et al : A member of the family Pseudonocardiaceae. Actinorectispora Quadri et al. 2016, gen. Type species: Actinorectispora indica Quadri et al : A member of the family Pseudonocardiaceae. Actinorhabdospora Mingma et al. 2016, gen. Type species: Actinorhabdospora filicis Mingma et al : A member of the family Micromonosporaceae. Allohumibacter Kim et al. 2016, gen. Type species: Allohumibacter endophyticus Kim et al : A member of the family Microbacteriaceae. Cnuibacter Zhou et al. 2016, gen. Type species: Cnuibacter physcomitrellae Zhou et al : A member of the family Microbacteriaceae. S3

5 Cutibacterium Scholz and Kilian 2016, gen. Type species: Cutibacterium acnes (Gilchrist 1900) Scholz and Kilian : A member of the family Propionibacteriaceae. Egibacter Zhang et al. 2016, gen. Type species: Egibacter rhizosphaerae Zhang et al : A member of the family Egibacteraceae. Egicoccus Zhang et al. 2016, gen. Type species: Egicoccus halophilus Zhang et al : A member of the family Egicoccaceae. Enorma Mishra et al. 2016, gen. Type species: Enorma massiliensis Mishra et al Reference: Stand. Genomic Sci., 2013, 8: ; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. A member of the family Coriobacteriaceae. Glutamicibacter Busse 2016, gen. Type species: Glutamicibacter protophormiae (Lysenko 1959) Busse : A member of the family Micrococcaceae. Herbihabitans Zhang et al. 2016, gen. Type species: Herbihabitans rhizosphaerae Zhang et al : A member of the family Pseudonocardiaceae. Huakuichenia Zhang et al. 2016, gen. Type species: Huakuichenia soli Zhang et al : A member of the family Microbacteriaceae. Lawsonella Bell et al. 2016, gen. Type species: Lawsonella clevelandensis Bell et al : A member of the suborder Corynebacterineae. Lipingzhangella Zhang et al. 2016, gen. Type species: Lipingzhangella halophila Zhang et al : A member of the family Nocardiopsaceae. Monashia Azman et al. 2016, gen. Type species: Monashia flava Azman et al : A member of the family Intrasporangiaceae. Paenarthrobacter Busse 2016, gen. Type species: Paenarthrobacter aurescens (Phillips 1953) Busse : A member of the family Micrococcaceae. Paeniglutamicibacter Busse 2016, gen. Type species: Paeniglutamicibacter sulfureus (Stackebrandt et al. 1984) Busse : A member of the family Micrococcaceae. Parafrigoribacterium Kong et al. 2016, gen. Type species: Parafrigoribacterium mesophilum (Dastager et al. 2008) Kong et al : A member of the family Microbacteriaceae. Parviterribacter Foesel et al. 2016, gen. Type species: Parviterribacter kavangonensis Foesel et al : A member of the family Parviterribacteraceae. Populibacterium Li et al. 2016, gen. Type species: Populibacterium corticicola Li et al : A member of the family Jonesiaceae. S4

6 Pseudarthrobacter Busse 2016, gen. Type species: Pseudarthrobacter polychromogenes (Schippers-Lammertse et al. 1963) Busse : A member of the family Micrococcaceae. Pseudoglutamicibacter Busse 2016, gen. Type species: Pseudoglutamicibacter cumminsii (Funke et al. 1997) Busse : A member of the family Micrococcaceae. Pseudopropionibacterium Scholz and Kilian 2016, gen. Type species: Pseudopropionibacterium propionicum (Buchanan and Pine 1962) Scholz and Kilian : A member of the family Propionibacteriaceae. Raineyella Pikuta et al. 2016, gen. Type species: Raineyella antarctica Pikuta et al : A member of the family Propionibacteriaceae. Salilacibacter Li et al. 2016, gen. Type species: Salilacibacter albus Li et al : A member of the family Glycomycetaceae. Sediminivirga Zhang et al. 2016, gen. Type species: Sediminivirga luteola Zhang et al : A member of the family Brevibacteriaceae. Sphaerimonospora Mingma et al. 2016, gen. Type species: Sphaerimonospora cavernae Mingma et al : A member of the family Streptosporangiaceae. Timonella Mishra et al. 2016, gen. Type species: Timonella senegalensis Mishra et al Reference: Stand. Genomic Sci. 8: ; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. A member of the order Micrococcales. NEW SPECIES Actinocorallia lasiicapitis Liu et al. 2016, sp. Type strain: strain 3H-GS17 = CGMCC = DSM = JCM Reference: Int. J. Syst. Evol. Micro-biol., 2016, 66: Actinocrispum wychmicini Hatano et al. 2016, sp. Type strain: strain MI503-A4 = DSM = NBRC : Actinomadura adrarensis Lahoum et al. 2016, sp. Type strain: strain ACD12 = CECT 8842 = DSM = JCM : Actinomadura gamaensis Abagana et al. 2016, sp. Type strain: strain NEAU-Gz5 = CGMCC = DSM Reference: Antonie van Leeuwenhoek, 2016, 109: ; Validation List no. 171 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Actinomadura jiaoheensis Zhao et al. 2016, sp. Type strain: strain NEAU-Jh1-3 = CGMCC = DSM = JCM Reference: Antonie van Leeuwenhoek, 2015, 108: ; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. S5

7 Actinomadura montaniterrae Songsumanus et al. 2016, sp. Type strain: strain CYP1-1B = JCM = KCTC = PCU 349 = TISTR : Actinomadura sporangiiformans Zhao et al. 2016, sp. Type strain: strain NEAU-Jh2-5 = CGMCC = JCM Reference: Antonie van Leeuwenhoek, 2015, 108: ; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Actinophytocola algeriensis Bouznada et al. 2016, sp. Type strain: strain MB20 = CECT 8960 = DSM Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: Actinoplanes bogorensis Nurkanto et al. 2016, sp. Type strain: strain LIPI11-2-Ac043 = InaCC A522 = NBRC Reference: J. Antibiot., 2016, 69: 26-30; Validation List no. 172 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Actinoplanes lichenis Phongsopitanun et al. 2016, sp. Type strain: strain LDG1-22 = JCM = PCU 344 = TISTR : Actinoplanes subglobosus Ngaemthao et al. 2016, sp. Type strain: strain A-T 5400 = BCC = NBRC = TBRC : Actinopolyspora salinaria Duangmal et al. 2016, sp. Type strain: strain HS05-03 = BCC = NBRC : Actinorectispora indica Quadri et al. 2016, sp. Type strain: strain YIM = CCTCC AA = DSM : Actinorhabdospora filicis Mingma et al. 2016, sp. Type strain: strain K = NBRC = TBRC : Agromyces aureus Corretto et al. 2016, sp. Type strain: strain AR33 = DSM = LMG : Agromyces binzhouensis et al. 2016, sp. Type strain: strain OAct353 = CGMCC = DSM = NRRL B : Agromyces insulae Huang et al. 2016, sp. Type strain: strain CFH S0483 = CCTCC AB = JCM = KCTC : Allohumibacter endophyticus Kim et al. 2016, sp. Type strain: strain MWE-A11 = JCM = KCTC : Amycolatopsis albispora Zhang et al. 2016, sp. Type strain: strain WP1 = KCTC = MCCC 1A : Arthrobacter deserti Hu et al. 2016, sp. Type strain: strain YIM CS25 = CGMCC = DSM = KCTC : Arthrobacter echini Lee et al. 2016, sp. Type strain: strain AM23 = KACC = S6

8 DSM : Asanoa endophytica Niemhom et al. 2016, sp. Type strain: strain BR3-1 = BCC = NBRC : Bifidobacterium aquikefiri Laureys et al. 2016, sp. Type strain: strain R = CCUG = LMG : Bifidobacterium eulemuris Michelini et al. 2016, sp. Type strain: strain LMM_E3 = DSM = JCM : Bifidobacterium hapali Michelini et al. 2016, sp. Type strain: strain MRM_8.14 = DSM = JCM : Bifidobacterium myosotis Michelini et al. 2016, sp. Type strain: strain MRM_5.9 = DSM = JCM : Bifidobacterium tissieri Michelini et al. 2016, sp. Type strain: strain MRM_5.18 = DSM = JCM : Blastococcus capsensis Hezbri et al. 2016, sp. Type strain: strain BMG 804 = CECT 8876 = DSM : Brachybacterium aquaticum Kaur et al. 2016, sp. Type strain: strain KWS-1 = DSM = JCM = MTCC : Brachybacterium horti Singh et al. 2016, sp. Type strain: strain THG-S15-4 = CCTCC AB = KCTC = JCM : Brevibacterium sediminis Chen et al. 2016, sp. Type strain: strain FXJ8.269 = CGMCC = DSM : Catellatospora paridis Jia et al. 2016, sp. Type strain: strain NEAU-CL2 = CGMCC = DSM Reference: Antonie van Leeuwenhoek, 2016, 109: 43-50; Validation List no. 169 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Catellatospora vulcania Jia et al. 2016, sp. Type strain: strain NEAU-JM1 = CGMCC = JCM Reference: Antonie van Leeuwenhoek, 2016, 109: 43-50; Validation List no. 169 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Catenulispora fulva Lee and Whang 2016, sp. Type strain: strain SA-246 = KACC = NBRC : Cellulosimicrobium aquatile Sultanpuram et al. 2016, sp. Type strain: strain 3bp = KCTC = LMG = MCC Reference: Antonie van Leeuwenhoek, 2015, 108: ; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Cellulosimicrobium marinum Hamada et al. S7

9 2016, sp. Type strain: strain RS-7-4 = InaCC A726 = NBRC Reference: Arch. Microbiol., 2016, 198: ; Validation List no. 171 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Cnuibacter physcomitrellae Zhou et al. 2016, sp. Type strain: strain XA = CGMCC = DSM : Collinsella massiliensis Padmanabhan et al. 2016, sp. Type strain: strain GD3 = CSUR P902 = DSM Reference: Stand. Genomic Sci., 2014, 9: ; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Corynebacterium crudilactis Zimmermann et al. 2016, sp. Type strain: strain JZ16 = CCUG = DSM = LMG : Corynebacterium faecale Chen et al. 2016, sp. Type strain: strain YIM = CCTCC AB = DSM = JCM : Corynebacterium guangdongense Li et al. 2016, sp. Type strain: strain S01 = CCTCC AB = GDMCC = KCTC : Corynebacterium lowii Bernard et al. 2016, sp. Type strain: strain R = CCUG = LMG : Corynebacterium oculi Bernard et al. 2016, sp. Type strain: strain R = CCUG = LMG : Corynebacterium pollutisoli Negi et al. 2016, sp. Type strain: strain VDS11 = DSM = KCTC = MCC : Corynebacterium uropygiale Braun et al. 2016, sp. Type strain: strain Iso10 = DSM = LMG Reference: Syst. Appl. Microbiol., 2016, 39: 88-92; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Dactylosporangium solaniradicis Fan et al. 2016, sp. Type strain: strain NEAU-FJL2 = CGMCC = DSM Reference: Antonie van Leeuwenhoek, 2016, 109: ; Validation List no. 171 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Dactylosporangium sucinum Phongsopitanun et al. 2016, sp. Type strain: strain RY35-23 = JCM = PCU 333 = TISTR Reference: J. Antibiot., 2015, 68: ; Validation List no. 167 [Int. J. Syst. Evol. Microbiol., 2016, 66: 1-3]. Demequina litorisediminis Park et al. 2016, sp. Type strain: strain GHD-1 = KCTC = NBRC : Dermabacter jinjuensis Park et al. 2016, sp. Type strain: strain 32 = DSM = NCCP : Dermabacter vaginalis Chang et al. 2016, sp. Type strain: strain AD1-86 = DSM = KCTC S8

10 66: Egibacter rhizosphaerae Zhang et al. 2016, sp. Type strain: strain EGI = CGMCC = KCTC : Egicoccus halophilus Zhang et al. 2016, sp. Type strain: strain EGI = CGMCC = KCTC : Enorma massiliensis Mishra et al. 2016, sp. Type strain: strain phi = CSUR P183 = DSM Reference: Stand. Genomic Sci., 2013, 8: ; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Enorma timonensis Ramasamy et al. 2016, sp. Type strain: strain GD5 = CSUR P900 = DSM Reference: Stand. Genomic Sci., 2014, 9: ; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Enterorhabdus muris Lagkouvardos et al. 2016, sp. Type strain: strain WCA-131-CoC-2 = DSM = KCTC Reference: Nat. Microbiol., 2016, 1: 16131; Validation List no. 172 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Flexivirga endophytica Gao et al. 2016, sp. Type strain: strain YIM 7505 = CGMCC = JCM = KCTC : Flexivirga lutea Kang et al. 2016, sp. Type strain: strain TBS-100 = JCM = KCTC : Frankia casuarinae Nouioui et al. 2016, sp. Type strain: strain CcI3 = CECT 9043 = DSM : Frankia elaeagni Nouioui et al. 2016, sp. Type strain: strain BMG5.12 = CECT 9031 = DSM : Friedmanniella aerolata Kim et al. 2016, sp. Type strain: strain 7515T-26 = DSM = KACC : Friedmanniella endophytica Tuo et al. 2016, sp. Type strain: strain 4Q3S-3 = CGMCC = DSM : Frigoribacterium salinisoli Kong et al. 2016, sp. Type strain: strain LAM9155 = ACCC = JCM : Geodermatophilus pulveris Hezbri et al. 2016, sp. Type strain: strain BMG 825 = CECT 9003 = DSM : Glycomyces lacisalsi Guan et al. 2016, sp. Type strain: strain XHU 5089 = CCTCC AA = JCM = KCTC : Gordonia didemni de Menezes et al. 2016, sp. Type strain: strain B204 = CBMAI 1069 = DSM Reference: Antonie van Leeuwenhoek, 2016, 109: ; Validation List no. 169 [Int. J. Syst. Evol. Microbiol., 2016, 66: S9

11 ]. Gordonia hongkongensis Tsang et al. 2016, sp. Type strain: strain HKU50 = CCOS 955 = CIP = JCM = NBRC = NCCP : Hamadaea flava Chu et al. 2016, sp. Type strain: strain YIM C0533 = CGMCC = CPCC = DSM = KCTC : Herbihabitans rhizosphaerae Zhang et al. 2016, sp. Type strain: strain CPCC = DSM = NBRC : Hoyosella rhizosphaerae Li et al. 2016, sp. Type strain: strain J12GA03 = CGMCC = DSM : Huakuichenia soli Zhang et al. 2016, sp. Type strain: strain LIP-1 = CCTCC AB = KCTC : Humibacter soli Park et al. 2016, sp. Type strain: strain R1-20 = JCM = KCTC : Isoptericola cucumis Kämpfer et al. 2016, sp. Type strain: strain AP-3 = CCM = DSM = JCM = LMG : Jatrophihabitans huperziae Gong et al. 2016, sp. Type strain: strain CPCC = I13A = DSM = NBRC : Kibdelosporangium banguiense Pascual et al. 2016, sp. Type strain: strain F-240,109 = DSM = LMG Reference: Antonie van Leeuwenhoek, 2016, 109: ; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Kineococcus mangrovi Duangmal et al. 2016, sp. Type strain: strain L2-1-L1 = BCC = NBRC : Kocuria arsenatis Román-Ponce et al. 2016, sp. Type strain: strain CM1E1 = CCBAU = HAMBI 3625 = LMG : Kocuria pelophila Hamada et al. 2016, sp. Type strain: strain RS-2-3 = InaCC A704 = NBRC : Kocuria subflava Jiang et al. 2016, sp. Type strain: strain YIM = CGMCC = JCM = KCTC Reference: Antonie van Leeuwenhoek, 2015, 108: ; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Kribbella pittospori Kaewkla et al. 2016, sp. Type strain: strain PIP 158 = DSM = NRRL B : Lawsonella clevelandensis Bell et al. 2016, sp. Type strain: strain X1036 = CCUG = DSM : S10

12 Lentzea guizhouensis Cao et al. 2016, sp. Type strain: strain DHS C013 = CGMCC = DSM = KCTC Reference: Antonie van Leeuwenhoek, 2015, 108: ; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Leucobacter holotrichiae Zhu et al. 2016, sp. Type strain: strain T14 = DSM = JCM : Leucobacter populi Fang et al. 2016, sp. Type strain: strain 06C = CFCC = KCTC : Lipingzhangella halophila Zhang et al. 2016, sp. Type strain: strain EGI = CGMCC = DSM : Mariniluteicoccus endophyticus Liu et al. 2016, sp. Type strain: strain YIM 2617 = KCTC = DSM = JCM : Marmoricola ginsengisoli Lee et al. 2016, sp. Type strain: strain Gsoil 097 = DSM = KACC : Marmoricola pocheonensis Lee et al. 2016, sp. Type strain: strain Gsoil 818 = DSM = KACC : Microbacterium aureliae Kaur et al. 2016, sp. Type strain: strain JF-6 = JCM = KCTC = MTCC : Microbacterium diaminobutyricum Fidalgo et al. 2016, sp. Type strain: strain RZ63 = CECT 8355 = DSM : Microbacterium faecale Chen et al. 2016, sp. Type strain: strain YIM = CGMCC = DSM = KCTC : Microbacterium gilvum Chen et al. 2016, sp. Type strain: strain YIM = CCTCC AB = DSM = JCM Reference: Antonie van Leeuwenhoek, 2016, 109: ; Validation List no. 172 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Microbacterium sorbitolivorans Meng et al. 2016, sp. Type strain: strain SZDIS-1-1 = CGMCC = DSM : Microbispora camponoti Han et al. 2016, sp. Type strain: strain 2C-HV3 = CGMCC = DSM = JCM Reference: Antonie van Leeuwenhoek, 2016, 109: ; Validation List no. 169 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Microlunatus endophyticus Tuo et al. 2016, sp. Type strain: strain S3Af-1 = CGMCC = DSM = JCM : Microlunatus nigridraconis Zhang et al. 2016, sp. Type strain: strain CPCC = DSM = KCTC = NBRC : S11

13 Micromonospora mangrovi Xie et al. 2016, sp. Type strain: strain 2803GPT1-18 = CCTCC AA = DSM Reference: Antonie van Leeuwenhoek, 2016, 109: ; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Micromonospora noduli Carro et al. 2016, sp. Type strain: strain GUI43 = CECT 9020 = DSM : Micromonospora ovatispora Li and Hong 2016, sp. Type strain: strain 2701SIM06 = CCTCC AA = DSM : Micromonospora profundi Veyisoglu et al. 2016, sp. Type strain: strain DS3010 = DSM = KCTC : Micromonospora sediminis Phongsopitanun et al. 2016, sp. Type strain: strain CH3-3 = JCM = PCU 350 = TISTR : Micromonospora soli Thawai et al. 2016, sp. Type strain: strain SL3-70 = BCC = NBRC Reference: Antonie van Leeuwenhoek, 2016, 109: ; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Micromonospora ureilytica Carro et al. 2016, sp. Type strain: strain GUI23 = CECT 9022 = DSM : Micromonospora vinacea Carro et al. 2016, sp. Type strain: strain GUI63 = CECT 9019 = DSM : Micromonospora vulcania Jia et al. 2016, sp. Type strain: strain NEAU-JM2 = CGMCC = DSM = JCM Reference: Antonie van Leeuwenhoek, 2015, 108: ; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Monashia flava Azman et al. 2016, sp. Type strain: strain MUSC 78 = DSM = MCCC 1K00454 = NBRC : Mumia xiangluensis Zhou et al. 2016, sp. Type strain: strain NEAU-KD1 = CGMCC = DSM Reference: Antonie van Leeuwenhoek, 2016, 109: ; Validation List no. 171 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Mycobacterium alsense Tortoli et al. 2016, sp. Type strain: strain TB 1906 = CCUG = DSM : Mycobacterium arcueilense Konjek et al. 2016, sp. Type strain: strain 269 = ParisRGMnew_3 = CIP = DSM : Mycobacterium helvum Tran and Dahl 2016, sp. Type strain: strain DL739 = JCM = NCCB : Mycobacterium lutetiense Konjek et al. 2016, sp. Type strain: strain 071 = ParisRGMnew_1 = S12

14 CIP = DSM : Mycobacterium montmartrense Konjek et al. 2016, sp. Type strain: strain 196 = ParisRGMnew_2 = CIP = DSM : Mycobacterium oryzae Ramaprasad et al. 2016, sp. Type strain: strain JC290 = KCTC = LMG : Mycobacterium paraintracellulare Lee et al. 2016, sp. Type strain: strain MOTT64 = KCTC = JCM : Mycobacterium paraterrae Lee et al. 2016, sp. Type strain: strain = DSM = KCTC Reference: Microbiol. Immunol. 2010, 54: 46-53; Validation List no. 172 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Mycobacterium sarraceniae Tran and Dahl 2016, sp. Type strain: strain DL734 = JCM = NCCB : Nakamurella endophytica Tuo et al. 2016, sp. Type strain: strain 2Q3S-4-2 = CGMCC = DSM : Nakamurella silvestris França et al. 2016, sp. Type strain: strain S = DSM = LMG : Nesterenkonia aurantiaca Finore et al. 2016, sp. Type strain: strain CK5 = DSM = JCM : Nesterenkonia massiliensis Edouard et al. 2016, sp. Type strain: strain NP1 = CSUR P244 = DSM Reference: Stand. Genomic Sci., 2014, 9: ; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Nocardia camponoti Liu et al. 2016, sp. Type strain: strain 1H-HV4 = CGMCC = DSM : Nocardia jiangsuensis Bai et al. 2016, sp. Type strain: strain KLBMP S0027 = CGMCC = DSM = KCTC : Nocardia rayongensis Tanasupawat et al. 2016, sp. Type strain: strain RY45-3 = JCM = PCU 334 = TISTR : Nocardia shinanonensis Matsumoto et al. 2016, sp. Type strain: strain IFM = NBRC = TBRC : Nocardia zapadnayensis Ozdemir-Kocak et al. 2016, sp. Type strain: strain FMN18 = DSM = KCTC Reference: Antonie van Leeuwenhoek, 2016, 109: ; Validation List no. 169 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Nocardioides albidus Singh et al. 2016, sp. Type strain: strain THG-S11.7 = CCTCC AB = JCM = KCTC S13

15 66: Nocardioides baekrokdamisoli Lee et al. 2016, sp. Type strain: strain B2-12 = DSM = KCTC = NRRL B : Nocardioides flavus Wang et al. 2016, sp. Type strain: strain Y4 = CGMCC = JCM = LMG = MCCC 1A : Nocardioides ginkgobilobae Xu et al. 2016, sp. Type strain: strain SYP-A7303 = DSM = JCM = KCTC : Nocardioides intraradicalis Huang et al. 2016, sp. Type strain: strain YIM DR1091 = CGMCC = JCM : Nocardioides massiliensis Dubourg et al. 2016, sp. Type strain: strain GD13 = CSUR P894 = DSM Reference: New Microbes New Infect., 2016, 10: 47-57; Validation List no. 172 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Nocardioides pakistanensis Amin et al. 2016, sp. Type strain: strain NCCP-1340 = DSM = JCM Reference: Antonie van Leeuwenhoek, 2016, 109: ; Validation List no. 172 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Nocardioides rotundus Wang et al. 2016, sp. Type strain: strain GY0594 = MCCC 1A10561 = KCTC : Nocardioides zeicaulis Kämpfer et al. 2016, sp. Type strain: strain JM-601 = CCM 8654 = CIP = DSM : Nocardiopsis akesuensis Gao et al. 2016, sp. Type strain: strain TRM = CCTCC AA = KCTC : Nocardiopsis ansamitocini Zhang et al. 2016, sp. Type strain: strain EGI = CGMCC 9969 = DSM = KCTC : Nocardiopsis mwathae Akhwale et al. 2016, sp. Type strain: strain No.156 = CECT 8552 = DSM Reference: Antonie van Leeuwenhoek, 2016, 109: ; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Nocardiopsis rhizosphaerae Zhang et al. 2016, sp. Type strain: strain EGI = CGMCC = DSM = KCTC : Nocardiopsis sediminis Muangham et al. 2016, sp. Type strain: strain 1SS5-02 = BCC = NBRC Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: Nonomuraea gerenzanensis Dalmastri et al. 2016, sp. Type strain: strain ATCC = DSM : Nonomuraea indica Quadri et al. 2016, sp. S14

16 Type strain: strain DRQ-2 = CCTCC AA = DSM = JCM = NCIM Reference: J. Antibiot., 2015, 68: ; Validation List no. 167 [Int. J. Syst. Evol. Microbiol., 2016, 66: 1-3]. Nonomuraea purpurea Suksaard et al. 2016, sp. Type strain: strain 1SM4-01 = BCC = NBRC : Nonomuraea thermotolerans Wu and Liu 2016, sp. Type strain: strain B = ATCC BAA-2629 = CGMCC : Nonomuraea zeae Shen et al. 2016, sp. Type strain: strain NEAU-ND5 = CGMCC = DSM : Ornithinicoccus halotolerans Zhang et al. 2016, sp. Type strain: strain EGI = CGMCC = JCM = KCTC : Parviterribacter kavangonensis Foesel et al. 2016, sp. Type strain: strain D16/0/H6 = DSM = LMG : Parviterribacter multiflagellatus Foesel et al. 2016, sp. Type strain: strain A22/0/F9_1 = DSM = LMG : Patulibacter brassicae Jin et al. 2016, sp. Type strain: strain SD = CICC = KCTC : Phycicoccus endophyticus Liu et al. 2016, sp. Type strain: strain IP6SC6 = CGMCC = DSM = JCM : Phycicoccus ginsengisoli Kang et al. 2016, sp. Type strain: strain DCY87 = JCM = KCTC : Phytoactinopolyspora alkaliphila Zhang et al. 2016, sp. Type strain: strain EGI = CGMCC = DSM = KCTC : Phytohabitans kaempferiae Niemhom et al. 2016, sp. Type strain: strain KK1-3 = BCC = NBRC : Phytomonospora cypria Sahin et al. 2016, sp. Type strain: strain KT1403 = DSM = KCTC Reference: Antonie van Leeuwenhoek, 2015, 108: ; Validation List no. 169 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Planomonospora corallina Suriyachadkun et al. 2016, sp. Type strain: strain A-T = BCC = NBRC = TBRC : Plantactinospora soyae Guo et al. 2016, sp. Type strain: strain NEAU-gxj3 = CGMCC = DSM : Populibacterium corticicola Li et al. 2016, sp. S15

17 Type strain: strain 2D-4 = CFCC = KCTC : Promicromonospora alba Guo et al. 2016, sp. Type strain: strain 1C-HV12 = CGMCC = DSM = JCM : Propionibacterium namnetense Aubin et al. 2016, sp. Type strain: strain NTS = CCUG = DSM : Pseudoclavibacter endophyticus Li et al. 2016, sp. Type strain: strain EGI = CGMCC = DSM = KCTC = JCM : Raineyella antarctica Pikuta et al. 2016, sp. Type strain: strain LZ-22 = ATCC TSD-18 = DSM = JCM : Rhodococcus humicola Nguyen and Kim 2016, sp. Type strain: strain UC33 = KACC = NBRC : Rhodococcus pedocola Nguyen and Kim 2016, sp. Type strain: strain UC12 = KACC = NBRC : Rothia aerolata Kämpfer et al. 2016, sp. Type strain: strain MRSA-09 = CCM 8669 = DSM = JCM = LMG : Saccharomonospora xiaoerkulensis Li et al. 2016, sp. Type strain: strain TRM = CCTCC AA = KCTC : Saccharopolyspora subtropica Wu et al. 2016, sp. Type strain: strain T3 = CGMCC = DSM : Saccharothrix isguenensis Bouznada et al. 2016, sp. Type strain: strain MB27 = CECT 9045 = DSM : Saccharothrix lopnurensis Li et al. 2016, sp. Type strain: strain YIM LPA2h = CGMCC = DSM = JCM = KCTC Reference: Antonie van Leeuwenhoek, 2015, 108: ; Validation List no. 167 [Int. J. Syst. Evol. Microbiol., 2016, 66: 1-3]. Saccharothrix stipae Lin et al. 2016, sp. Type strain: strain D34 = ACCC = JCM : Salilacibacter albus Li et al. 2016, sp. Type strain: strain J11Y309 = CGMCC = DSM = LMG : Sediminivirga luteola Zhang et al. 2016, sp. Type strain: strain F23 = CGMCC = JCM = MCCC 1A : Sinomonas halotolerans Guo et al. 2016, sp. Type strain: strain CFH S0499 = CCTCC AB = JCM = KCTC S16

18 Reference: Antonie van Leeuwenhoek, 2015, 108: ; Validation List no. 167 [Int. J. Syst. Evol. Microbiol., 2016, 66: 1-3]. Sphaerimonospora cavernae Mingma et al. 2016, sp. Type strain: strain N74 = BCC = NBRC : Stackebrandtia cavernae Zhang et al. 2016, sp. Type strain: strain YIM ART06 = CCTCC AA = DSM = KCTC : Streptomonospora tuzyakensis Tatar et al. 2016, sp. Type strain: strain BN506 = DSM = KCTC Reference: Antonie van Leeuwenhoek, 2016, 109: 35-41; Validation List no. 169 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Streptomyces actinomycinicus Tanasupawat et al. 2016, sp. Type strain: strain RCU-197 = JCM = PCU 342 = TISTR : Streptomyces adustus Lee and Wang 2016, sp. Type strain: strain WH-9 = KACC = NBRC : Streptomyces alfalfae She et al. 2016, sp. Type strain: strain XY25 = KCTC = CCTCC AA = DSM : Streptomyces andamanensis Sripreechasak et al. 2016, sp. Type strain: strain KC-112 = KCTC = NBRC = PCU 347 = TISTR : Streptomyces arcticus Zhang et al. 2016, sp. Type strain: strain ZLN234 = CCTCC AA = DSM : Streptomyces bambusae Nguyen and Kim 2016, sp. Type strain: strain T110 = KACC = KEMB = NBRC Reference: Curr. Microbiol., 2015, 71: ; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Streptomyces bryophytorum Li et al. 2016, sp. Type strain: strain NEAU-HZ10 = CGMCC = DSM Reference: Antonie van Leeuwenhoek, 2016, 109: ; Validation List no. 172 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Streptomyces camponoticapitis Li et al. 2016, sp. Type strain: strain 2H-TWYE14 = CGMCC = DSM : Streptomyces canalis Xie et al. 2016, sp. Type strain: strain TRM = CCTCC AA = DSM = KCTC Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: Streptomyces chitinivorans Ray et al. 2016, sp. Type strain: strain RC1832 = JCM = KCTC : Streptomyces daqingensis Pan et al. 2016, sp. Type strain: strain NEAU-ZJC8 = CGMCC = JCM : Streptomyces formicae Bai et al. 2016, sp. Type strain: strain 1H-GS9 = CGMCC = DSM S17

19 Reference: Antonie van Leeuwenhoek, 2016, 109: ; Validation List no. 169 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Streptomyces fractus Rohland and Meyers 2016, sp. Type strain: strain MV32 = DSM = NRRL B Reference: Antonie van Leeuwenhoek, 2015, 107: ; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Streptomyces hyaluromycini Harunari et al. 2016, sp. Type strain: strain MB-PO13 = DSM = NBRC Reference: J. Antibiot., 2016, 69: ; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Streptomyces indoligenes Luo et al. 2016, sp. Type strain: strain TRM = CCTCC AA = DSM = KCTC : Streptomyces kronopolitis Liu et al. 2016, sp. Type strain: strain NEAU-ML8 = CGMCC = DSM : Streptomyces lacrimifluminis Zhang et al. 2016, sp. Type strain: strain Z1027 = CGMCC = JCM : Streptomyces litoralis Ma et al. 2016, sp. Type strain: strain TRM = CCTCC AA = KCTC : Streptomyces lonarensis Sharma et al. 2016, sp. Type strain: strain NCL 716 = DSM = KCTC = MTCC Reference: Antonie van Leeuwenhoek, 2016, 109: ; Validation List no. 169 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Streptomyces oryzae Mingma et al. 2016, sp. Type strain: strain S16-07 = BCC = NBRC Reference: J. Antibiot., 2015, 68: ; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Streptomyces ovatisporus Veyisoglu et al. 2016, sp. Type strain: strain S4702 = CGMCC = DSM = KCTC : Streptomyces palmae Sujarit et al. 2016, sp. Type strain: strain CMU-AB204 = JCM = TBRC : Streptomyces phyllanthi Klykleung et al. 2016, sp. Type strain: strain PA1-07 = JCM = KCTC = TISTR : Streptomyces pini Madhaiyan et al. 2016, sp. Type strain: strain PL19 = ICMP = NRRL B : Streptomyces polygonati Guo et al. 2016, sp. Type strain: strain NEAU-G9 = CGMCC = DSM : Streptomyces rhizosphaerihabitans Lee and Wang 2016, sp. Type strain: Stain JR-35 = KACC = NBRC : S18

20 Streptomyces siamensis Sripreechasak et al. 2016, sp. Type strain: strain KC-038 = JCM = NBRC = PCU 328 = TISTR Reference: J. Antibiot., 2013, 66: ; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Streptomyces similanensis Sripreechasak et al. 2016, sp. Type strain: strain KC-106 = JCM = NBRC = PCU 329 = TISTR Reference: J. Antibiot., 2013, 66: ; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Streptomyces tremellae Wen et al. 2016, sp. Type strain: strain Js-1 = CCTCC M = JCM : Streptomyces verrucosisporus Phongsopitanun et al. 2016, sp. Type strain: strain CPB1-1 = CM = PCU 343 = TISTR : Streptomyces yangpuensis Tang et al. 2016, sp. Type strain: strain fd2-tb = CGMCC = DSM : Streptomyes spongiicola Huang et al. 2016, sp. Type strain: strain HNM0071 = CCTCCAA = DSM = KCTC : Streptosporangium algeriense Boubetra et al. 2016, sp. Type strain: strain 169 = CCUG = DSM = MTCC : Streptosporangium becharense Chaabane Chaouch et al. 2016, sp. Type strain: strain SG1 = CECT 8961 = DSM : Streptosporangium corydalis Fang et al. 2016, sp. Type strain: strain NEAU-Y6 = CGMCC = DSM Reference: Antonie van Leeuwenhoek, 2016, 109: ; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Streptosporangium fenghuangense Fang et al. 2016, sp. Type strain: strain NEAU-hd-3 = CGMCC = JCM Reference: Antonie van Leeuwenhoek, 2016, 109: ; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Streptosporangium jiaoheense Zhao et al. 2016, sp. Type strain: strain NEAU-Jh1-4 = CGMCC = JCM : Streptosporangium lutulentum Fang et al. 2016, sp. Type strain: strain NEAU-FHSN1 = CGMCC = DSM Reference: Antonie van Leeuwenhoek, 2016, 109: ; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Streptosporangium saharense Chaouch et al. 2016, sp. Type strain: strain SG20 = CECT 8840 = DSM : Streptosporangium shengliense Zhang et al. 2016, sp. Type strain: strain NEAU-GH7 = CGMCC = DSM Reference: Antonie van Leeuwenhoek, 2014, 105: ; Antonie van Leeuwenhoek, 2014, 105: 265 (erratum); Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66: S19

21 ]. Streptosporangium taraxaci Zhao et al. 2016, sp. Type strain: strain NEAU-Wp2-0 = CGMCC = JCM : Tenggerimyces flavus Li et al. 2016, sp. Type strain: strain S6R2A4-9 = CGMCC = DSM : Tersicoccus solisilvae Sultanpuram et al. 2016, sp. Type strain: strain 36A = CGMCC = KCTC : Tessaracoccus flavus Kumari et al. 2016, sp. Type strain: strain RP1 = DSM = KCTC = MCC : Tessaracoccus rhinocerotis Li et al. 2016, sp. Type strain: strain YIM = CCTCC AB = DSM : Timonella senegalensis Mishra et al. 2016, sp. Type strain: strain JC301 = CSUR P167 = DSM Reference: Stand. Genomic Sci. 8: ; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. Tsukamurella hongkongensis Teng et al. 2016, sp. Type strain: strain HKU52 = DSM = JCM : Tsukamurella serpentis Tang et al. 2016, sp. Type strain: strain HKU54 = DSM = JCM : Tsukamurella sinensis Teng et al. 2016, sp. Type strain: strain HKU51 = DSM = JCM : Umezawaea endophytica Chu et al. 2016, sp. Type strain: strain YIM 2047X = CPCC = DSM = JCM = KCTC Reference: Antonie van Leeuwenhoek, 2015, 108: ; Validation List no. 167 [Int. J. Syst. Evol. Microbiol., 2016, 66: 1-3]. Verrucosispora sonchi Ma et al. 2016, sp. Type strain: strain NEAU-QY3 = CGMCC = DSM : Williamsia herbipolensis Kämpfer et al. 2016, sp. Type strain: strain ARP1 = DSM = LMG : Yimella radicis Yang et al. 2016, sp. Type strain: strain py1292 = DSM = KCTC = LMG : NEW SUBSPECIES Clavibacter michiganensis subsp. capsici Oh et al. 2016, subsp. Type strain: strain PF008 = KACC = LMG : Propionibacterium acnes subsp. acnes S20

22 (Gilchrist 1900) McDowell et al. 2016, subsp. Type strain: strain ATCC 6919 = BCRC = CCUG 1794 = CECT 5684 = CGMCC = CIP = DSM 1897 = JCM 6425 = KCTC 3314 = LMG = NBRC = NCTC 737 = NRRL B-4224 = VKM Ac : Note: Propionibacterium acnes subsp. acnes (Gilchrist 1900) Dekio et al (Int. J. Syst. Evol. Microbiol., 2015, 65: ) has priority. Propionibacterium acnes subsp. defendens McDowell et al. 2016, subsp. Type strain: strain ATCC = BCRC = CCUG 6369 = JCM 6473 = KCTC : NEW COMBINATION Acidipropionibacterium acidipropionici (Orla-Jensen 1909) Scholz and Kilian 2016, comb. Basonym: Propionibacterium acidipropionici Orla-Jensen Type strain: strain ATCC = CGMCC = CIP = DSM 4900 = NBRC : Acidipropionibacterium damnosum (Lucena-Padrós et al. 2014) Scholz and Kilian 2016, comb. Basonym: Propionibacterium damnosum Lucena-Padrós et al Type strain: strain IGBL13 = CECT 8062 = DSM : Acidipropionibacterium jensenii (van Niel 1928) Scholz and Kilian 2016, comb. Basonym: Propionibacterium jensenii van Niel Type strain: strain ATCC 4868 = CCUG = CGMCC = CIP = DSM = NCIMB : Acidipropionibacterium microaerophilum (Koussémon et al. 2001) Scholz and Kilian 2016, comb. Basonym: Propionibacterium microaerophilum Koussémon et al Type strain: strain M5 = CIP = CNCM I-2360 = DSM : Acidipropionibacterium olivae (Lucena-Padrós et al. 2014) Scholz and Kilian 2016, comb. Basonym: Propionibacterium olivae Lucena-Padrós et al Type strain: strain IGBL1 = CECT 8061 = DSM : Acidipropionibacterium thoenii (van Niel 1928) Scholz and Kilian 2016, comb. Basonym: Propionibacterium thoenii van Niel Type strain: strain ATCC 4874 = CCM 1865 = CCUG = CGMCC = CIP = DSM = JCM 6437 = LMG = NCIMB : Cutibacterium acnes (Gilchrist 1900) Scholz and Kilian 2016, comb. Basonym: Propionibacterium acnes (Gilchrist 1900) Douglas and Gunter Type strain: strain ATCC 6919 = BCRC = CCUG 1794 = CECT 5684 = CGMCC = CIP = DSM 1897 = JCM 6425 = KCTC 3314 = LMG = NBRC = NCTC 737 = NRRL B-4224 = VKM Ac : Cutibacterium avidum (Eggerth 1935) Scholz and Kilian 2016, comb. Basonym: Propionibacterium avidum (Eggerth S21

23 1935) Moore and Holdeman Type strain: strain ATCC = CCUG = CIP = DSM 4901 = NBRC = NCIMB = NCTC : Cutibacterium granulosum (Prévot 1938) Scholz and Kilian 2016, comb. Basonym: Propionibacterium granulosum (Prévot 1938) Moore and Holdeman Type strain: strain ATCC = BCRC = CCUG = CIP = DSM = JCM 6498 = LMG = NBRC = NCIMB = NCTC : Glutamicibacter ardleyensis (Chen et al. 2005) Busse 2016, comb. Basonym: Arthrobacter ardleyensis Chen et al Type strain: strain An25 = CGMCC = DSM = JCM : Glutamicibacter arilaitensis (Irlinger et al. 2005) Busse 2016, comb. Basonym: Arthrobacter arilaitensis Irlinger et al Type strain: strain Re117 = CIP = DSM = JCM : Glutamicibacter bergerei (Irlinger et al. 2005) Busse 2016, comb. Basonym: Arthrobacter bergerei Irlinger et al Type strain: strain Ca106 = CCUG = CIP = DSM = JCM : Glutamicibacter creatinolyticus (Hou et al. 1998) Busse 2016, comb. Basonym: Arthrobacter creatinolyticus Hou et al Type strain: strain CCM 4673 = CIP = DSM = JCM = KCTC 9903 = LMG : Glutamicibacter mysorens (Nand and Rao 1972) Busse 2016, comb. Basonym: Arthrobacter mysorens Nand and Rao Type strain: strain ATCC = CIP = DSM = JCM = KCTC 3381 = LMG = NBRC = NCIMB : Glutamicibacter nicotianae (Giovannozzi-Sermanni 1959) Busse 2016, comb. Basonym: Arthrobacter nicotianae Giovannozzi-Sermanni Type strain: strain ATCC = BCRC = CCM 1648 = CCUG = CGMCC = CIP = DSM = JCM 1333 = KCTC 3382 = LMG = NBRC = NCIMB : Glutamicibacter protophormiae (Lysenko 1959) Busse 2016, comb. Basonym: Brevibacterium protophormiae Lysenko 1959; Arthrobacter protophormiae (Lysenko 1959) Stackebrandt et al Type strain: strain ATCC = BCRC = CCM 4749 = CGMCC = CIP = DSM = JCM 1973 = KCTC 3385 = LMG = NBRC = NCIMB = VKM Ac : Glutamicibacter soli (Roh et al. 2008) Busse 2016, comb. Basonym: Arthrobacter soli Roh et al Type strain: strain SYB2 = KCTC = DSM : Glutamicibacter uratoxydans (Stackebrandt et al. 1984) Busse 2016, comb. Basonym: Arthrobacter uratoxydans Stackebrandt et al Type strain: strain ATCC = BCRC = CGMCC = CIP = DSM = JCM = KCTC 3482 = LMG = NBRC = NCIMB = S22

24 VKM Ac : Hoyosella subflava (Wang et al. 2010) Hamada et al. 2016, comb. Basonym: Amycolicicoccus subflavus Wang et al Type strain: strain DQS3-9A1 = CGMCC = DSM = JCM = NBRC : Mycobacterium abscessus subsp. massiliense (Adékambi et al. 2006) Tortoli et al. 2016, comb. Basonym: Mycobacterium massiliense Adékambi et al Type strain: strain CCUG = CIP = DSM = KCTC = JCM : Paenarthrobacter aurescens (Phillips 1953) Busse 2016, comb. Basonym: Arthrobacter aurescens Phillips Type strain: strain ATCC = BCRC = CCM 1649 = CCUG = CCUG = CGMCC = CIP = DSM = JCM 1330 = KCTC 3378 = LMG 3815 = NBRC = NCIMB 8912 = NRRL B-2879 = VKM Ac : Paenarthrobacter histidinolovorans (Adams 1954) Busse 2016, comb. Basonym: Arthrobacter histidinolovorans Adams Type strain: strain ATCC = BCRC = CCUG = CGMCC = CIP = DSM = JCM 2520 = KCTC 3380 = LMG 3822 = NBRC = NCIMB 9541 = VKM Ac : Paenarthrobacter ilicis (Collins et al. 1982) Busse 2016, comb. Basonym: Arthrobacter ilicis Collins et al Type strain: strain ATCC = CCM 4967 = CCUG = CECT 4207 = CIP = DSM = JCM = LMG 3659 = LMG 7254 = NBRC = NCPPB 1228 = VKM Ac : Paenarthrobacter nicotinovorans (Kodama et al. 1992) Busse 2016, comb. Basonym: Arthrobacter nicotinovorans Kodama et al Type strain: strain SAM 1563 = ATCC = CGMCC = CIP = DSM 420 = JCM 3874 = KCTC 9902 = LMG = NBRC = VKM Ac : Paenarthrobacter nitroguajacolicus (Kotoučková et al. 2004) Busse 2016, comb. Basonym: Arthrobacter nitroguajacolicus Kotoučková et al Type strain: strain G2-1 = CCM 4924 = CIP = DSM = JCM : Paenarthrobacter ureafaciens (Krebs and Eggleston 1939) Busse 2016, comb. Basonym: Arthrobacter ureafaciens (Krebs and Eggleston 1939) Clark Type strain: strain ATCC 7562 = BCRC = CCM 1644 = CGMCC = CIP 67.3 = DSM = JCM 1337 = KCTC 3387 = LMG 3812 = NBRC = NCIMB 7811 = NCTC 7811 = VKM Ac : Paeniglutamicibacter antarcticus (Pindi et al. 2010) Busse 2016, comb. Basonym: Arthrobacter antarcticus Pindi et al Type strain: strain SPC26 = DSM = JCM = LMG = NCCB : Paeniglutamicibacter cryotolerans (Ganzert et al. 2011) Busse 2016, comb. Basonym: Arthrobacter cryotolerans Ganzert et al S23

25 Type strain: strain LI3 = DSM = JCM = NCCB : Paeniglutamicibacter gangotriensis (Gupta et al. 2004) Busse 2016, comb. Basonym: Arthrobacter gangotriensis Gupta et al Type strain: strain Lz1y = CIP = DSM = JCM : Paeniglutamicibacter kerguelensis (Gupta et al. 2004) Busse 2016, comb. Basonym: Arthrobacter kerguelensis Gupta et al Type strain: strain KGN15 = CIP = DSM = JCM : Paeniglutamicibacter psychrophenolicus (Margesin et al. 2004) Busse 2016, comb. Basonym: Arthrobacter psychrophenolicus Margesin et al Type strain: strain AG31 = CIP = DSM = JCM = LMG : Paeniglutamicibacter sulfureus (Stackebrandt et al. 1984) Busse 2016, comb. Basonym: Arthrobacter sulfureus Stackebrandt et al Type strain: strain ATCC = CGMCC = CIP = DSM = JCM 1338 = KCTC 3196 = LMG = NBRC = NCIMB = NRRL B : Parafrigoribacterium mesophilum (Dastager et al. 2008) Kong et al. 2016, comb. Basonym: Frigoribacterium mesophilum Dastager et al Type strain: strain MSL-08 = DSM = JCM = KCTC : Pseudarthrobacter chlorophenolicus (Westerberg et al. 2000) Busse 2016, comb. Basonym: Arthrobacter chlorophenolicus Westerberg et al Type strain: strain A6 = ATCC = CIP = DSM = JCM = KCTC 9906 = NCIMB : Pseudarthrobacter defluvii (Kim et al. 2008) Busse 2016, comb. Basonym: Arthrobacter defluvii Kim et al Type strain: strain 4C1-a = DSM = KCTC : Pseudarthrobacter equi (Yassin et al. 2011) Busse 2016, comb. Basonym: Arthrobacter equi Yassin et al Type strain: strain IMMIB L-1606 = CCUG = DSM = JCM : Pseudarthrobacter niigatensis (Ding et al. 2009) Busse 2016, comb. Basonym: Arthrobacter niigatensis Ding et al Type strain: strain LC4 = CCTCC AB = DSM = JCM : Pseudarthrobacter oxydans (Sguros 1954) Busse 2016, comb. Basonym: Arthrobacter oxydans Sguros Type strain: strain ATCC = BCRC = CCUG = CECT 386 = CGMCC = CIP = DSM = JCM 2521 = KCTC 3383 = LMG 3816 = NBRC = NCIMB 9333 = VKM Ac : Pseudarthrobacter phenanthrenivorans (Kallimanis et al. 2009) Busse 2016, comb. Basonym: Arthrobacter phenanthrenivorans Kallimanis et al Type strain: strain Sphe3 = DSM = JCM = LMG S24

26 66: Pseudarthrobacter polychromogenes (Schippers-Lammertse et al. 1963) Busse 2016, comb. Basonym: Arthrobacter polychromogenes Schippers-Lammertse et al Type strain: strain ATCC = BCRC = CCUG = CGMCC = CIP = DSM = JCM 2523 = KCTC 3384 = LMG = LMG 3821 = NBRC = NCIMB = VKM Ac : Pseudarthrobacter scleromae (Huang et al. 2005) Busse 2016, comb. Basonym: Arthrobacter scleromae Huang et al Type strain: strain YH-2001 = CGMCC = CIP = DSM = JCM : Pseudarthrobacter siccitolerans (SantaCruz-Calvo et al. 2013) Busse 2016, comb. Basonym: Arthrobacter siccitolerans SantaCruz-Calvo et al Type strain: strain 4J27 = CECT 8257 = DSM = LMG : Pseudarthrobacter sulfonivorans (Borodina et al. 2002) Busse 2016, comb. Basonym: Arthrobacter sulfonivorans Borodina et al Type strain: strain ALL = ATCC BAA-112 = DSM = JCM : Pseudoglutamicibacter albus (Wauters et al. 2000) Busse 2016, comb. Basonym: Arthrobacter albus Wauters et al Type strain: strain CF43 = ATCC BAA-273 = CCM 4905 = CCUG = CIP = DSM = JCM = KCTC : Pseudoglutamicibacter cumminsii (Funke et al. 1997) Busse 2016, comb. Basonym: Arthrobacter cumminsii Funke et al Type strain: strain DMMZ 445 = ATCC = CCM 4574 = CCUG = CIP = DSM = JCM = KCTC : Pseudopropionibacterium propionicum (Buchanan and Pine 1962) Scholz and Kilian 2016, comb. Basonym: Propionibacterium propionicum (Buchanan and Pine 1962) Charfreitag et al. 1988; Arachnia propionica (Buchanan and Pine 1962) Pine and Georg Type strain: strain ATCC = CCUG 4939 = CIP = DSM = JCM 5830 = LMG = NBRC = NCTC = VKM Ac : Sphaerimonospora mesophila (Nonomura and Ohara 1971) Mingma et al. 2016, comb. Basonym: Microbispora mesophila (Nonomura and Ohara 1971) Zhang et al. 1998; Thermomonospora mesophila Nonomura and Ohara Type strain: strain T-1 = ATCC = BCRC = CIP = DSM = JCM 3151 = KCTC 9241 = NBRC = NCIMB = NRRL B = VKM Ac : Sphaerimonospora thailandensis (Duangmal et al. 2014) Mingma et al. 2016, comb. Basonym: Microbispora thailandensis Duangmal et al Type strain: strain NN276 = BCC = NBRC = NRRL B : EMENDATION OF CLASS S25

27 Rubrobacteria Suzuki 2013 emend. Foesel et al Type order: Rubrobacterales Rainey et al : A member of the phylum Actinobacteria. Thermoleophilia Suzuki and Whitman 2013 emend. Foesel et al Type order: Thermoleophilales Reddy and Garcia-Pichel : A member of the phylum Actinobacteria. EMENDATION OF ORDER Gaiellales Albuquerque et al emend. Foesel et al Type genus: Gaiella Albuquerque et al : A member of the class Rubrobacteria. Rubrobacterales Rainey et al emend. Reddy and Garcia-Pichel 2009 emend. Zhi et al emend. Foesel et al Type genus: Rubrobacter Suzuki et al : A member of the class Rubrobacteria. Solirubrobacterales Reddy and Garcia-Pichel 2009 emend. Foesel et al Type genus: Solirubrobacter Singleton et al : A member of the class Thermoleophilia. Thermoleophilales Reddy and Garcia-Pichel 2009 emend. Foesel et al Type genus: Thermoleophilum Zarilla and Perry : A member of the class Thermoleophilia. EMENDATION OF FAMILY Conexibacteraceae Stackebrandt 2005 emend. Zhi et al emend. Foesel et al Type genus: Conexibacter Monciardini et al : A member of the order Solirubrobacterales. Gaiellaceae Albuquerque et al emend. Foesel et al Type genus: Gaiella Albuquerque et al : A member of the order Gaiellales. Patulibacteraceae Takahashi et al emend. Zhi et al emend. Foesel et al Type genus: Patulibacter Takahashi et al : A member of the order Solirubrobacterales. Rubrobacteraceae Rainey et al emend. Stackebrandt 2004 emend. Zhi et al emend. Foesel et al Type genus: Rubrobacter Suzuki et al : A member of the order Rubrobacterales. Solirubrobacteraceae Stackebrandt 2005 emend. Zhi et al emend. Foesel et al Type genus: Solirubrobacter Singleton et al : A member of the order Solirubrobacterales. Thermoleophilaceae Stackebrandt 2005 emend. Zhi et al emend. Foesel et al Type genus: Thermoleophilum Zarilla and Perry : A member of the order Thermoleophilales. S26

28 EMENDATION OF GENUS Actinomadura Lechevalier and Lechevalier 1968 emend. Zhao et al Type species: Actinomadura madurae (Vincent 1894) Lechevalier and Lechevalier Reference: Antonie van Leeuwenhoek, 2015, 108: ; List of changes in taxonomic opinion no. 24 [Int. J. Syst. Evol. Microbiol., 2016, 66: ]. A member of the family Thermomonosporaceae. Arthrobacter Conn and Dimmick 1947 emend. Koch et al emend. Busse 2016 Type species: Arthrobacter globiformis (Conn 1928) Conn and Dimmick : A member of the family Micrococcaceae. Blastococcus Ahrens and Moll 1970 emend. Urzì et al emend. Lee 2006 emend. Hezbri et al Type species: Blastococcus aggregatus Ahrens and Moll : A member of the family Geodermatophilaceae. Demequina Yi et al emend. Ue et al emend. Park et al Type species: Demequina aestuarii Yi et al : A member of the family Demequinaceae. Flexivirga Anzai et al emend. Kang et al Type species: Flexivirga alba Anzai et al : A member of the family Dermacoccaceae. Hamadaea Ara et al emend. Chu et al Type species: Hamadaea tsunoensis (Asano et al. 1989) Ara et al : A member of the family Micromonosporaceae. Hoyosella Jurado et al emend. Hamada et al Type species: Hoyosella altamirensis Jurado et al : A member of the family Mycobacteriaceae. Hoyosella Jurado et al emend. Li et al Type species: Hoyosella altamirensis Jurado et al : A member of the family Mycobacteriaceae. Microbacterium Orla-Jensen 1919 emend. Takeuchi and Hatano 1998 emend. Krishnamurthi et al emend. Alves et al emend. Fidalgo et al Type species: Microbacterium lacticum Orla-Jensen : A member of the family Microbacteriaceae. Ornithinicoccus Groth et al emend. Zhang et al Type species: Ornithinicoccus hortensis Groth et al : A member of the family Intrasporangiaceae. Propionibacterium Orla-Jensen 1909 emend. Charfreitag et al emend. Scholz and Kilian 2016 Type species: Propionibacterium freudenreichii van Niel : A member of the family Propionibacteriaceae. Salininema Nikou et al emend. Li et al Type species: Salininema proteolyticum Nikou et al : S27

29 A member of the family Glycomycetaceae. Tenggerimyces Sun et al emend. Li et al Type species: Tenggerimyces mesophilus Sun et al : A member of the family Nocardioidaceae. EMENDATION OF SPECIES Arthrobacter roseus Reddy et al emend. Busse 2016 Type strain: strain CMS 90r = CIP = DSM = JCM = MTCC 3712 = NCIMB : Blastococcus aggregatus Ahrens and Moll 1970 emend. Urzì et al emend. Hezbri et al Type strain: strain ATCC = DSM 4725 = JCM = NBRC = NCIMB : Blastococcus endophyticus Zhu et al emend. Hezbri et al Type strain: strain YIM = CCTCC AA = DSM = JCM = KCTC : Blastococcus jejuensis Lee 2006 emend. Hezbri et al Type strain: strain KST3-10 = DSM = JCM = KCCM = NRRL B : Blastococcus saxobsidens Urzì et al emend. Hezbri et al Type strain: strain BC444 = DSM = JCM = NRRL B : Corynebacterium mastitidis Fernandez-Garayzabal et al emend. Bernard et al Type strain: strain S-8 = CCUG = CECT 4843 = CIP = DSM = LMG = NBRC : Frankia alni (Woronin 1866) Von Tubeuf 1895 emend. Nouioui et al Type strain: strain ACN14a = CECT 9034 = DSM : Hoyosella altamirensis Jurado et al emend. Hamada et al Type strain: strain OFN S31 = CIP = DSM = JCM = NBRC : Mycobacterium abscessus (Moore and Frerichs 1953) Kusunoki and Ezaki 1992 emend. Leao et al emend. Tortoli et al Type strain: strain ATCC = CCUG = CCUG = CIP = DSM = JCM = NCTC = TMC : Salininema proteolyticum Nikou et al emend. Li et al Type strain: strain Miq-4 = IBRC-M = LMG : EMENDATION OF SUBSPECIES S28

30 Mycobacterium abscessus subsp. abscessus (Moore and Frerichs 1953) Leao et al emend. Tortoli et al Type strain: strain ATCC = CCUG = CCUG = CIP = DSM = JCM = NCTC = TMC : Mycobacterium abscessus subsp. bolletii (Adékambi et al. 2006) Leao et al emend. Tortoli et al Type strain: strain BD = CCUG = CIP = DSM = JCM : SYNONYM Brevibacterium massiliense Roux and Raoult 2009 pro synon. Brevibacterium ravenspurgense Mages et al : Oceanitalea nanhaiensis Fu et al pro synon. Georgenia satyanarayanai Srinivas et al : Paraglycomyces xinjiangensis Luo et al pro synon. Salininema proteolyticum Nikou et al : NEOTYPE STRAIN Actinobaculum massiliense Greub and Raoult 2006 Neotype strain: strain FC3 = CSUR P1982 = DSM : S29

31 Hamada award 2016 Exploiting the potential of biosynthesis of natural products by actinomycetes: bacterial interaction-driven natural product discovery and biosynthetic machinery Shumpei Asamizu Graduate School of Agricultural and Life Sciences, The University of Tokyo Yayoi, Bunkyo, Tokyo , Japan Actinomycetes are a major source of natural bioactive products with important chemical and biological properties. Recent genome analysis has revealed the previously unrecognized huge potential of biosynthesis of natural products by actinomycetes. It is now generally accepted that more microbial chemical and biosynthetic diversities remain undiscovered. Increased knowledge of microbial production of bioactive compounds would increase the repertoire of useful agents. Moreover, bioengineering involving genes and enzymes would generate new useful compounds. However, this potential remains challenging. Methods have been developed to activate biosynthetic gene clusters that are normally silent or poorly expressed under laboratory conditions. Section I highlights research aimed at the discovery of novel compounds by using co-culture, especially the interaction between intergeneric actinobacteria. Additionally, we discuss the importance of understanding the natural enzymatic assembly of complex small molecules in order to exploit new resources for biocatalysis, genes, and chemistry, which can lead to the creation of new antibiotics. This knowledge could enable the rational design of metabolic pathways to produce artificial natural products in engineered bacteria. Section II details current research on the biosynthetic mechanisms of C 7N aminocyclitol natural products having a unique chemical structure and important biological activities. Section I Bacterial interaction-driven natural product discovery Actinomycetes are an important source of natural products with significant chemical and biological properties. Bioactive natural products isolated from actinomycetes have been used widely and include antibacterial, antifungal, and antiparasitic agents for treatment of infectious diseases; insecticides and herbicides for agricultural purposes; and anticancer and immunosuppressive drugs for clinical chemotherapy (Demain and Sanchez, 2009). However, the discovery rate of new antibiotics has been declining in recent decades, despite these successes and the more contemporary emerging/rising threats to human health that include global expansion of multi-drug resistance bacteria (Martens and Demain, 2017) and neglected tropical diseases in developing countries (Buscaglia et al., 2015). New strategies and technologies are becoming indispensable for the effective discovery and/or generation of novel bioactive compounds (Katz and Baltz, 2016). After the publication of genome sequences for the model actinomycetes Streptomyces coelicolor A3(2) (Bentley et al., 2002) and the avermectin-producer S. avermitilis MA-4680 (Ikeda et al., 2003) in the early 2000s, we quickly recognized that actinomycetes possess more potential to produce secondary metabolites than previously thought (Nett et al., 2009). The database maintained by the National Center for Biotechnology Information (NCBI) now contains several hundred actinomycete genome sequences (including draft genome sequences). Scrutiny of these sequences using bioinformatics tools like antismash and PRISM has readily revealed putative secondary metabolite gene clusters (Blin et al., 2017; Skinnider et al., 2017). Twenty to forty putative secondary metabolite biosynthetic gene clusters have been identified in the genomes of individual strains. Most remain uncharacterized. The accepted view is that their remains vast chemical and biosynthetic diversities in the microbial world. Understanding and exploiting the uncharacterized microbial chemistry would drive the discovery of new chemical agents to control bioactivity. Furthermore, the use of bioengineering tools including those directed at genes and enzymes would allow the creation of new useful compounds (Katz and Baltz, 2016). However, these goals remain challenged by the difficulty activating the relevant gene clusters and identifying their products. Methodologies to activate biosynthetic gene clusters that are silent or poorly expressed in laboratory conditions have been developed (Ochi, 2017). This review will focus on research that aims to achieve effective discovery of novel compounds by using a co-culture strategy, especially using an interaction of intergeneric actinobacteria involving Streptomyces species and mycolic acid-containing bacteria. Bacterial co-culture as a means of discovering natural products S30

32 Isolated actinomycetes are traditionally cultured alone as a mono-culture to search for new natural products. However, the natural environment where actinobacteria live involve complex interactions at the intra- and inter-species, -genetic, and - kingdom levels (van der Meij et al., 2017). Yet, little is known about how the specialized metabolites encoded by cryptic gene clusters is used for the actinomycete life cycle in the complex, real-world environment (Traxler and Kolter, 2015). Discovery of useful bioactive natural products based on mono-culture has been successful, although this strategy is laborious. With the increasing evidence that bacterial interaction can drive the activation of previously quiescent secondary metabolite gene clusters (Bertrand et al., 2014), development and understanding of the induction of specialized metabolites during co-culture has become recognized as a research priority. Interaction between Streptomyces lividans and mycolic acid-containing bacteria Using the pigment production by Streptomyces lividans TK23 as indication of specialized metabolites activation, Onaka et al. (2011) discovered Tsukamurella pulmonis TP-B0596 from a laboratory bacterial culture collection. T. pulmonis phylogenetically belongs to the order Actinomycetales, the same order as Streptomyces species. T. pulmonis phylogenetically diverges to the suborder Corynebacterineae. Most species in this suborder possess specific long chain fatty acids, mycolic acids, on the cell outer membrane (Jackson, 2014). Examination of the interaction between S. lividans and T. pulmonis in a dual culture agar plate experiment revealed a response by S. lividans featuring production of the red pigmented compound undecylprodigiosin upon contact with T. pulmonis colonies (Asamizu et al., 2015; Onaka et al., 2011). (Fig. 1) The production of the red pigment required the physical contact between the strains, since when the strains were physically separated during liquid culture using a dialysis membrane, the red pigment was not produced (Onaka et al., 2011). The mycolic acids on the T. pulmonis outer membrane was implicated, given the similar effects on production of pigments in liquid culture by Corynebacterineae, which also possess mycolic acids (Onaka et al., 2011). To test the idea that contact with the mycolic acid-containing cell membrane was necessary to induce production of undecylprodigiosin, dead cells of T. pulmonis, which were intact and still contained mycolic acids, were prepared by formaldehyde fixation and gamma-irradiation (Asamizu et al., 2015). The dead cells did not induce the pigment formation by S. lividans, suggesting the involvement of another factor (Asamizu et al., 2015). (Fig. 1) When co-cultures of S. lividans and T. pulmonis or Rhodococcus opacus B4 were closely observed by scanning electron microscopy, co-aggregation was evident (Asamizu et al., 2015). (Fig. 1) The presence of an intimate relationship between microbes to alter the specialized pattern of metabolites has been described in the co-culture of the fungi Aspergillus nidulans or A. fumigatus with Streptomyces rapamycinicus (Netzker et al., 2015). Although contact-mediated interaction in microbes has not been well characterized yet (Stubbendieck and Straight, 2016; Westhoff et al., 2017), close distance recognition may well be beneficial in ecosystems such as soil. Physicochemical-based discovery of specialized metabolites from combined-culture Comparison of high performance liquid chromatography (HPLC) patterns between culture extracts from mono-cultures and combined-cultures has shown that T. pulmonis can markedly change its production of secondary metabolites. Examination of 112 strains of actinomycetes isolated from soil samples collected in the Hokuriku district of Japan revealed new metabolite peaks in 41 strains, with increased production of metabolites in 61 strains. In total, 99 strains showed variation in the HPLC traces (Onaka et al., 2011). The same study documented that some of the soil-isolated actinomycetes showed the induced antibiotic activity in combined-culture. Among them, the antibiotic alchivemycin A was isolated from a co-culture of Streptomyces sp. S522 (NBRC109436) and T. pulmonis (Igarashi et al., 2010; Onaka et al., 2011). (Fig. 2) Figure 1. Interaction between S. lividans TK23 and T. pulmonis TP-B0596 or R. opacus B4. Growing colony of T. pulmonis or R. opacus induced production of red pigments by S. lividans upon contact (A). R. opacus was observed to adhere on the mycelium of S. lividans during the liquid culture (B). S31

33 More recently, HPLC trace comparison-based screening of the new compounds from combined-cultures enabled the identification of new metabolites using Streptomyces species isolated from soil or obtained from culture collection that were co-cultured with T. pulmonis TP-B0596. These include indolocarbazole arcyriaflavin E production by S. cinnamoneus NBRC13823 (Hoshino et al., 2015c), cytotoxic butanolides chojalactone A C from Streptomyces sp. CJ-5 (Hoshino et al., 2015b), and macrolactams niizalactam A C from Streptomyces sp. NZ-6 (Hoshino et al., 2015a). (Fig. 2) Similar co-culturing methods were reported by Bachmann and co-workers, in which comparative metabolomics enabled visualization of differentially expressed metabolites produced by S. coelicolor A3(2) with several known secondary metabolites inducing factors, such as rare earth elements, streptomycin/rifampicin resistance, and co-cultures (Goodwin et al., 2015). Subtraction of a self-organizing heat map revealed differentially expressed metabolites; using several co-culture challengers, the authors found the mycolic acid-containing bacterial strain, Rhodococcus wratislaviensis, induced Nocardiopsis sp. FU40 ΔapoS strain to produce cytotoxic ciromicin A and B (Derewacz et al., 2015). (Fig. 2) Traxler et al. (2013) used imaging mass spectrometry to visualize the secreted metabolome of S. coelicolor A3(2) and Amycolatopsis sp. AA4. They found that in consequence of amychelin production by Amycolatopsis sp. AA4, S. coelicolor A3(2) react to produce several new acyl-desferrioxamines, which are different from regular siderophores found to produce by S. coelicolor A3(2). The study highlight competition of bacteria using siderophores for Fe uptake (Traxler et al., 2013). (Fig. 2) Figure 2. Structure of induced specialized metabolites found in combined-culture, and other co-culture between intergeneric actinobacteria. Undecylprodigiosins and actinorhodins from S. lividans and T. pulmonis, alchivemycin A from Streptomyces sp. S522 and T. pulmonis, 5aTHQs and streptoaminals from Streptomyces sp. HEK616 and T. pulmonis, arcyliaflavin E from S. cinnamoneus NRBC13823 and T. pulmonis, Cyojalactone A-C from Streptomyces sp. CJ-5 and T. pulmonis, Niizalactame A-C from Streptomyces sp. NZ-6 and T. pulmonis, Ciromicin A and B from Nocardiopsis sp. FU40ΔapoS and R. wratislaviensis (study by Derewacz DK, et al. 2015), acyl-desferrioxamines from S. coelicolor A3(2) and Amycolatopsis sp. AA4 (study by Traxler MF, et al. 2013) S32

34 Combined-culture with S. lividans harboring exogenous gene cluster As production of several endogenous secondary metabolites from S. lividans TK23 (RED and ACT) were effectively induced by T. pulmonis, effects for production of exogenous gene cluster coding metabolites were examined (Onaka et al., 2015). Interestingly, when S. lividans mutant strains harboring exogenous gene clusters were cultured with T. pulmonis, production of the exogenous secondary metabolites goadsporin (Onaka et al., 2001), staurosporine (Onaka et al., 2002), and rebeccamycin (Onaka et al., 2003) were significantly increased in mixed cultures compared to monoculture (Onaka et al., 2015). The method was applied for gene disruptants; significantly improved accumulation of goadsporin C (a glutamylated-ser4 variant of goadsporin B) was observed (Ozaki et al., 2016). This improved production of shunt intermediates contributed to the elucidation of important biosynthetic steps in the thiopeptide family of ribosomally synthesized peptide natural products (Ozaki et al., 2016). Bioactivity-guided discovery of natural products from combined-cultures Sugiyama et al. (2015) searched for the yeast membrane interacting small molecules from combined-culture induced bacterial metabolites. The extracts from combined-cultures of actinomycetes isolated from Hegura Island, Ishikawa, Japan, and T. pulmonis were tested against wild-type fission yeast and ergosterol premature mutants. This bioactivity-guided screening successfully led to the isolation of eight 5-alkyl- 1,2,3,4-tetrahydroquinolines (5aTHQs) with diversity in the alkyl side chains (Sugiyama et al., 2015). (Fig. 2) 5aTHQ-7n was shown to be the most potent antifungal agent of the eight congeners. Moreover, 5aTHQ-9i showed selective antifungal activity to the wild-type, but not against ergosterol premature mutants (Sugiyama et al., 2015). The results suggested that 5aTHQs bioactivity may involve targeting of the yeast cell membrane. Sugiyama et al. (2016) also isolated broad-spectrum antibiotic streptoaminals from the combined-culture extracts containing a similar alkyl chain pattern to that of 5aTHQs (Sugiyama et al., 2016). (Fig. 2) Production of streptoaminals was enhanced by combined-culture. The structural similarity between 5aTHQs and streptoaminals implies that both compounds share their biosynthetic routes. Interestingly, 5aTHQs were only detected in the combined-culture of Streptomyces sp. HEK616 and T. pulmonis. However, 5aTHQs did not show antibacterial activities. Further biosynthesis studies may provide insight into the molecular mechanism of the specific production of 5aTHQs by Streptomyces sp. HEK616 during co-culture with T. pulmonis. Future perspectives We have observed a variety of specialized metabolites induced during co-culture. However, the link between the induced small molecules and the function within the co-cultured bacteria remains unclear. One bacterium can cause significant changes in the culture (living) environment during the growth process, which can incidentally trigger the production of irrelative compounds. Interestingly, some of the induced compounds have antibiotic activity, which could reflect the competition for survival between the two bacteria. However, knowledge is limited and more studies are needed to address a number of questions. What are the stimuli? How do bacteria sense the stimuli? How do the stimuli lead to the production of specialized metabolites? Are the interactions observed in laboratory co-culture relevant to real-world ecosystems? Section II: C 7 N aminocyclitol natural products The C 7N aminocyclitol family of natural products has clinically important biological activities; therefore, C 7N aminocyclitol natural products and their derivatives have been used in agricultural and pharmaceutical fields (Mahmud, 2003). The antifungal agent validamycin A (Iwasa et al., 1970) and α- glucosidase inhibitor acarbose (Schmidt et al., 1977) are prominent examples of C 7N aminocyclitols, and these bacterial secondary metabolites are associated with pseudooligosaccharides (or simply pseudosugars), which function as sugar hydrolase inhibitors (Gloster and Davies, 2010; Mahmud, 2003). One unique structural feature in this family is their C 7N carbasugar scaffold, primarily valienamine moieties. In addition to validamycin A and acarbose, typical compounds that contain valienamine moieties also include the trehalase inhibitor salbostatin (Vertesy et al., 1994), α-amylase inhibitor trestatins (Yokose et al., 1983), and antibiotic pyralomicin (Kawamura et al., 1995) (Fig. 3). Along with the recent discovery of novel cyclitol natural products and an understanding of their origins, biosynthesis, biological activities, and ecological functions, the structurally more diverse family of C 7N aminocyclitols, which includes the cytotoxic carbasugar cetoniacytone A (Schlorke et al., 2002), antibiotic epoxyquinomicin (Tsuchida et al., 1996), and kirkamide (Pinto-Carbo et al., 2016; Sieber et al., 2015), has been identified. Mycosporine-like amino acids (e.g., shinorine) are natural sunscreen compounds that have the same precursor and share homologous biosynthetic enzymes in the initial step (Asamizu et al., 2012; Balskus and Walsh, 2010; Mahmud, 2003; Miyamoto et al., 2014; Wu et al., 2007) (Fig. 3). In this review, we discuss the recently investigated biosynthetic steps of C 7N aminocyclitol natural products. In particular, we discuss the pseudoglycosyltranferase-catalyzed C-N bond formation process during validamycin A biosynthesis and the catalytic divergence of sugar phosphate cyclases leading to the generation of various C 7N cyclitol natural products. Biosynthesis of the antifungal trehalase inhibitor validamycin A Validamycin A was originally isolated from Streptomyces hygroscopicus subsp. limoneus by a group from Takeda Pharmaceutical Co. in the early 1970s (Iwasa et al., 1970). The compound inhibits the growth of the fungus Rhizoctonia solani, which causes sheath blight disease in rice (Iwasa et al., 1970) by inhibiting the activity of trehalase (Asano et al., 1987). Therefore, the antifungal agent validamycin A has been used as a crop protectant in East/Southeast Asia. Later, the α- glucosidase inhibitor voglibose (Fig. 3) was synthesized from validamycin A and used to treat type-ii insulin-independent diabetes. S33

35 Figure 3. Structure of C 7N aminocyclitol natural products. The biosynthetic gene cluster for validamycin A was first cloned from Streptomyces hygroscopicus subsp. jingangensis 5008 (val cluster) (Yu et al., 2005). The first step in the secondary metabolism of validamycin is catalyzed by 2-epi-5- epi-valiolone synthase (EEVS), which converts D- sedoheptulose 7-phosphate (SH7P), a pentose phosphate pathway intermediate, to 2-epi-5-epi-valiolone (EEV; Fig. 4A). The first EEVS (AcbC) was found and characterized in the acarbose biosynthetic pathway from Actinoplanes sp. SE 50/110 by precursor feeding studies (Mahmud et al., 1999) and biochemical studies (Stratmann et al., 1999). Later, ValA was found to be EEVS in the validamycin A biosynthetic pathway (Yu et al., 2005). Interestingly, the biosynthesis of C 7N aminocyclitols was suggested to diverge into several assembly lines, including those for validamycin A, acarbose (Rockser and Wehmeier, 2009), salbostatin (Choi et al., 2008), pyralomicin 1a (Flatt et al., 2013), and cetoniacytone A (Wu et al., 2009), after the formation of EEV. In this review, the validamycin A biosynthetic pathway will be described in detail. A summary of the biosynthetic pathways for other cyclitols can be found in previous reviews (Flatt and Mahmud, 2007; Mahmud, 2009). The second step in validamycin A biosynthesis, epimerization of EEV to generate 5-epi-valiolone, was found to be catalyzed by cyclitol epimerase ValD in vitro (Xu et al., 2009b) (Fig. 4A). Next, dehydration of 5-epi-valiolone to produce valienone is thought to be catalyzed by ValK, a putative dehydratase (Cui et al., 2016). Then, ATP-dependent phosphorylation of valienone to produce valienone 7-phosphate is catalyzed by cyclitol kinase ValC in vitro (Minagawa et al., 2007). After the formation of valienone 7-phosphate, the pathway was predicted to branch into two pathways to generate two different C 7 cyclitol units, GDP-valienol and validamine 7- phosphate. To produce GDP-valienol, the first ketoreduction of valienone 7-phosphate yields valienol 7-phosphate through the function of ValN, a putative bifunctional oxidoreductase (Fig. 4A). Next, phosphomutation of valienol 7-phosphate to give valienol 1-phosphate is thought to occur through the activity of ValO, a putative bifunctional phosphomutase/phosphatase. Then, using valienol 1-phosphate and GTP, the nucleotidylation reaction produces GDP-valienol through catalysis by ValB in vitro (Yang et al., 2011). To produce validamine 7-phosphate, transamination of valienone 7-phosphate yields valienamine 7-phosphate through the activity of ValM, a putative pyridoxal 5 -phosphate (PLP)- dependent aminotransferase (Fig. 4A). Then, reduction of valienamine 7-phosphate to give validamine 7-phosphate occurs through catalysis by ValN (Xu et al., 2009a). The coupling reaction of the two cyclitol units (GDP-valienol and validamine 7-phosphate) will be described in the next section. After formation of validoxylamine A, ValG catalyzes the O- glucosyltransferase reaction to produce the final product validamycin A (Bai et al., 2006; Xu et al., 2008). Several oxygenated validamycin derivatives have also been isolated from cultures of validamycin A-producing Streptomyces species (Mahmud, 2003). VldW, an α- ketoglutarate and Fe(II) dependent dioxygenase from Streptomyces hygroscopicus var. linoneus (vld cluster) (Singh et al., 2006), was characterized and found to catalyze the production of validamycin B from validamycin A by the regio- /stereo-selective oxygenation of the methylene carbon (Almabruk et al., 2012) (Fig. 4A). Nonglycosidic C-N bond formation in validamycin A biosynthesis is catalyzed by pseudoglycosyltransferase S34

36 Figure 4. Proposed biosynthetic pathway of validamycin A from Streptomyces hygroscopicus (A), and proposed reaction mechanism of pseudoglycosyltransferase, VldE (B). ValL/VldE shares 29% identity (41% similarity) with trehalose 6-phosphate synthase (OtsA) from Streptomyces coelicolor A3(2). OtsA is a retaining-type glycosyltransferase that synthesizes trehalose 6-phosphate with an α,α-1,1 - glycosidic bond using nucleotide diphosphate (NDP)-glucose and glucose 6-phosphate, and OtsB dephosphorylates trehalose 6-phosphate to give trehalose (Giaever et al., 1988). Yang et al. showed that ValB catalyzes the formation of GDP-valienol from valienol 1-phosphate and GTP (Yang et al., 2011). Hence, researchers hypothesized that validoxylamine A 7 -phosphate (mimic of trehalose 6-phosphate) may be produced by the coupling of GDP-valienol (mimic of NDP-glucose) and validamine 7-phosphate (mimic of glucose 6-phosphate; Fig. 4A). However, for the retaining-type glycosyltransferase reaction, such as in OtsA, an internal return (S Ni)-like reaction mechanism in which the donor sugar molecule is in the oxocarbenium transition state, may exist during the reaction (Errey et al., 2010; Lee et al., 2011). Since the cyclitol molecules (valienol moiety) cannot form the oxocarbenium transition state, it remains uncertain whether this prediction is true. VldB (cyclitol nucleotidyltransferase) (Yang et al., 2011), VldE (trehalose 6-phosphate synthase homolog), and VldH (putative phosphatase) from Streptomyces hygroscopicus subsp. limoneus were expressed in Escherichia coli and purified as recombinant proteins to test the hypothesis (Asamizu et al., 2011). First, VldB was confirmed to be a nucleotidyltransferase that gave GDP-valienol from valienol 1-phosphate and GTP (Asamizu et al., 2011) (Fig 4A). Next, to examine the catalytic activity of VldE, the enzyme was incubated with the possible substrates validamine 7-phosphate and GDP-valienol. Highperformance liquid chromatography (HPLC) and mass spectrometry (MS) analyses showed that VldE catalyzed the formation of validoxylamine 7 -phosphate with net retention of an anomeric-like configuration by accepting GDP-valienol and validamine 7-phosphate as substrates (Asamizu et al., 2011) (Fig. 4B). Interestingly, VldE did not accept GDP-glucose and glucose 6-phosphate as substrates to produce trehalose 6- S35

37 Figure 5. Catalytic divergence in sugar phosphate cyclase family enzymes. SH7P cyclases (EEVS, EVS, and DDGS) involved in biosynthesis of C 7N aminocyclitol natural products share homologies with DHQS, adhqs, and DOIS. These enzymes represent the family of sugar phosphate cyclase involved in primary and secondary metabolism. (Abbreviation: DAHP; 3-Deoxy-D-arabinoheptulosonate 7-phosphate, DHQ; 3- dehydroquinic acid, aminodahp; 3,4-dideoxy-4-amino-D-arabinoheptulosonate 7-phosphate, 3,5-AHBA; 3-amino-5-hydroxybenzoic acid, SH7P; D-sedoheptulose 7-phosphate, EEV; 2-epi-5-epi-valiolone, 2EV; 2-epi-valiolone, DDG; desmethyl-4-deoxygadusol, MAA; mycosporinelike amino acid, G6P; glucose 6-phosphate, DOI; 2-deoxy-scyllo-inosose.) phosphate. This indicated the narrow substrate tolerance of the dedicated VldE enzyme in validamycin A biosynthesis (Abuelizz and Mahmud, 2015; Asamizu et al., 2011). Upon the addition of VldH, formation of validoxylamine A by consumption of validoxylamine A 7 -phosphate was observed by HPLC and MS analysis (Asamizu et al., 2011). These biochemical investigations could clearly demonstrate the interesting enzymatic conversion steps in validamycin A biosynthesis (Asamizu et al., 2011). To investigate the reaction mechanism through which VldE catalyzes the coupling of the nonsugar donor molecule (GDP-valienol) and the acceptor molecule (validamine 7- phosphate) with the retention of stereochemistry, a series of VldE crystal structures cocrystallizing with different ligands were solved (Cavalier et al., 2012). The overall X-ray crystal structure of VldE showed a typical GT-B fold with two β/α/β Rossmann-like folding domains (Lairson et al., 2008). The products of VldE, i.e., GDP and validoxylamine A 7 -phosphate, were found to bind in the cleft formed by the two domains, indicating the position of the active center. Interestingly, the cocrystallized structure of VldE with GDP and validoxylamine A 7 -phosphate showed a ligand-binding conformation that was similar to the cocrystallized X-ray structure of glycosyltransferase OtsA from E. coli with UDP and the mechanistic inhibitor validoxylamine 7 -phosphate (Cavalier et al., 2012; Errey et al., 2010; Lee et al., 2011). These structural comparisons indicated that OtsA, the true retaining-type glycosyltransferase OtsA, and the pseudoglycosyltransferase VldE exhibited similar reaction mechanisms. Thus, analogous to the proposed reaction mechanism for the retaining-type glycosyltransferase OtsA (Lee et al., 2011), hydrogen bonding interactions among the donor phosphate group and acceptor nucleophile were proposed to enable front side attack to promote the substitution reaction while retaining its configuration, and the double bond π-electron of the donor nonsugar was predicted to mimic the transition state in the PsGT reaction (Asamizu et al., 2011; Cavalier et al., 2012) (Fig. 4B). Based on biochemical and structural studies, Abuelizz and Mahmud produced domain-swapped chimeric proteins between VldE and OtsA from Streptomyces coelicolor A3(2) and examined the catalytic activity of the chimeras to elucidate their substrate tolerances (Abuelizz and Mahmud, 2015). By swapping the substrates, they showed the potential for S36

38 biocatalysis of engineered proteins and demonstrated the importance of the amine group as a better nucleophile to promote the coupling reaction (Abuelizz and Mahmud, 2015). Further characterization of other PsGT candidates found in acarbose, salbostatin, pyralomicins, and many other compounds in genome databases will expand our knowledge of the unique PsGT-catalyzed reaction. Since true glycosyltransferase enzymes are ubiquitous in both primary and secondary metabolism (Elshahawi et al., 2015), protein engineering of a glycosyltransferase to be a PsGT catalyst would allow the creation of useful tools to generate novel pseudoglycosylated conjugants. A divergent pathway for production of C 7N cyclitols from sedoheptulose 7-phosphate During genome mining to search for structurally novel aminocyclitol natural products, PsGT-containing gene clusters with 3-dehydroquinate synthase (DHQS) homolog genes were unexpectedly found in the genomes of several bacteria (Asamizu et al., 2012). Previously characterized gene clusters for C 7N aminocyclitol natural products were found to all contain EEVS genes (Bai et al., 2006; Choi et al., 2008; Flatt and Mahmud, 2007; Stratmann et al., 1999; Wu et al., 2007; Wu et al., 2009; Yu et al., 2005). Although EEVS genes share homology with 3-dehydroquinate synthase (Stratmann et al., 1999; Wu et al., 2007), the identified putative proteins (e.g., Amir_2000 from the actinomycete Actinosynnema mirum and Staur_3140 from the myxobacteria Stigmatella aurantiaca DW4/3-1) showed more similarity in their fingerprint amino acid residues to DHQS than to EEVS (Kean et al., 2014; Wu et al., 2007) and existed in different phylogenetic clades from known EEVSs (Asamizu et al., 2012; Osborn et al., 2015). To characterize the catalytic function of the genes, Amir_2000 and Staur_3140 were examined for enzymatic activities using purified recombinant proteins expressed in E. coli. First, as annotated in the NCBI database, the proteins were tested for their DHQS activity by incubating them with 3- deoxy-d-arabinoheptulosonate 7-phosphate (DAHP), a substrate of DHQS in the shikimate pathway; however, no consumption of DAHP was observed (Asamizu et al., 2012). Then, SH7P was tested as a substrate and incubated with the proteins. Consumption of SH7P was observed; however, surprisingly, the converted products showed different chemical properties from EEV, the most likely product to be generated (Asamizu et al., 2012). Comparative analysis with synthetic C 7 cyclitols which exhibited different stereochemistries, by gas chromatography (GC)/MS and in situ nuclear magnetic resonance (NMR) revealed that the true product was 2-epivaliolone (2EV), a diastereomer of EEV (Asamizu et al., 2012) (Fig. 5). Interestingly, in situ NMR gave a two sets of 1 H NMR signals for the products, which were confirmed by a quantum mechanics/molecular mechanics (QM/MM) study to be derived from two stable conformations of 2EV (Asamizu et al., 2012). To further elucidate the metabolite(s) of the gene cluster that encodes the 2EV synthase (EVS) gene (amir_2000) and the PsGT homolog gene (amir_1997), both genes in A. mirum were disrupted individually, and the metabolites from culture of the wild-type gene, amir_1997 disruptant, and amir_2000 disruptant were analyzed by comparative metabolomics using liquid chromatography-high-resolution MS (LC-HRMS) (Asamizu et al., 2013). The identified specific metabolite with m/z 314 was purified, and the chemical structure was determined to be validoxylamine A (Asamizu et al., 2013) (Fig. 4A). Thus, there are pathways with different steric courses in the assembly pathway for C 7N aminocyclitol natural products. Other sugar phosphate cyclase (SPC) members are also involved in the biosynthesis of mycosporine-like amino acids by several cyanobacteria (Wu et al., 2007). Balskus and Walsh identified a biosynthetic gene cluster for the mycosporine-like amino acid shinorine in cyanobacteria (Balskus and Walsh, 2010) (Fig. 5). They demonstrated the enzyme activities of Ava_3858 (desmethyl-4-deoxygadusol synthase [DDGS]) and Ava_3857 (S-adenosylmethionine [SAM]-dependent methyltransferase) from the cyanobacteria Anabaena variabilis ATCC 29413, which generated 4-deoxygadusol from SH7P (Balskus and Walsh, 2010) (Fig. 5). DDGS and EEVS share homology with each other (Wu et al., 2007); therefore, researchers tested whether there was a common intermediate during the DDGS reaction, in which additional dehydration was involved. The reaction of Ava_3858 and Npun_5600 (DDGSs from the cyanobacteria Nostoc punctiforme PCC 73102) (Balskus and Walsh, 2010) was traced by in situ NMR, and the 1 H NMR signals showed only the chemical shifts for DDG, indicating that no detectable intermediate was generated during the entire reaction (Asamizu et al., 2012). To gain insights into how three homologous enzymes (EEVS, EVS, and DDGS) catalyze different cyclization reactions using the same substrate SH7P, the crystal structures of ValA (EEVS: 4P53) (Kean et al., 2014) and Ava_3858 (DDGS: 5TPR) (Osborn et al., 2017a) were solved. The crystal structures of ValA and Ava_3858 were found to be cocrystalized with NAD + and Zn 2+ and showed folds that were similar to those of DHQS (Carpenter et al., 1998). A comparison of the amino acid residues forming the catalytic pocket among EEVS, DDGS, and DHQS provided some insights into the fingerprint amino acid residues used for accurate annotation of gene function for similar enzymes (Kean et al., 2014; Osborn et al., 2017a). However, swapping the amino acid residues that are specifically conserved in each enzyme (L267E/D281A/H360T for ValA; E254L/A268D/T347H for Ava_3858) did not convert the activity of the enzyme; thus, it remained unclear how the additional dehydration process could proceed in the DDGS reaction (Osborn et al., 2017a). In addition, during genome mining using the EEVS sequence as a probe, unexpectedly, homologous genes were found in the genome of vertebrates, such as fish, birds, reptiles, and amphibians (Osborn et al., 2015). Interestingly, the putative EEVS genes from animals were flanked by a putative protein with an oxidoreductase (Ox) domain and a methyltransferase (MT) domain, and were also flanked by putative transcriptional regulators (Osborn et al., 2015). The genes for the EEVS homolog and the Ox-MT di-domain protein were synthesized based on the zebrafish (Danio rerio) sequences and expressed in E. coli. The purified recombinant DrEEVS was shown to synthesize EEV from SH7P. Furthermore, co-incubation with Ox-MT and SAM resulted in the formation of gadusol from EEV (Osborn et al., 2015) (Fig. 5). Gadusol is a natural sunscreen compound that possesses UV-resistance activity S37

39 (Shick and Dunlap, 2002). Gadusol was originally identified in fish eggs and was believed to accumulate from consumption in the diet (Shick and Dunlap, 2002). However, this study provided insights into the animal de novo synthetic pathway of a natural C 7 cyclitol sunscreen compound that exists not only in prokaryotes but also in higher organisms, such as vertebrates (Osborn et al., 2015). Until recently, the EEVS involved in the biosynthesis of C 7N aminocyclitol natural products from actinomycetes was the only characterized SH7P cyclase, a family of enzymes that convert SH7P to carbocyclic molecules, such as EEV, 2EV, and DDG (Osborn et al., 2017b). However, genomic and biochemical investigations have revealed that SH7P cyclase is distributed in a wide range of species, including actinomycetes, cyanobacteria (Asamizu et al., 2012; Balskus and Walsh, 2010), myxobacteria (Asamizu et al., 2012), and vertebrates, such as zebrafish (D. rerio) (Osborn et al., 2015). Further bioinformatics analysis of homologous genes for SH7P cyclase revealed that this gene is widely distributed in a variety of organisms (Osborn et al., 2017a; Osborn et al., 2017b). These recently investigated SH7P cyclase genes will provide a template for easier access to gene clusters for new C 7N aminocyclitols that are buried inside the growing genome databases. Conclusion and perspective In this section, I reviewed recent progress in research on the biosynthesis of C 7N aminocyclitol validamycin A. These recent investigations have revealed the intriguing assembly pathways of these secondary metabolites by unique enzymes. The recent expansion of genome databases has been a driving force in the discovery of unprecedented biological, chemical, and catalytic repertoires, which can provide challenges to create novel bioactive artificial natural products. Further accumulation of knowledge is indispensable and will facilitate the development of new technologies to achieve the aim of creating novel cell factories that can synthesize complex small molecules. Acknowledgments I am grateful to Prof. Hiroyasu Onaka at The University of Tokyo, and Prof. Taifo Mahmud at Oregon State University for their kind support. I would like to acknowledge Prof. Andrew Karplus at Oregon State University, Prof. Yong-Hwan Lee at Louisiana State University, Dr. Hideaki Kakeya at Kyoto University, Dr. Satoh Katsuya at QST, and Dr. Kanae Teramoto at JOEL Ltd. for research collaboration. I would like to thank Dr. Taro Ozaki, Dr. Shohei Hayashi, and Dr. Yoshinori Sugai for their kind support. I would also like to thank all present and past laboratory members at The University of Tokyo and Oregon State University for their kind support. Finally, I would like to thank the Society of Actinomycetes Japan for the Hamada Award. References Abuelizz, H.A., and Mahmud, T. (2015). Distinct substrate specificity and catalytic activity of the pseudoglycosyltransferase VldE. Chem. Biol. 22, Almabruk, K.H., et al. (2012). The alpha-ketoglutarate/fe(ii)- dependent dioxygenase VldW is responsible for the formation of validamycin B. Chembiochem. 13, Asamizu, S., et al. (2011). Pseudoglycosyltransferase catalyzes nonglycosidic C-N coupling in validamycin A biosynthesis. J. Am. Chem. Soc. 133, Asamizu, S., et al. (2012). Evolutionary divergence of sedoheptulose 7-phosphate cyclases leads to several distinct cyclic products. J. Am. Chem. Soc. 134, Asamizu, S., et al. (2013). Comparative metabolomic analysis of an alternative biosynthetic pathway to pseudosugars in Actinosynnema mirum DSM Chembiochem. 14, Asamizu, S., et al. (2015). Killing of Mycolic Acid-Containing Bacteria Aborted Induction of Antibiotic Production by Streptomyces in Combined-Culture. PLoS One. 10, e Asano, N., et al. (1987). Effect of validamycins on glycohydrolases of Rhizoctonia solani. J. Antibiot. 40, Bai, L., et al. (2006). Functional analysis of the validamycin biosynthetic gene cluster and engineered production of validoxylamine A. Chem. Biol. 13, Balskus, E.P., and Walsh, C.T. (2010). The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science. 329, Bentley, S.D., et al. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature. 417, Bertrand, S., et al. (2014). Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv. 32, Blin, K., et al. (2017). antismash 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. Buscaglia, C.A., et al. (2015). Neglected Tropical Diseases in the Post-Genomic Era. Trends Genet. 31, Carpenter, E.P., et al. (1998). Structure of dehydroquinate synthase reveals an active site capable of multistep catalysis. Nature. 394, Cavalier, M.C., et al. (2012). Mechanistic insights into validoxylamine A 7'-phosphate synthesis by VldE using the structure of the entire product complex. PLoS One. 7, e Choi, W.S., et al. (2008). Genetic organization of the putative salbostatin biosynthetic gene cluster including the 2-epi-5- epi-valiolone synthase gene in Streptomyces albus ATCC Appl. Microbiol. Biotechnol. 80, Cui, L., et al. (2016). De Novo biosynthesis of betavalienamine in engineered Streptomyces hygroscopicus ACS Synth. Biol. 5, Demain, A.L., and Sanchez, S. (2009). Microbial drug discovery: 80 years of progress. J. Antibiot. 62, Derewacz, D.K., et al. (2015). Mapping Microbial Response Metabolomes for Induced Natural Product Discovery. ACS Chem. Biol. 10, Elshahawi, S.I., et al. (2015). A comprehensive review of glycosylated bacterial natural products. Chem. Soc. Rev. 44, S38

40 Errey, J.C., et al. (2010). Mechanistic insight into enzymatic glycosyl transfer with retention of configuration through analysis of glycomimetic inhibitors. Angew. Chem. Int. Ed. 49, Flatt, P.M., and Mahmud, T. (2007). Biosynthesis of aminocyclitol-aminoglycoside antibiotics and related compounds. Nat. Prod. Rep. 24, Flatt, P.M., et al. (2013). Genetic insights into pyralomicin biosynthesis in Nonomuraea spiralis IMC A J. Nat. Prod. 76, Giaever, H.M., et al. (1988). Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J. Bacteriol. 170, Gloster, T.M., and Davies, G.J. (2010). Glycosidase inhibition: assessing mimicry of the transition state. Org. Biomol. Chem. 8, Goodwin, C.R., et al. (2015). Structuring Microbial Metabolic Responses to Multiplexed Stimuli via Self-Organizing Metabolomics Maps. Chem. Biol. 22, Hoshino, S., et al. (2015a). Niizalactams A-C, Multicyclic Macrolactams Isolated from Combined Culture of Streptomyces with Mycolic Acid-Containing Bacterium. J. Nat. Prod. 78, Hoshino, S., et al. (2015b). Chojalactones A-C, cytotoxic butanolides isolated from Streptomyces sp. cultivated with mycolic acid containing bacterium. Org. Lett. 17, Hoshino, S., et al. (2015c). Arcyriaflavin E, a new cytotoxic indolocarbazole alkaloid isolated by combined-culture of mycolic acid-containing bacteria and Streptomyces cinnamoneus NBRC J. Antibiot. 68, Igarashi, Y., et al. (2010). Alchivemycin A, a bioactive polycyclic polyketide with an unprecedented skeleton from Streptomyces sp. Org. Lett. 12, Ikeda, H., et al. (2003). Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol. 21, Iwasa, T., et al. (1970). Studies on validamycins, new antibiotics. I. Streptomyces hygroscopicus var. limoneus var., validamycin-producing organism. J. Antibiot. 23, Jackson, M. (2014). The mycobacterial cell envelope-lipids. Cold Spring Harb Perspect Med. 4. Katz, L., and Baltz, R.H. (2016). Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 43, Kawamura, N., et al. (1995). Pyralomicins, new antibiotics from Actinomadura spiralis. J. Antibiot. 48, Kean, K.M., et al. (2014). Structure of a sedoheptulose 7- phosphate cyclase: ValA from Streptomyces hygroscopicus. Biochemistry. 53, Lairson, L.L., et al. (2008). Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, Lee, S.S., et al. (2011). Mechanistic evidence for a front-side, S Ni-type reaction in a retaining glycosyltransferase. Nat. Chem. Biol. 7, Mahmud, T., et al. (1999). Biosynthetic studies on the alphaglucosidase inhibitor acarbose in Actinoplanes sp.: 2-epi-5- epi-valiolone is the direct precursor of the valienamine moiety. J. Am. Chem. Soc. 121, Mahmud, T. (2003). The C 7N aminocyclitol family of natural products. Nat. Prod. Rep. 20, (2009). Progress in aminocyclitol biosynthesis. Curr. Opin. Chem. Biol. 13, Martens, E., and Demain, A.L. (2017). The antibiotic resistance crisis, with a focus on the United States. J Antibiot (Tokyo). 70, Minagawa, K., et al. (2007). ValC, a new type of C 7-cyclitol kinase involved in the biosynthesis of the antifungal agent validamycin A. Chembiochem. 8, Miyamoto, K.T., et al. (2014). Discovery of gene cluster for mycosporine-like amino acid biosynthesis from Actinomycetales microorganisms and production of a novel mycosporine-like amino acid by heterologous expression. Appl. Environ. Microbiol. 80, Nett, M., et al. (2009). Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep. 26, Netzker, T., et al. (2015). Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol. 6, 299. Ochi, K. (2017). Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. Journal of Antibiotics. 70, Onaka, H., et al. (2001). Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in streptomycetes. I. Purification and characterization. J. Antibiot. 54, Onaka, H., et al. (2002). Cloning of the staurosporine biosynthetic gene cluster from Streptomyces sp. TP-A0274 and its heterologous expression in Streptomyces lividans. J. Antibiot. 55, (2003). Characterization of the biosynthetic gene cluster of rebeccamycin from Lechevalieria aerocolonigenes ATCC Biosci. Biotechnol. Biochem. 67, Onaka, H., et al. (2011). Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl. Environ. Microbiol. 77, Onaka, H., et al. (2015). Mycolic acid-containing bacteria activate heterologous secondary metabolite expression in Streptomyces lividans. J. Antibiot. 68, Osborn, A.R., et al. (2015). De novo synthesis of a sunscreen compound in vertebrates. Elife. 4. Osborn, A.R., et al. (2017a). Evolution and Distribution of C7- Cyclitol Synthases in Prokaryotes and Eukaryotes. ACS Chem Biol. 12, Osborn, A.R., et al. (2017b). The sedoheptulose 7-phosphate cyclases and their emerging roles in biology and ecology. Nat Prod Rep. Ozaki, T., et al. (2016). Insights into the Biosynthesis of Dehydroalanines in Goadsporin. Chembiochem. 17, Pinto-Carbo, M., et al. (2016). Evidence of horizontal gene transfer between obligate leaf nodule symbionts. Isme Journal. 10, Rockser, Y., and Wehmeier, U.F. (2009). The gac-gene cluster for the production of acarbose from Streptomyces glaucescens GLA.O: identification, isolation and S39

41 characterization. J. Biotechnol. 140, Schlorke, O., et al. (2002). Structure and biosynthesis of cetoniacytone A, a cytotoxic aminocarba sugar produced by an endosymbiontic Actinomyces. J. Antibiot. 55, Schmidt, D.D., et al. (1977). alpha-glucosidase inhibitors - new complex oligosaccharides of microbial origin. Naturwissenschaften. 64, Shick, J.M., and Dunlap, W.C. (2002). Mycosporine-like amino acids and related gadusols: biosynthesis, acumulation, and UV-protective functions in aquatic organisms. Annu. Rev. Physiol. 64, Sieber, S., et al. (2015). Isolation and total synthesis of kirkamide, an aminocyclitol from an obligate leaf nodule symbiont. Angew. Chem. Int. Ed. 54, Singh, D., et al. (2006). Genetic localization and heterologous expression of validamycin biosynthetic gene cluster isolated from Streptomyces hygroscopicus var. limoneus KCCM (IFO 12704). Gene. 376, Skinnider, M.A., et al. (2017). PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Res. Stratmann, A., et al. (1999). The AcbC protein from Actinoplanes species is a C7-cyclitol synthase related to 3- dehydroquinate synthases and is involved in the biosynthesis of the alpha-glucosidase inhibitor acarbose. J. Biol. Chem. 274, Stubbendieck, R.M., and Straight, P.D. (2016). Multifaceted Interfaces of Bacterial Competition. J Bacteriol. 198, Sugiyama, R., et al. (2015). 5-Alkyl-1,2,3,4- tetrahydroquinolines, new membrane-interacting lipophilic metabolites produced by combined culture of Streptomyces nigrescens and Tsukamurella pulmonis. Org. Lett. 17, (2016). Discovery and Total Synthesis of Streptoaminals: Antimicrobial [5,5]-Spirohemiaminals from the Combined- Culture of Streptomyces nigrescens and Tsukamurella pulmonis. Angew. Chem. Int. Ed. Engl. 55, Traxler, M.F., et al. (2013). Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. MBio. 4. Traxler, M.F., and Kolter, R. (2015). Natural products in soil microbe interactions and evolution. Nat Prod Rep. 32, Tsuchida, T., et al. (1996). Epoxyquinomicins A and B, new antibiotics from Amycolatopsis. J. Antibiot. 49, van der Meij, A., et al. (2017). Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev. 41, Vertesy, L., et al. (1994). The trehalase inhibitor salbostatin, a novel metabolite from Streptomyces albus ATCC Angew. Chem. Int. Ed. 33, Westhoff, S., et al. (2017). Distance-dependent danger responses in bacteria. Curr Opin Microbiol. 36, Wu, X., et al. (2007). A comparative analysis of the sugar phosphate cyclase superfamily involved in primary and secondary metabolism. Chembiochem. 8, Wu, X., et al. (2009). Biosynthetic gene cluster of cetoniacytone A, an unusual aminocyclitol from the endosymbiotic bacterium Actinomyces sp. Lu Chembiochem. 10, Xu, H., et al. (2008). Catalytic analysis of the validamycin glycosyltransferase (ValG) and enzymatic production of 4''- epi-validamycin A. J. Nat. Prod. 71, Xu, H., et al. (2009a). Genetically engineered production of 1,1'-bis-valienamine and validienamycin in Streptomyces hygroscopicus and their conversion to valienamine. Appl. Microbiol. Biotechnol. 81, Xu, H., et al. (2009b). Alternative epimerization in C 7Naminocyclitol biosynthesis is catalyzed by ValD, a large protein of the vicinal oxygen chelate superfamily. Chem. Biol. 16, Yang, J., et al. (2011). Nucleotidylation of unsaturated carbasugar in validamycin biosynthesis. Org. Biomol. Chem. 9, Yokose, K., et al. (1983). New alpha-amylase inhibitor, trestatins. I. Isolation, characterization and biological activities of trestatins A, B and C. J. Antibiot. 36, Yu, Y., et al. (2005). Gene cluster responsible for validamycin biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis Appl. Environ. Microbiol. 71, S40

42 Publication of Award Lecture The Society for Actinomycetes Japan Hamada Award 2016, Dr. Shumpei Asamizu Exploiting the potential of biosynthesis of natural products by actinomycetes: bacterial interaction-driven natural product discovery and biosynthetic machinery Actinomycetologica (2017) 31 [1], S30-S40. Graduate School of Agricultural and Life Sciences, The University of Tokyo Yayoi, Bunkyo, Tokyo , Japan S41

43 Hamada award 2016 Enzyme involved in the biosynthesis of a unique polyketide in actinomycetes Takashi Kawasaki College of Pharmaceutical Sciences, Ritsumeikan University, Noji-Higashi, Kusatsu, Shiga , Japan INTRODUCTION Angucycline antibiotics are a large group of naturally occurring aromatic polyketides of microbial origin (Rohr, J et al., 1992; Krohn, K et al., 1997). They exhibit a wide range of biological activities including antibacterial, antiviral, antitumor, and enzyme inhibitory activities. Although they contain a benz[a]anthraquinone skeleton, the structural diversity of these antibiotics is very broad with a wide variety of oxidation states. Hatomarubigins A, B, C, and D (Fig. 1) belong to the angucycline family and reverse colchicine resistance in multidrug-resistant tumor cells (Hayakawa, Y et al., 1991). Among them, hatomarubigin D is a unique hatomarubigin C dimer with a methylene linkage. This dimer has not been reported previously and little is known about the mechanism of methylene bridge formation between the two aromatic rings. In this review, I describe studies that identified a gene cluster for hatomarubigin biosynthesis in Streptomyces sp SVT4, conversion of new metabolite hatomarubigin E by hrbu encoding an O-methyltransferase, and hrby genes involved in the biosynthesis of hatomarubigin D in a unique dimeric angucycline. Cloning of a gene cluster for angucycline biosynthesis from Streptomyces sp SVT4 Angucycline biosynthetic gene clusters commonly contain both aromatase and cyclase genes, which construct the tetracyclic angucycline frameworks. The primers for PCR amplification were designed from conserved amino acid sequences of the aromatase (lanl/jadd/urdl) and cyclase (lanf/jadi/urdf) genes in the landomycin biosynthetic gene cluster from S. cyanogenus S136 (Westrich, L., et al. 1999), jadomycin biosynthetic gene cluster from S. venezuelae ISP5230 (Han, L., K., et al. 1994; Chen, Y. H., et al. 2005), and urdamycin biosynthetic gene cluster from S. fradiae Tü2717 (Decker, H., et al. 1995; Faust, B., D., et al. 2000). The aromatase and cyclase gene fragments were amplified by PCR with Streptomyces sp SVT4 genomic DNA. These gene fragments shared amino acid identities of 79% with aromatase UrdL and 76% with cyclase JadI. Two cosmid clones were selected from a cosmid library of Streptomyces sp SVT4 by colony hybridization and Southern blot Fig. 1. Structures of angucycline antibiotics S42

44 Fig. 2. Hatomarubigin biosynthesis gene cluster from Streptomyces sp SVT4. Arrow shows DNA regions used for heterologous expression. analysis using the aromatase and cyclase gene fragments as probes. These cosmids were sequenced to identify a 35-kbp DNA region consisting of 33 open reading frames (ORFs) as shown in Fig. 2. Seventeen ORFs were homologous to angucycline biosynthesis genes previously reported by homology searching (Table 1). Based on their positions and deduced functions, 30 ORFs were designated as hrb genes and consisted of a gene cluster for angucycline biosynthesis in Streptomyces sp SVT4. The hrb cluster contained the ketosynthase, chain length determinant factor, acyl carrier protein, ketoreductase, aromatase, cyclase, O-methyltransferase, oxidoreductase, and oxygenase genes. Three regulatory genes, hrbr1, hrbr2, and hrbr3, and a transporter gene, hrbt, were found in the cluster (Kawasaki, T., et al. 2010a). Expression of part of the hrb gene cluster in S. lividans To establish the function of hrbs, the expression plasmid pwhm-hr containing hrbr1 to hrbx was constructed and introduced into S. lividans TK23. S. lividans harboring pwhm-hr or an empty vector pwhm3 was cultivated, and the mycelial extract was analyzed by high-performance liquid chromatography (HPLC). S. lividans expressing hrb genes produced hatomarubigins A, B, and C and rubiginone B 2 as show in Fig. 3. However, a peak for hatomarubigin D was not detected in HPLC. These results demonstrated that the hrb genes consist of a gene cluster for hatomarubigin biosynthesis in Streptomyces sp SVT4. Estimated function of hrb genes in hatomarubigin biosynthesis hrbi resembles lanv, a 6-ketoreductase gene involved in TABLE 1. Deduced functions of the hrb gene products. ORF Size (aa) Homologous protein (angucycline biosynthesis gene product) Identity (%) Similarity (%) Proposed function Alanine rich protein of Streptomyces ambofaciens R1 71 Regulatory protein of Streptomyces coelicolor Regulator A 281 Unknown protein in an angucycline biosynthesis gene cluster(aur1o) B 112 Cyclase (JadI) Cyclase C 423 Ketosynthase (JadA) Minimal PKS D 107 Predicted protein of Coprinopsis cinerea E 404 Chain length determinant factor (JadB) Minimal PKS F 234 Methyltransferase of Caulobacter crescentus G 680 Oxygenase-reductase (LndM2) Hydroxylase H 373 Oxygenase of Rhodococcus sp Oxygenase I 262 Reductase (LanV) Ketoreductase J 226 Oxygenase of Pseudomonas fluorescens Oxygenase K 208 Oxygenase (JadG) Oxygenase L 358 Oxygenase (LndZ5) Oxygenase M 87 Acyl carrier protein (JadC) Minimal PKS N 302 Type II thioesterase of Mycobacterium liflandii O 261 Ketoreductase (JadD) Ketoreductase P 311 Aromatase (UrdL) Aromatase Q 279 Phosphopantetheinyl transferase (JadM) R 460 Oxygenase (LanE) Oxygenase S 254 Ketoacyl reductase of Frankia alni Oxidoreductase T 434 Transporter (UrdJ2) Transporter U 343 O-Methyltransferase of Streptomyces glaucescens O-Methyltransferase V 263 Short-chain dehydrogenase / reductase of Thermobifida fusca Oxidoreductase W 193 Reductase (LanO) Hydroxylase X 377 Oxygenase (LanZ5) Hydroxylase R2 200 Transcriptional regulator of Saccharopolyspora erythraea Regulator Y 365 Oxidoreductase of Saccharopolyspora erythraea Methylene bridge formation R3 240 Repressor-response regulator (JadR1) Regulator Z1 304 N5,N10-Methylenetetrahydromethanopterin reductase of Rhodococcus sp Oxidoreductase Z2 334 Aldo/keto reductase of Actinosynnema mirum Oxidoreductase 2 53 S-Adenosylmethionine synthase of Streptomyces clavuligerus Carbohydrate kinase of Streptomyces rishiriensis aa, number of amino acids. PKS, polyketide synthase S43

45 landomycin biosynthesis (Mayer, A., et al. 2005), and shows the same function. Hatomarubigins possess a methoxy group at the 8-position. hrbu is a candidate O-methyltransferase gene based on its homology to tcmo, an O-methyltransferase gene involved in tetracenomycin biosynthesis (Summers, R. G., et al. 1993). hrbg encodes an enzyme with putative oxygenase and reductase domains. Although its homologous gene urdm is involved in 12b-oxygenation in urdamycin biosynthesis (Faust, B. D., et al. 2000), C-12b bears no oxygen atom in hatomarubigins. A gene homologous to urdm, lndm2, is responsible for 6-hydroxylation in landomycin biosynthesis (Zhu, L., et al. 2005), and the oxygenase domain of HrbG displays the highest identity (57%) to that of LndM2, suggesting that HrbG catalyzes 6-hydroxylation of rubiginone B 2 to yield hatomarubigin A (Fig. 4). In landomycin biosynthesis, the two tandem genes lanz4 and lanz5 encoding oxidoreductase and oxygenase are involved in 11-hydroxylation (Ostash, B., et al. 2004). A gene homologous to lanz5, hrbx, is followed by the reductase gene hrbw. These two gene products may catalyze 11-hydroxylation of rubiginone B 2 to give hatomarubigin B (Fig. 4). The hrb cluster contains three regulatory gene candidates. HrbR1, HrbR2, and HrbR3 show sequence similarity with a putative regulatory protein of Streptomyces coelicolor (Bentley, S.D., et al. 2004), MarR-family regulator of Saccharopolyspora erythraea (Oliynyk, M., et al. 2007), and atypical response regulator (JadR1) of Streptomyces venezuelae (Wang, L., et al. 2009), respectively. Fig. 3. HPLC analysis of hatomarubigins produced by S. lividans expressing a part of the hatomarubigin biosynthesis gene cluster. 1: rubiginone B 2. 2: hatomarubigin B. 3: hatomarubigin A. 4: hatomarubigin C. Fig. 4. Proposed pathway for hatomarubigin biosynthesis. S44

46 New metabolite hatomarubigin E, a biosynthetic intermediate of hatomarubigin C A new metabolite in the 2-day culture of Streptomyces sp SVT4 detected by thin-layer chromatography and HPLC analyses. The molecular formula of hatomarubigin E was established as C 19H 16O 5 by high-resolution fast-atom bombardment-mass spectrometry. The 13 C- and 1 H-NMR data of hatomarubigin E resembled those of hatomarubigin C, except for a methoxy group in hatomarubigin C (Fig. 1). We isolated the new metabolite hatomarubigin E, 8-demethyl hatomarubigin C (Kawasaki, T., et al. 2010b). In the hrb cluster, hrbu shows homology to an O-methyltransferase gene involved in tetracenomycin C biosynthesis. This indicates that hrbu catalyzes the methylation of hatomarubigin E. To confirm the function of hrbu, the recombinant enzyme was expressed in Escherichia coli. HrbU converted hatomarubigin E to hatomarubigin C, using S-(5 -adenosyl)-l-methionine as a cofactor (Fig. 5). This reaction corresponds to the 8-O-methylation step in hatomarubigin biosynthesis. HrbU contains a conserved motif for S-(5 -adenosyl)-l-methionine binding (DVGGARG) (Ingrosso, D., et al. 1989; Haydock,S.F., et al. 1991; Madduri, K., et al. 1993). HrbU was found to convert hatomarubigin E to hatomarubigin C during hatomarubigin biosynthesis. Conversion of hatomarubigin C to hatomarubigin D by HrbY Genes remaining in the cluster are candidates for methylene bridge formation in the production of hatomarubigin D. The gene cluster for hatomarubigin biosynthesis includes the oxidoreductase gene hrby, which is present in hrbr3, a gene homologous to the regulator of angucycline biosynthesis (Table 1). HrbY was expressed in E. coli, and the purified recombinant HrbY was assayed for its ability to convert hatomarubigin C. Hatomarubigin C was converted into hatomarubigin D by HrbY, using methylcobalamin and NADPH as cofactors (Fig. 6) (Kawasaki, T., et al. 2010a). This reaction is the final step of hatomarubigin biosynthesis (Fig. 4). HrbY exhibited homology to an FAD-dependent pyridine nucleotide-disulfide oxidoreductase of Saccharopolyspora erythraea (Oliynyk, M., et al. 2007) and contained conserved FAD and NAD(P)H binding motifs (GGGYGGAAVAKALEAEADVILIDPRD and VLILGAGPVGLE; underlining indicates conserved amino acids) (Dym, O., et al. 2001). Because the reaction required NAD(P)H but not FAD, the recombinant enzyme may be purified as a complex with FAD. HrbY used methylcobalamin as a C 1 donor for methylene bridge formation. Methylcobalamin is known to participate in several enzymatic methyl group transfer reactions (Banerjee, R., et al. 2003). However, there is no similarity between HrbY and such enzymes. These results indicate that HrbY is a novel enzyme that catalyzes methylene bridge formation between two angucycline molecules. CONCLUSION We attempted to elucidate the biosynthetic mechanism of hatomarubigin D, which has a unique dimeric structure with a Fig. 5. HPLC analysis of hatomarubigins. (a): Mycelial acetone extract of 2-day cultured Streptomyces sp SVT4. (b): standard sample of hatomarubigin C. (c): reaction mixture for hatomarubigin E conversion without HrbU. (d): reaction mixture of hatomarubigin E conversion with HrbU. Fig. 6. HPLC analysis of the conversion of hatomarubigin C into hatomarubigin D. (A): hatomarubigin D. (B): reaction mixture without enzyme. (C): reaction mixture with HrbY methylene linkage. In the beginning of the first step, we cloned the gene cluster for angucycline biosynthesis from Streptomyces sp SVT4, a hatomarubigin producer. To identify the gene cluster involved in hatomarubigin biosynthesis, a gene cluster of 25 genes (hrbr1-hrbx) was expressed in S. lividans, and transformants produced hatomarubigin A, B, and C. Thus, we obtained the gene cluster involved in hatomarubigin biosynthesis. To further understand the biosynthesis of hatomarubigin, we isolated new metabolite hatomarubigin E, 8-demethyl hatomarubigin C, following 2-day culture of Streptomyces sp SVT4. hrbu shows homology to an O-methyltransferase gene. Therefore, HrbU likely catalyzes methylation of hatomarubigin. Indeed, recombinant HrbU converted hatomarubigin C to hatomarubigin E. Hatomarubigin C was converted to hatomarubigin D of unique structure by HrbY, which used methylcobalamin as a C 1 donor for methylene bridge formation. However, there is no similarity between HrbY and other enzymes that use methylcobalamin as a C 1 donor. The S45

47 enzymatic hatomarubigin C conversion reported here will facilitate future studies of the exact mechanism of methylene bridge formation. ACKNOWLEDGMENTS I am very pleased to receive the prestigious Hamada Award of SAJ (Society of Actinomycetes, Japan). This study was mainly conducted at the Faculty of Pharmaceutical Sciences, Tokyo University of Science. I would like to express my gratitude to the members of the laboratory. I would like to express my deepest gratitude and appreciation to Prof. Yoichi Hayakawa for providing suggestions and guidance. I am deeply indebted to Prof. Tohru Dairi from Hokkaido University for providing suggestions. I would like to thank everyone at SAJ. REFERNCES Banerjee, R., et al. (2003). The many faces of vitamin B 12: catalysis by cobalamin-dependent enzymes. Annu. Rev. Biochem. 72, Bentley, S. D., et al. (2004). SCP1, a 356,023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol. Microbiol. 51, Chen, Y. H., et al. (2005). Functional analyses of oxygenases in jadomycin biosynthesis and identification of JadH as a bifunctional oxygenase/dehydrase. J. Biol Chem. 280, Decker, H., et al. (1995). Cloning and characterization of a polyketide synthase gene from Streptomyces fradiae Tü2717, which carries the genes for biosynthesis of the angucycline antibiotic urdamycin A and a gene probably involved in its oxygenation. J. Bacteriol. 177, Dym, O., et al. (2001). Sequence-structure analysis of FAD-containing proteins. Protein Sci. 10, Faust, B. D., et al. (2000). Two new tailoring enzymes, a glycosyltransferase and an oxygenase, involved in biosynthesis of the angucycline antibiotic urdamycin A in Streptomyces fradiae Tü2717. Microbiology 146, Han, L. K., et al. (1994). Cloning and characterization of polyketide synthase genes for jadomycin B biosynthesis in Streptomyces venezuelae ISP5230. Microbiology. 140, Hayakawa, Y., et al. (1991). Studies on the isotetracenone antibiotics. IV. Hatomarubigins A, B, C and D, new isotetracenone antibiotics effective against multidrug-resistant tumor cells. J. Antibiot. 44, Haydock, S. F., et al. (1991). Cloning and sequence analysis of genes involved in erythromycin biosynthesis in Saccharopolyspora erythraea: sequence similarities between EryG and a family of S-adenosylmethionine-dependent methyltransferase. Mol. Gen. Genet. 230, Ingrosso, D., et al. (1989). Sequence of the D-aspartyl/Lisoaspartyl protein methyltransferase from human erythrocytes. Common sequence motifs for protein, DNA, RNA and small molecule S-adenosylmethionine dependent methyltransferase. J. Biol. Chem. 264, Kawasaki, T., et al. (2010a). Cloning and Characterization of a Gene Cluster for Hatomarubigin Biosynthesis in Streptomyces sp. Strain 2238-SVT4. Appl. Environ. Microbiol. 76, Kawasaki, T., et al. (2010b). Hatomarubigin E, a biosynthetic intermediate of hatomarubigins C and a substrate of HrbU O-methyltransferase. The Journal of Antibiotics. 63, Krohn, K., et al. (1997). Angucyclines: Total syntheses, new structures, and biosynthetic studies of an emerging new class of antibiotics. Top. Curr. Chem. 188, Madduri, K., et al. (1993). Cloning and sequencing of a gene encoding carminomycin 4-O-methyltransferase from Streptomyces peucetius and its expression in Escherichia coli. J. Bacteriol. 175, Mayer, A., et al. (2005). LanV, a bifunctional enzyme: aromatase and ketoreductase during landomycin A biosynthesis. Chembiochem. 6, Oliynyk, M., et al. (2007). Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL Nat. Biotechnol. 25, Ostash, B., et al. (2004). Generation of new landomycins by combinatorial biosynthetic manipulation of the lndgt4 gene of the landomycin E cluster in S. globisporus. Chem. Biol. 11, Rohr, J., et al. (1992). Angucycline group antibiotics. Nat. Prod. Rep. 9, Summers, R. G., et al. (1993). The tcmvi region of the tetracenomycin C biosynthetic gene cluster of Streptomyces glaucescens encodes the tetracenomycin F1 monooxygenase, tetracenomycin F2 cyclase, and, most likely, a second cyclase. J. Bacteriol. 175, Wang, L., et al. (2009). Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. Proc Natl Acad Sci USA. 106, Westrich, L., et al. (1999). Cloning and characterization of a gene cluster from Streptomyces cyanogenus S136 probably involved in landomycin biosynthesis. FEMS Microbiol Lett. 170, Zhu, L., et al. (2005). Identification of the function of gene lndm2 encoding a bifunctional oxygenase-reductase involved in the biosynthesis of the antitumor antibiotic landomycin E by Streptomyces globisporus 1912 supports the originally assigned structure for landomycinone. J. Org. Chem. 70, S46

48 Publication of Award Lecture The Society for Actinomycetes Japan Hamada Award 2016, Dr. Takashi Kawasaki Enzyme involved in the biosynthesis of a unique polyketide in actinomycetes Actimomycetologica (2017) 31 [1], S42-S46. College of Pharmaceutical Sciences, Ritsumeikan University, Noji-Higashi, Kusatsu, Shiga , Japan S47

49 60th Regular Colloquium Date: Mar. 10 (Fri), 2017 Place: Kitasato University Program: 1. Non-cleaving genome editing and its applications Keiji NISHIDA (Graduate School of Science, Technology and Innovation, Kobe University) 2. Bioinformatics for microbial analysis Wataru IWASAKI (Graduate School of Science, The University of Tokyo) 3. Actinomycetaceae showing pathogenicity in animals Satoshi MURAKAMI (Tokyo University of Agriculture) 4. Boron-based drug discovery - with the experience of two FDA approvals in a US biotech start-up - Tsutomu AKAMA ((Former) Anacor Pharmaceuticals, Inc.) 5. Retraction of papers in major scientific journals; Can you believe what described in the paper? Hiroyuki OSADA (RIKEN Center for Sustainable Resource Science) S48

50 The 2017 Annual Meeting of the Society for Actinomycetes Japan Chair person: Masakazu Kataoka (Shinshu University, Nagano) The 2017 annual meeting of SAJ will be held in September 2017 in Nagano, Japan. We are looking forward to welcoming you to participate in the meeting and to submit papers. Updated information will be provided on the 2017 Annual Meeting Website ( ) and SAJ Website ( General Outline Dates: September 7 (Thu)- 8 (Fri), 2017 Venue: The Nagano Wakasato Bunka Hall ( Address: Wakasato , Nagano , Japan TEL: Registration fee (including abstracts): SAJ member 10,000 yen (8,000 yen until July 14, 2017) Student 3,000 yen (2,000 yen until J July 14, 2017) Non-member 12,000 yen (10,000 yen until July 14, 2017) Non-member Student 4,000 yen (3,000 yen until July 14, 2017) Abstracts only 2,000 yen Registration is acceptable through the 2017 Annual Meeting Website. If you need help, do not hesitate to tell through saj32@shinshu-u.ac.jp). Reception: From 19:00 on September 7 (Thu) 2017 at Hotel Metropolitan Nagano, 3F Room Asama ( SAJ member 9,000 yen (7,000 yen until July 14, 2017) Student 5,000 yen (4,000 yen until July 14, 2017) Non-member 11,000 yen (9,000 yen until July 14, 2017) Non-member Student 8,000 yen (6,000 yen until July 14, 2017) Scientific program: Invited lectures, SAJ award lectures, and contributed paper sessions (oral/poster) will be arranged. Submission of abstracts: Abstracts for contributed paper sessions should be submitted via Web-Resister system through Annual Meeting Website as an attachment file. Deadline for submission of abstracts will be on 7 th July (Tanabata), For further information, contact to: SAJ2016 congress office, c/o Kataoka Lab. Fac. Engineering, Shinshu University Wakasato , Nagano , Nagano, Japan Tel: , FAX: saj32@shinshu-u.ac.jp S49

51 Online access to The Journal of Antibiotics for SAJ members Eligible members of SAJ can access to online issues of The Journal of Antibiotics (JA) by taking following steps; 1. Open the SAJ official website (URL: and click the banner of JA. 2. To register, enter your Membership number (10-digit figures starting with 154), First name, Last name, and address to receive a password and click 'Send'. You can find your Membership number on the envelope from SAJ. 3. Then, you will receive your password from SAJ. 4. Open the SAJ official website (URL: and click the banner of JA again. To access the JA website, enter Membership number and password and click 'Login'. 5. Upon recognition of Membership number and password, SAJ site relays the access to the journal's website on nature.com 6. In the journal's website on nature.com, contents are freely available. Members can find the article from current issue table of contents, or archive issues list. Click 'PDF' or 'HTML' link of each article to read full contents. Please note; Unique set of Membership number and password is issued and provided to each eligible members of SAJ. Members are not allowed to distribute this information to the third person or third parties. Depending on the network environment there's a case where access to full contents is not permitted even though Membership number and password is correct. In such case please contact us by for alternative access method. When contacting please provide your membership number and password, and specify name and version of your Internet browser. RBA Helpdesk- The Journal of Antibiotics ja@natureasia.com S50

52 日本放線菌学会誌 会報 第 31 巻 1 号

53 目次 受賞論文掲載のおしらせ 年度学会賞受賞論文 ( 上田賢志博士 ) 年度 ( 第 32 回 ) 日本放線菌学会大会のご案内 年度日本放線菌学会授賞者の決定について 21 第 60 回日本放線菌学会学術講会 22 学会見聞録 (ISBA2017) 29 学会見聞録 ( 日米生合成セミナー ) 31 日本放線菌学会賛助会員 33 著作権について 33

54 受賞論文掲載のおしらせ 2016 年度学会賞受賞上田賢志博士 ( 日本大学生物資源科学部応用生物科学科 ) 放線菌の形態分化と二次代謝の適応応答機構に関する研究 Mechanism of adaptive response controlling morphological and physiological development in Streptomyces Dr. Kenji UEDA 日本放線菌学会誌 (2017) 31 [1],

55 2016 年度日本放線菌学会 学会賞受賞総説 放線菌の形態分化と二次代謝の適応応答機構に関する研究 上田賢志 日本大学生物資源科学部応用生物科学科 神奈川県藤沢市亀井野 1866 Mechanism of adaptive response controlling morphological and physiological development in Streptomyces Kenji Ueda Department of Applied Biological Science, College of Bioresource Sciences, Nihon University 1866 Kameino, Fujisawa, Kanagawa はじめに Streptomyces 属に代表される糸状性放線菌は カビに類似した複雑な生活環と抗生物質をはじめとする様々な二次代謝産物を生産する能力のために 生命科学分野における基礎と応用の両側面から格好の研究対象として注目されてきた 特に この菌群が生産する抗生物質ならびに各種生理活性物質は医療分野に大きな変革をもたらし 人類の生活に欠かせないものになっている 一方 昨今では 放線菌が生産する代謝産物が自然界で担っているであろう本来の役割についての議論も活発になっている 抗生物質 (antibiotics) という用語は ストレプトマイシンの発見者であるワクスマンによって 微生物によって生産される微生物 の増殖を抑える物質 と定義されて今に至るが 抗生物質としての活性を示す物質も自然界においては抗生物質とは異なる作用を有している可能性があることを ワクスマン自身が指摘している 1 筆者は 本総説の前半で解説する A-ファクターの作用に関する研究から出発して 特にこの菌群の形態分化と二次代謝の開始に影響する要因に着目した研究を進めることで 放線菌の複雑な増殖相が多様な環境因子に応答して制御されていること さらには そうして生産される様々な代謝産物が微生物コミュニティーの構築に関与し 生態系を形作る一つの基盤になっているとする概念を確立しつつある ここでは その道のりから最近の知見に至るまでを紹介する 2

56 2. 自己調節因子 A-ファクター 2-1 生産現場の問題がもたらした再発見 Streptomyces 属の抗生物質生産がγ-ラクトン骨格を有する自己調節物質 ( 図 1) によって誘導されることは 今では広く知られるようになった 一方 その先駆けとなった研究が ストレプトマイシン (Sm) の生産現場に於ける生産菌 Streptomyces griseus の遺伝的不安定性に関する観察から始まった史実は 今日の溢れる情報の中に埋もれつつあるかもしれない Sm 生産性を失った変異株が高い頻度で出現するという問題に端を発するその研究は 東京大学農学部 別府研究室に研究生として出向した明治製菓の原によって開始された 生合成経路中のどこかに変異が起きている可能性が想定されたことから 寒天培地上に異なる変異株を隣接して植え 一方の株から放出される代謝産物を受け取ることでもう一方の株の Sm 合成能が回復するかを観察する cosynthesis 試験が行われた その結果としてわかったことは Sm 非生産変異体が失っていたのは Sm 生合成能ではなく Sm 生産を誘発する拡散性の信号物質の合成能である ということであった 後に A-ファクター ( 自己調節因子 autoregulatory factor の略 ; 図 1) として広く知られることになったその信号物質は その時すでにソビエト連邦共和国 ( 当時 ) の有機化学者 ココロフによって Sm 合成を誘導する分子として単離同定されていた化学物質であった 原 別府らが自らの成果を A-ファクターの 再発見 と表現したのはそのためである A-ファクター再発見への道のりについては 別府による総説 2 に詳しく 図 1 γ- ラクトン型シグナルの例 A- ファクターは S. griseus の気中菌糸形成と種々の二次代謝産物の生産に VB-A( バージニアブタノライドの一誘導体 ) は S. virginiae のバージニアマイシン生産に SCB1 は S. coelicolor A3(2) のアクチノロージン生産にそれぞれ関与する誘導因子として同定された 記述されている その後 堀之内によって A- ファクターの合成遺伝子 afsa が同定さ れると 3 その脱落が上記の変異体出現の遺 伝的要因であることが明確になった S. griseus の線状ゲノム上で afsa が位置する 末端近傍は脱落が起こりやすく それが高 い頻度で Sm 非生産性の変異体が出現する ことの理由として理解されている 3

57 図 2 A- ファクターによる気中菌糸形成と Sm 生産の誘発写真は A- ファクター合成能を欠損した変異株の 6 個のコロニーを A- ファクターの濃度勾配のもとに増殖させた様子 左端の濾紙ディスクに合成 A- ファクターが添加されている 気中菌糸と胞子を形成しているコロニーは白く 基底菌糸のみを形成しているコロニーは褐色に見える Sm 生産は一面に重層した枯草菌に対する増殖阻止ゾーンの大きさによって観察している このように 実生産の現場における観察によって この種のバクテリアに自らの生活環をコントロールする分子メカニズムが存在することが明らかとなり 産業上極めて重要な本菌群が有する複雑な遺伝生理学的特性を掘り下げる基礎研究への入り口が開かれた このような制御は放線菌のみならず グラム陰性のバクテリア集団においても N-アシルホモセリンラクトン (AHL) の作用を通じて作動していることが知られている ( クオラムセンシング ) この AHL についての知見は 発光性のイカに共生する Vibrio 属細菌のルシフェラーゼ生産制御に関する基礎遺伝学的研究にはじまるが 興味深いことに AHL の合成に関与する遺伝子 luxi が発見されたのは 上記の堀之内による afsa の同定がなされたのと同じ 1984 年のことであった A-ファクターカスケード解明の糸口図 2 左に示すように A-ファクターは S. griseus における Sm 生産と同時に基底菌糸 ( 栄養細胞 ) から気中菌糸への形態分化も誘導する この現象は (i) A-ファクター に結合する蛋白質 ( 受容体 ) が存在し (ii) それが A-ファクターを受容することで分化と二次代謝の両方を制御するマスターレギュレーター ( 複数の遺伝子を一斉調節する制御蛋白質 ) のスイッチを入れ (iii) マスターレギュレーターは 次に経路特異的レギュレーター ( 各経路の発現調節を専門に受け持つ制御蛋白質 ) のスイッチを入れ その延長線上でそれぞれの形質の発現が誘導されるという いわゆるカスケード制御系 ( 一つの信号が増幅されながら伝達されることで その制御の下流において様々な機能が一斉に誘発される制御体系 ) による調節がなされていることを推測させた その全貌解明を目標にかかげた堀之内と別府は 1A-ファクター受容体の同定 および 2 Sm 生合成遺伝子クラスターに A-ファクターの信号を伝える制御因子の同定 に的を絞った 前者は制御の進行方向 ( 図 2 右図の上から下の向き ) と同一方向に 一方後者はそれと逆方向に解析を進めるもので 両者がつながることで A-ファクターカスケードの中心部が明らかにできると考えたのである 4

58 図 3 Sm 合成遺伝子クラスターと strr プロモーター活性中央やや左に存在する strr は Sm 合成遺伝子クラスターの初期の発現を担う正の転写調節因子を その下流に同じ向きに隣接して存在する aphd は Sm 耐性酵素をコードしている strr のコード領域上流に存在するプロモーター領域を切り縮めて A- ファクター依存性を検定した結果の 概略を併せて表示した A-ファクター受容体の同定に至る研究の詳細についてはここでは触れないが 大阪大学 ( 当時 ) の岡本らによって Streptomyces virginiae が生産するγ-ラクトンシグナルであるバージニアブタノライド (VB; 図 1) の受容体が明らかにされたこと 5 がその礎になった 岡本は 放射合成されたバージニアブタノライドに対する結合活性を指標に同蛋白質を精製し そのアミノ酸配列をもとにして遺伝子をクローン化した その後 東京大学の尾仲が同様の手法を用いることで A-ファクター受容体 ArpA(A-factorreceptor protein) を単離精製し 遺伝子をクローン化した 6 一方 筆者は A-ファクターの信号が Sm 生合成遺伝子クラスターのどこに伝えられるかについての取組みを進めた Sm 生合成遺伝子クラスターは 独のピーパースバーグらによって同定され その塩基配列の解読がなされていた 7 クラスターの中央付近に見いだされた strr 遺伝子は転写調節蛋白質をコードしており 耐性酵素遺伝子 aphd と隣接した配置にあった ( 図 3) ことから それがクラスターの初期発現に関わる経路特異的レギュレーターをコードしていると 推測された そこで strr 上流のプロモーター活性を 独自に確立した耐熱性リンゴ酸脱水素酵素をレポーターに用いた転写アッセイによって測定した 上述の A-ファクター生産性を失った株に人工合成した A-ファクターを添加した場合と添加しない場合でプロモーター活性を比較したところ strr の転写開始点を含むおよそ 600 bp の領域に認められる転写活性が A-ファクターの添加によって上昇することが観察された そこで その領域をエキソヌクレアーゼを用いて段階的に切り縮めて同様のアッセイを行ったところ -430 bp までは A-ファクターによる誘導性が認められたが -330 bp まで削るとそれが消失した ( 図 3) このことから -430 bp から-330 bp の間に A-ファクターの信号を伝える転写調節蛋白質が結合すると予想された 8 同蛋白質はヴャクリャによってその存在が確認され 9 後に大西によって単離精製と遺伝子のクローン化がなされた adpa ( A-factor-dependent protein) と名付けられたこの遺伝子のプロモーター領域にはさらに 上記の A-ファクター受容体である ArpA が結合することが判明した 10 5

59 図 4 A- ファクターカスケード A- ファクターの信号が受信されることで誘発されるカスケード制御系の模式図 大西博士の好意により文献 12 を改編して掲載した こうした経緯をもとに 堀之内 大西らによって全貌が明らかにされた A-ファクターカスケードの概要を図 4に示す 上述のように strr のプロモーターに結合する活性を手がかりに同定された AdpA は 二次代謝と形態分化の各経路に特異的な調節遺伝子群のスイッチを一斉に入れるマスターレギュレーターとして機能し A-ファクターの生産以前はその転写が ArpA によって抑制されている A-ファクターが生産されると それが ArpA に結合して adpa に対する転写抑制を解除することでその発現を誘導 二次代謝産物群の生産と栄養菌糸から気中菌糸 胞子鎖への細胞分化を開始させる A-フ ァクターの作用に関する一連の研究成果は 放線菌の複雑な生活環が 精巧に構築されたカスケード制御系によってプログラムされていることを明らかにした貴重な具体事例となった 11, 分化誘導ペプチド AmfS A-ファクターの生産能を欠損した上述の変異株は Sm 生産性と同時に気中菌糸を形成する能力も失っていたことから A-ファクターカスケードの下には Sm 生合成遺伝子群とは独立に 基底菌糸から気中菌糸への細胞分化の開始を制御する遺伝子も含まれると考えられた 細胞分化のメカニズム 6

60 の理解が最も進んでいる Streptomyces 13 coelicolor A3(2) をモデルに用いた研究では 基底菌糸から気中菌糸への分化の開始が起こらなくなった変異株を bld 変異と呼び 取得された種々の bld 変異の間の制御的な上下関係 (bld ヒエラルヒー ) を 分化誘導ペプチド SapB ( sporulationassociated protein B) の生産性を指標にして推定 整列化する試みがなされた さらに 遺伝的相補試験などによって各変異に対応する bld 遺伝子を特定することで 分化を開始するための一連の制御ネットワークが明らかにできると考えられた このアプローチは 枯草菌 Bacillus subtilis の内生胞子形成の遺伝制御機構に関する研究を成功に導いたもので 放線菌においてもその有効性が期待された S. griseus にも S. coelicolor A3(2) の bld 遺伝子群に対応 する一連の制御遺伝子が存在し A-ファクターカスケードに連動していると予想された 上述の研究において A-ファクター受容体の同定に取り組んでいた三宅は その遺伝子クローニングを目的としたショットガンクローニングを数多く実施していた その過程で同氏は 上述の A-ファクター合成能欠損変異株にコピー数の高いプラスミドに連結して導入することでその気中菌糸形成を回復させる性質をもつ DNA 断片をクローン化していた しかし この断片の導入は Sm 生産性は回復させなかったことから そこには目的の受容体遺伝子とは異なる 細胞形態の分化に特異的な役割を持った遺伝子が存在すると考えられた そこで筆者は 三宅によってクローン化された断片の中でも気中菌糸形成の誘導に 図 5 気中菌糸形成誘導ペプチド AmfS の生成メカニズム A. amf 遺伝子クラスターの発現制御 正の転写調節因子である AmfR 蛋白質によって amftsba オペロンの転写が誘導され 前駆体ペプチド AmfS が生成する 本ペプチドはその後 AmfT による修飾を経て活性型に変換され 膜輸送体 AmfA/AmfB により分泌される 活性型 AmfS は栄養菌糸の表面に作用することで表面張力を変化させ 気中菌糸の伸長を促すと考えられている B. 活性型 AmfS の推定構造 前駆体ペプチドの C- 末端側 22 アミノ酸領域中に 2 つのランチオニン ( アラニン 2 分子がチオエーテル結合した構造 ) と 2 つのデヒドロアラニン (Dha) が形成され 疎水性アミノ酸が連続する 2 つの環状構造をとると予想されている C. 活性型 AmfS ペプチドによる気中菌糸形成の誘発 全面に増殖させた amfs 遺伝子破壊株は気中菌糸形成を形成する能力が欠損しているが 活性型 AmfS を添加することでその回復がおこる ( 中央 ) 7

61 重要と考えられた 5.4 kb の塩基配列を決定し 3 つの完全なコード領域を見いだした そのうちの 2 つは 互いに相同な排出型の ABC トランスポーター AmfA と AmfB を もうひとつの逆向きのコード領域は二成分制御系の応答蛋白に相同な転写調節蛋白質 AmfR をコードしていた 当時 分化の遺伝制御に関する詳細な理解が進んでいた枯草菌では このファミリーの転写調節蛋白質がそのリン酸化を介して信号を伝達し分化の開始を決定する役割を担うことが明らかになりつつあったことから AmfR が分化の開始に必要な遺伝子の転写を誘導する主役であると推測された 14 一方で筆者は 上記の領域中にもうひとつ 43 アミノ酸から成るペプチドをコードしうる領域が存在することに気付いていた それが実際に転写 翻訳されるかについての確証はなかったが 上記の排出ポンプをコードする遺伝子の前に存在していたこと ならびに GC-plot( ゲノム中の総 GC 含量が高い菌はアミノ酸を指定するコドンの第三文字に GC が多く第二文字に少ない傾向があることを利用して蛋白質コード領域を推定するコンピュータープログラム ) による解析がコード領域としての可能性を支持していたことから 細胞外に輸送されるペプチドの可能性を想定して ORF6 として記述した 14 これが後に 長年にわたって本体が不明であった S. coelicolor A3(2) の分化誘導ペプチド SapB の実体解明につながった 現段階の理解を図 5に示す 上述のマスターレギュレーター AdpA が直接プロモーターに結合することで転写誘導される amfr は転写調節蛋白質をコードしており その 作用によって amftsba オペロンの転写が活 性化される ( 図 5A) おそらく AmfT が関 与する修飾 ( 図 5B も参照 ) を経て前駆体 AmfS( 上述の ORF6 産物に相当 ) から活性型 ペプチドが生成し 排出ポンプ AmfA AmfB によって細胞外に輸送され 細胞表層に作 用することで気中菌糸の伸長が誘起される 疎水性のアミノ酸配列が露出した球状の構 造をとると推測される活性型 AmfS は 細胞 表層の表面張力を変化させることで気中菌 糸の伸長を促すと予想されている amf クラ スターは S. coelicolor A3(2) にも存在し それによって生成する活性型 AmfS ペプチ ドのホモログが 本菌をモデルとした一連 の形態分化の研究で SapB として知られて きた気中菌糸形成を誘発するペプチドその ものであることが明らかになっている 13,15,16 3. 放線菌代謝産物に見る生物間相互作 用 上述の A- ファクターならびに関連の化合 物は 生産菌自身の二次代謝産物生産なら 図 6 異種放線菌間のクロストークによる抗生物質生産の誘発 S. scabrisporus( 左端 ) のコロニーから放出される化学物質の濃度勾配に応じて隣接する S. griseorubiginosus のコロニーにおける抗生物質生産の誘発が認められる 抗生物質は図 2 と同様に枯草菌の重層によって可視化している 8

62 びに形態分化の開始を制御する自己調節因子として機能していた 筆者らは次に 類似の誘導現象が 異なる放線菌の間において観察される可能性について 様々な株の間におけるクロストーク実験を通じて検証した その結果 予想を上回る数の組み合わせにおいて 気中菌糸形成や抗生物質生産の促進がおこるものが見いだされた ( 図 6に事例 ) 17 それらの結果をもとに 放線菌の代謝産物の中には異なる菌の間の相互作用を仲介する役割を担うものが含まれる可能性があることを見いだしつつある 3-1 鉄イオンの奪い合い異なる放線菌の種間におけるクロストーク実験をもとに同定された化合物の一つは デフェリオキサミンE( 図 7) であった 本化合物は S. griseus によって生産 分泌され 隣接する Streptomyces tanashiensis の増殖と分化および抗生物質生産を顕著に 促進する活性に基づいて単離された 18 デフェリオキサミンは 鉄イオンを包み込んで細胞内に取り込む籠としての役割を有するシデロフォアの一種であり 放線菌をはじめいくつかの細菌によって生産されることが知られている 恐らく 上述の S. tanashiensis はその生産性を欠損しているために鉄の取り込み効率が低く単独では増殖能が弱いが 隣接する S. griseus によって生産された同物質が鉄イオンを包摂した状態で存在すると それを取り込むことで鉄イオンを充足させ 顕著な増殖と分化を行うと考えられた この S. tanashiensis のように デフェリオキサミンの生産能はもたないが その取り込みに関与する膜輸送系を有している菌は 他にも酵母等で知られていた 18 そこで筆者らはさらに 本化合物の添加によって影響を受ける菌株の探索を実施し デフェリオキサミンの添加がさまざまな株に多 図 7 異種放線菌間のクロストークに基づいて同定された化合物デフェリオキサミン E は S. griseus が生産し S. tanashiensis の増殖と分化を誘発する物質として同定された プロモマイシンは図 6 に示したクロストークに介在する誘発因子として SF2768 はそれによって生産が誘発される抗生物質としてそれぞれ同定された 9

63 様な形質の変化をひきおこすことを見いだした 19 特に Micrococcus 属に属する分離株は デフェリオキサミン添加条件では通常の増殖を示したが 非添加の条件ではほとんど増殖が見られないという高い依存性を示した また 増殖度には大きく影響しないが 粘性物質や色素の生産 または遊走性が顕著に誘発されるものも見いだされた 一方 0.1 mm の本物質の添加によって逆に完全に増殖が阻害されるものも数多く見つかった これらの株は 異なるタイプのシデロフォアに鉄の取り込みを依存し デフェリオキサミンの取り込み能を有しないと推測された そのため 添加された過剰量のデフェリオキサミンによって鉄がキレートされることで 本来の取り込みメカニズムによる鉄の獲得ができず 増殖を阻害されたものと考えられた 上記の観察は 図 8に示すような鉄の取り込みに関する微生物間の協調と競合の構図を想起させる すなわち Streptomyces 属は広くデフェリオキサミンを生産 分泌して鉄イオンを包摂して取り込み 活性に鉄を必要とする酵素等に供給している さらにデフェリオキサミンは Streptomyces 属以外にもその合成能をもたない株を含め様々な菌にも利用されていると考えられる 一方 異なるシデロフォアについても類似 の群集構造が存在し それは植物について も同様と推測される このように 環境中に はシデロフォアの利用性にもとづいた複数 の集団が存在し その間の競合と集団内で の協調が環境中における微生物群集の構造 基盤を形成していると考えられる 3-2. 低濃度の抗生物質が誘発する抗生 物質生産 - その 1 デフェリオキサミンに続いて筆者らが同 定した化合物は Streptomyces scabrisporus に分類される分離株によって 生産され Streptomyces griseorubiginosus の抗生物質生産を誘導する活性 ( 図 6) を示 す物質である 構造決定の結果 それは図 7 に示すポリエーテルであることが明らかに なった 20 プロモマイシンと命名された本 化合物は それ自身がイオノフォアとして 作用する抗生物質である 本物質の添加は S. griseorubiginosus 以外にも複数の Streptomyces 属細菌株の抗生物質生産を促 進した また モネンシンをはじめとする類 似のイオノフォア系抗生物質も同様の活性 を示すことが見いだされた 興味深いことに プロモマイシンやモネ 図 8 シデロフォアの利用性に基づく微生物群集構築放線菌が広く生産するシデロフォアであるデフェリオキサミンは その生産能力を持たない他の微生物にも広く取り込まれ鉄の補給に利用される 同様の体系は異なるタイプのシデロフォアについても存在し 各シデロフォアグループ間で鉄の獲得を巡る競合がおこっていると考えられる 10

64 ンシンによる抗生物質生産の誘導は それが抗生物質としての活性を示すより低い濃度 (subinhibitory concentration of antibiotics; SICA) においても認められた 昨今では 抗生物質としての活性を示す生理活性物質も低濃度においてはそれと異なる生理作用を発揮する可能性が広く議論されるようになったが プロモマイシンの作用はそれを具体的に示す一つの先駆的事例といえる 上述の促進現象において プロモマイシンの作用によって生産が誘発された S. griseorubiginosus の抗生物質は 本菌の単独培養では生産がおこらないことから 従来の探索では見いだされない新規の化合物である可能性が期待された そこで 市販のモネンシンを添加した培地条件で生産誘導させた本抗生物質を単離精製し構造解析を行ったところ 本化合物は特許において記載がなされているイソニトリル抗生物質 SF2768 と同一であることが判明した 21 特許に記載の生産菌は単独で本化合物を生産していることから 同一の構造をもつ代謝産物も菌株によってその生産性を決定する 遺伝 生理学的背景が異なるものと考えら れた 上記の化合物は既知であったが 同様 の促進現象によって生産される化合物の中 にはこれまでに知られていない構造や作用 を有するものが含まれる可能性は依然とし て高く残されていると筆者は考えている 3-3 低濃度の抗生物質が誘発する抗生物 質生産 - その 2 筆者らは 放線菌種間における相互作用 の探索研究とは独立に 培地への銅イオン とグルコースの添加が Streptomyces の分 化と二次代謝に及ぼす影響に着目した研究 を進めた 22,23 特に 低濃度 ( 数 μm) の銅 イオンの添加は分化と二次代謝の開始に対 して促進的に作用することが様々な菌株に 共通して観察された このことから 銅イオ ンに依存した制御メカニズムが放線菌にお ける分化の開始に共通して作用しているも のと予想された そこでまず SenC/Sco1 ファミリーの蛋白 質に着目した検証を行った 24 このファミ 図 9 銅イオンの取り込みに関与する sco オペロンの役割 SenC/Sco1 ファミリーの銅シャペロンをコードする scoc 遺伝子が含まれる sco オペロンは Streptomyces 属に広く分布する 銅イオン欠乏下で転写が誘導される本オペロンは 銅イオンの細胞内への取り込みと銅酵素への運搬に関与していると考えられる 銅を要求する酵素にはシトクロム c 酸化酵素 CcO リジルオキシダーゼ HyaS ならびにラッカーゼ EpoA が含まれる HyaS は細胞の凝集に EpoA はリグニンに含まれるフェノールの酸化に関与する CcO が高い活性を示すことは栄養細胞が分化を開始するために重要であると考えられている 11

65 リーの蛋白質は多くの微生物に分布し 銅要求性の酵素に銅を運搬する銅シャペロンとして機能する Streptomyces 属放線菌の SenC/Sco1 ホモログは 7 つのコード領域から成る sco オペロンの 3 つめの読み取り枠 scoc にコードされていた ( 図 9) 本オペロンの構造は Streptomyces 属で広く保存されていることから ここにコード化されている銅イオンの利用に関する機能はこのグループのバクテリアに共通した生理的意義をもつものと推測される S. coelicolor A3(2) および S. griseus において scoc を破壊したところ いずれの破壊株も抗生物質生産と形態分化を行う能力の低下を示し それは銅イオンの添加によって回復した この結果から ScoC による銅イオンの運搬に活性を依存する何らかの銅蛋白質の機能が二次代謝と分化の開始に関与していると予想された 24 scoc 破壊株では 銅オキシダーゼである末端呼吸酵 素シトクロム c オキシダーゼ (CcO) リジルオキシダーゼと予想される HyaS および小型ラッカーゼ EpoA 25,26 の活性が顕著に低下しており いずれも銅の添加によって回復することが観察された このことから 少なくともこれらの酸化酵素への銅の運搬が ScoC によって仲介されていると考えられた ( 図 9) そこで次に シトクロム c オキシダーゼをコードする遺伝子の破壊を試みた 27 Streptomyces 属放線菌は 多くの好気性細菌と同様に 2 種の末端呼吸酵素 シトクロム c オキシダーゼおよびシトクロム bd オキシダーゼを有している ( 図 10 ) S. coelicolor A3(2) において前者をコードする cta ならびに後者をコードする cyd 遺伝子をそれぞれ破壊したところ いずれの破壊株においても二次代謝と形態分化の能力の低下が認められ 特に cta 破壊株でそれが顕著であった 図 10 放線菌が保有する 2 種の末端呼吸酵素多くの好気性細菌と同様に 放線菌には 2 種のシトクロム酸化酵素が存在する 銅を要求するシトクロム c 酸化酵素は酸素分子に対する親和性が低いために高い濃度の酸素を必要とする 一方 銅を必要としないシトクロム bd 酸化酵素は酸素親和性が高く低い濃度の酸素条件でも活性を示す いずれの酸化酵素も破壊すると分化の阻害が観察される 12

66 図 11 ATP 合成阻害剤 CCCP による分化と抗生物質生産の回復シトクロム c 酸化酵素の銅結合ドメインをコードする ctacd の欠失変異株は通常では気中菌糸と胞子の形成を行わず また色素性抗生物質も生産しないが ATP 合成阻害剤 CCCP( 中央の濾紙ディスクから供給 ) の一定の濃度範囲においてそれらの回復が観察される 呼吸酵素の破壊は細胞内のエネルギー準 位に大きく影響すると考えられたことから 次に細胞内の ATP 含量を測定したところ 意外なことに呼吸酵素の破壊株は親株に比 べて顕著に高い細胞内 ATP レベルを示すこ とが判明した 27 顕著に高い細胞内 ATP 含 量は 上記の scoc 破壊株およびいくつかの bld 変異株においても同様に観察された 呼 吸酵素の破壊がなぜ ATP レベルの上昇を引 き起こすかは現在不明であるが 呼吸欠損 を補う恒常性維持機構が発動することで誘 発される代替の代謝メカニズムが ATP の生 成レベルを維持すると同時に ATP を消費す る効率が何らかの要因によって低下するこ とがその背景にあるものと考えられる 上記の呼吸酵素欠損株についての観察は エネルギー代謝と分化の開始が連携してお り 細胞内 ATP レベルが分化開始に対する 信号としての役割を担っている可能性を想 起させた そこで 破壊株の形質に対する ATP 合成阻害剤 CCCP の添加効果を観察したところ 増殖を阻害する濃度より低い一定の濃度範囲において抗生物質生産と気中菌糸形成の回復が観察された ( 図 11) 27 同様の効果はオリゴマイシンなどの ATP 合成阻害剤にも観察された この現象は 細胞内 ATP レベルが分化 二次代謝の開始に制御的に連動しているとする仮説を強く支持するものである 同時に ATP 合成の阻害剤として作用する抗生物質にも 上記のイオノフォアと同様に 増殖阻害濃度より低濃度では分化や二次代謝を誘発する因子としての作用を発揮するものがあることを強く示唆している 4. 放線菌代謝産物の多様な役割上記のように筆者らは 放線菌の代謝産物が果たす役割には 従来観察されてきた抗菌性などの生理活性にとどまらない多様性が存在する可能性を見いだした ( 図 12) 一連の研究の引き金を引いた A-ファクターは 生産菌自身に作用してその二次代謝ならびに形態分化の開始を誘発するスイッチとして機能し 同一集団内の細胞が同じタイミングで抗生物質生産と形態分化を開始することを可能にしていた 生産菌自身の増殖も阻害する抗生物質の場合 その生産に先立ってあらかじめそれに対する耐性メカニズムを発現させておく必要がある そのため 上記の Sm の事例に見られるように 抗生物質の生合成クラスター中には初期に発現する遺伝子群の中に自己耐性遺伝子が含まれていることが多い しかし そのクラスターの発現時期が細胞集団全体でそろわないと 一部の細胞によって生産された抗 13

67 図 12 放線菌の代謝産物が果たす多様な役割 ( 概念図 ) 放線菌が生産 分泌する代謝産物には 自身の形質を制御する自己調節因子や鉄をはじめとする環境中の特定の因子を取り込むための分子が存在するが それらの中には他の菌にも同様に受容ないし利用されるものが含まれる また 高濃度の抗生物質のように他の菌の増殖に阻害的に作用する 生物質によって周辺の細胞が死滅する可能 性がある 形態分化についても 気中菌糸形 成の開始とともに栄養菌糸を分解するため に発現するプロテアーゼ等が同様の影響を 及ぼす可能性がある A- ファクターが拡散 して一斉に作用することは そうしたタイ ミングのずれを回避し 細胞集団を同調的 に制御するために重要な役割をもつと推測 される A- ファクターやバージニアブタノライド などの γ- ラクトンシグナルは その受容体 への結合特異性が厳密で 異なる側鎖構造 を有する γ- ラクトンを作る種の間での交 信は起こらないと考えられている 一方 同 一の構造をもつ γ- ラクトンが複数の異な る種によって生産される事例も知られてお り そうした場合には種間クロストークが 起こる可能性が指摘されている 28 同様の 細菌種内 種間における信号のやりとりの 可能性は 前述のグラム陰性菌が生産する AHL についてもその合成遺伝子と受容体遺伝子のゲノム上の分布に基づいた議論がなされている 29 異なる放線菌の間においてクロストークが実際におこることは 筆者らが実施した様々な株の間におけるクロストークアッセイによって強く示唆された 一方の菌が生産する拡散性物質に応答してもう一方の菌の分化や抗生物質生産が促進されていると考えられる組み合わせの中には γ-ラクトン化合物による作用が含まれている可能性も考えられるが これまでに同定された因子はいずれもγ-ラクトン化合物とは異なる代謝産物であった 種間促進因子として一つ目に同定されたデフェリオキサミンは 放線菌によって広く生産されるシデロフォアであった 筆者らによる調査は 鉄イオンを包摂した本物質は その生産能力を持たない菌にも広く取り込まれ 鉄イオン源として利用されていることを示していた このことから 本物質は微生物界におけるグローバルな共生因子としての役割を果たしていると考えることができる 一見 生産者の放線菌はエネルギーを浪費しているように思われるが 本シデロフォアを様々な菌が利用することは生産菌の周囲に活発な代謝活性をもつ微生物コミュニティーを発達させることにつながり それが生産菌に副次的なメリットをもたらす可能性も考えられる 二つ目に同定されたプロモマイシンは モネンシンに類縁のポリエーテルで イオノフォアとして作用する抗生物質であった 特筆すべき点は 本物質の二次代謝促進活性が抗生物質として作用するより低い濃度でも認められたことで 抗生物質として知 14

68 られる化合物が阻害濃度未満において抗生物質とは異なる生理作用を示す事例となった 冒頭で触れたように 抗生物質が自然界において実際に抗生物質として作用するかについては 抗生物質を定義したワクスマン自身も疑問を投げかけている その詳細は明らかでないが 上記のポリエーテルによる抗生物質生産の促進にはイオノフォアとしてのそれとは異なる作用機序が関与している可能性がある 阻害濃度未満の抗生物質が放線菌の分化と二次代謝を誘発する事例として 筆者らは ATP 合成阻害剤にも同様の効果を見いだした この効果はおそらく 末端呼吸における異常によって起こる細胞内 ATP レベルの上昇が低濃度の呼吸阻害剤によってある水準にまで抑えられることによってひき起こされると考えられる なぜ呼吸の異常によって細胞内 ATP レベルが増大するのかについての詳細は不明であるが 一次代謝におけるエネルギー効率と二次代謝 細胞分化の開始決定機構が制御的に連動していることは想像に難くない そこに細胞内 ATP レベルが指標として関わっていることは 放線菌の生理学的特性ならびに有用物質生産に関する基礎的な理解に対し 新たな洞察を与えるものと期待される 5. おわりに筆者らは 放線菌の形態分化と二次代謝が自己調節物質と内在因子によって柔軟かつ精密に調節される一方 その代謝産物は異なる生物どうしの間の共生相互作用に介在して多様な作用を発揮し それらを通じて生物群集構造の構築に一定の役割を果たしているという概念を創出した 昨今で は 放線菌の二次代謝遺伝子群の多くが通常の培養条件では発現していないという問題が大きく取り上げられているが 筆者らの研究成果は そうした遺伝子の中には他生物との共生 共存 競合を含め 多様な環境への適応応答に依存して発現するものが含まれる可能性を示している これはすなわち そうした従来の培養条件には反映されていない要素をいかに分離 培養系に取り入れることができるかが これからの微生物探索における重要課題であることを意味している 30 代謝産物の機能が生物群集構造の構築を担っていることはまた そうした化合物の作用を通じて目に見えない群集の実態を探る研究手法に一定の有効性を見いだせる可能性を示唆している 農芸化学分野で古くから取り組まれてきた 特定化合物をプローブに用いて生体中の複雑な生理現象とその分子メカニズムを探る研究手法は 最近ではケミカルバイオロジーという言葉を持って広く認識されるようになった 同様の概念は複雑な生態系の理解にも適用できる可能性があり 実際にケミカルエコロジーと呼ばれる生態学研究領域が主として昆虫フェロモンの作用に着目して発展してきた 筆者は 同様の研究手法を通じて 見えない微生物の群集構造が基礎となる生態系にあらたな理解が進むと同時に そこから次世代の微生物バイオテクノロジーが拓かれることを期待している 謝辞本研究は 主として日本大学生物資源科学部 生命工学研究室において またその礎 15

69 となった研究は東京大学農学部 醗酵学教 室において行われました 格別のご指導を 賜りました別府輝彦先生ならびに故堀之内 末治先生に深く感謝申し上げます 同時 に 本研究推進の要所を担ってくださった 高野英晃博士 白鳥初美博士 天野昭一さ んをはじめとする生命工学研究室の同僚な らびに卒業生 学生の皆様の多大な努力に 心から敬意と謝意を表します 吉田稔先 生 西山真先生 洪淳光博士 Duška Vujaklija 博士 三宅克英博士 大西康夫 博士 尾仲宏康博士をはじめとする醗酵学 教室時代の指導者 同門の皆様 本研究を 様々にご指導 ご支援くださいました作田 庄平先生 降旗一夫先生 池田治生先生 岡本晋博士はじめ日本放線菌学会の皆々様 に厚く御礼申し上げます 引用文献 1. Davies, J. (2006). Are antibiotics naturally antibiotics? J. Ind. Microbiol. Biotechnol., 33, 別府輝彦. (2010). A- ファクターの再発見. 化学と生物, 48, Horinouchi, S., Kumada, Y. and Beppu, T. (1984). Unstable genetic determinant of A-factor biosynthesis in streptomycin-producing organisms: cloning and characterization. J. Bacteriol., 158, Engebrecht, J. and Silverman, M. (1984). Identification of genes and gene products necessary for bacterial bioluminescence. Proc. Natl. Acad. Sci. U S A, 81, Okamoto, S., Nakamura, K., Nihira, T. and Yamada, Y. (1995). Virginiae butanolide binding protein from Streptomyces virginiae. Evidence that VbrA is not the virginiae butanolide binding protein and reidentification of the true binding protein. J. Biol. Chem., 270, Onaka, H., Ando, N., Nihira, T., Yamada, Y., Beppu, T. and Horinouchi, S. (1995). Cloning and characterization of the A-factor receptor gene from Streptomyces griseus. J. Bacteriol., 177, Distler, J., Ebert, A., Mansouri, K., Pissowotzki, K., Stockmann, M. and Piepersberg, W. (1987). Gene cluster for streptomycin biosynthesis in Streptomyces griseus: nucleotide sequence of three genes and analysis of transcriptional activity. Nucleic Acids Res., 15, Vujaklija, D., Ueda, K., Hong, S.K., Beppu, T. and Horinouchi, S. (1991). Identification of an A- factor-dependent promoter in the streptomycin biosynthetic gene cluster of Streptomyces griseus. Mol. Gen. Genet., 229, Vujaklija, D., Horinouchi, S. and Beppu, T. (1993). Detection of an A-factor-responsive protein that binds to the upstream activation sequence of strr, a regulatory gene for streptomycin biosynthesis in Streptomyces griseus. J. Bacteriol., 175, Ohnishi, Y., Kameyama, S., Onaka, H. and Horinouchi, S. (1999). The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol. Microbiol., 34, Horinouchi, S. (2007). Mining and polishing of the treasure trove in the bacterial genus Streptomyces. Biosci. Biotechnol. Biochem., 71, Horinouchi, S. and Beppu, T. (2007). Hormonal control by A-factor of morphological development and secondary metabolism in Streptomyces. Proc. Jpn. Acad. Ser. B Phys Biol Sci, 83, Chandra, G. and Chater, K.F. (2014). Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences. FEMS Microbiol. Rev., 38, Ueda, K., Miyake, K., Horinouchi, S. and Beppu, T. (1993). A gene cluster involved in aerial mycelium formation in Streptomyces griseus encodes proteins similar to the response regulators of two-component regulatory systems and membrane translocators. J. Bacteriol., 175, Kodani, S., Hudson, M.E., Durrant, M.C., Buttner, M.J., Nodwell, J.R. and Willey, J.M. (2004). The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene rams in Streptomyces coelicolor. Proc. Natl. Acad. Sci. U S A, 101, Takano, H., Matsui, Y., Nomura, J., Fujimoto, M., Katsumata, N., Koyama, T., Mizuno, I., Amano, S., Shiratori-Takano, H., Komatsu, M. et al. (2017). High production of a class III lantipeptide AmfS in Streptomyces griseus. Biosci. Biotechnol. Biochem., 81,

70 17. Ueda, K., Kawai, S., Ogawa, H., Kiyama, A., Kubota, T., Kawanobe, H. and Beppu, T. (2000). Wide distribution of interspecific stimulatory events on antibiotic production and sporulation among Streptomyces species. J. Antibiot., 53, Yamanaka, K., Oikawa, H., Ogawa, H.O., Hosono, K., Shinmachi, F., Takano, H., Sakuda, S., Beppu, T. and Ueda, K. (2005). Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology, 151, Eto, D., Watanabe, K., Saeki, H., Oinuma, K., Otani, K., Nobukuni, M., Shiratori-Takano, H., Takano, H., Beppu, T. and Ueda, K. (2013). Divergent effects of desferrioxamine on bacterial growth and characteristics. J. Antibiot., 66, Amano, S., Morota, T., Kano, Y.K., Narita, H., Hashidzume, T., Yamamoto, S., Mizutani, K., Sakuda, S., Furihata, K., Takano-Shiratori, H. et al. (2010). Promomycin, a polyether promoting antibiotic production in Streptomyces spp. J. Antibiot., 63, Amano, S.I., Sakurai, T., Endo, K., Takano, H., Beppu, T., Furihata, K., Sakuda, S. and Ueda, K. (2011). A cryptic antibiotic triggered by monensin. J. Antibiot., 64, Ueda, K., Tomaru, Y., Endoh, K. and Beppu, T. (1997). Stimulatory effect of copper on antibiotic production and morphological differentiation in Streptomyces tanashiensis. J. Antibiot., 50, Ueda, K., Endo, K., Takano, H., Nishimoto, M., Kido, Y., Tomaru, Y., Matsuda, K. and Beppu, T. (2000). Carbon-source-dependent transcriptional control involved in the initiation of cellular differentiation in Streptomyces griseus. Antonie Van Leeuwenhoek, 78, Fujimoto, M., Yamada, A., Kurosawa, J., Kawata, A., Beppu, T., Takano, H. and Ueda, K. (2012). Pleiotropic role of the Sco1/SenC family copper chaperone in the physiology of Streptomyces. Microb. Biotechnol., 5, Endo, K., Hayashi, Y., Hibi, T., Hosono, K., Beppu, T. and Ueda, K. (2003). Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. J. Biochem., 133, Endo, K., Hosono, K., Beppu, T. and Ueda, K. (2002). A novel extracytoplasmic phenol oxidase of Streptomyces: its possible involvement in the onset of morphogenesis. Microbiology, 148, Fujimoto, M., Chijiwa, M., Nishiyama, T., Takano, H. and Ueda, K. (2016). Developmental defect of cytochrome oxidase mutants of Streptomyces coelicolor A3(2).. Microbiology, 162, Nodwell, J.R. (2014). Are you talking to me? A possible role for gamma-butyrolactones in interspecies signalling. Mol. Microbiol., 94, Subramoni, S. and Venturi, V. (2009). LuxRfamily 'solos': bachelor sensors/regulators of signalling molecules. Microbiology, 155, Ueda, K. and Beppu, T. (2017). Antibiotics in microbial coculture. J. Antibiot., 70,

71 2016 年度学会賞受賞 上田賢志博士 ( 日本大学生物資源科学部 ) 放線菌の形態分化と二次代謝の適応応答機構に関する研究 Dr. Kenji Ueda Mechanism of adaptive response controlling morphological and physiological development in Streptomyces Department of Applied Biological Science, College of Bioresource Sciences, Nihon University 18

72 2017 年度 ( 第 32 回 ) 日本放線菌学会大会のご案内 大会長片岡正和 ( 信州大学大学院総合理工学系研究科生命医工学専攻 ) 2017 年度日本放線菌学会大会は 長野県長野市若里文化ホールにて開催することになりました 日本を代表する観光地長野でさわやかな気候 おいしい季節の開催となります 多くの皆様のご参加を心よりお待ち申し上げます 詳しい情報は大会のウェブサイト ( 日本放線菌学会のウェブサイト ( を通じて随時ご案内いたします 概要 期日 : 平成 29 年 9 月 7 日 ( 木 ),8 日 ( 金 ) 会場 : 長野市若里市民文化ホール 長野市若里 3 丁目 22 番 2 号 ( 徒歩またはタクシーをお奨めします ) (JR 長野駅徒歩 20 分, タクシー 10 分, バス 15 分 ) 長野駅善光寺口 (2 番のりば )~ 日赤 松岡線 ビッグハット前 下車徒歩 1 分 路線番号 :21 番 松岡 サンマリーン 大塚南 ) TEL: 講演申し込み, 講演要旨提出の締切日 : 平成 29 年 7 月 7 日 ( 金 ) 七夕大会参加の事前申し込みの締切日 : 平成 29 年 7 月 14 日 ( 金 ) 参加費 ( 講演要旨集代を含む ) 7 月 14 日まで 7 月 15 日 ~ 当日 正会員 : 8,000 円 10,000 円 学生会員 : 2,000 円 3,000 円 非会員 : 10,000 円 12,000 円 非会員学生 : 3,000 円 4,000 円 * 要旨集 (2,000 円 ) のみをご希望の方は, 大会事務局までご連絡下さい 懇親会 日時 : 平成 29 年 9 月 7 日 ( 木 )19:00~21:00 ( 予定 ) 会場 : ホテルメトロポリタン長野 ( 3F あさま 会費 : 7 月 14 日まで 7 月 15 日 ~ 当日 正会員 : 7,000 円 9,000 円 学生 : 4,000 円 5,000 円 非会員 : 9,000 円 11,000 円 非会員学生 : 6,000 円 8,000 円 プログラム概要 ( 詳細は大会ウェブサイトをご覧下さい ) 1. 一般講演 ( 口頭発表とポスター発表 [ ショートトークあり ]) 2. 受賞講演 3. 招待講演 ( 英国と日本のシステム 合成生物学関連研究者を予定 ) 4. エクスカーション大会終了後バスで善光寺へ 18 時頃長野駅着 ( 無料 ) 19

73 参加および講演申し込み要領 参加および講演申し込み ( 今大会から大会登録システムを導入しています ) 大会ウェブサイト ( の参加登録より リンク先の大会登録システムで参加 講演登録して下さい * 講演申し込み 講演要旨提出の締切日 : 平成 29 年 7 月 7 日 ( 金 ) 七夕 * 大会参加の事前申し込みの締切日 : 平成 29 年 7 月 14 日 ( 金 ) 参加費 懇親会費等の振込み : 下記の口座へお振込み下さい お振込みには郵便局備え付けの払込用紙 ATM 払込みもしくは郵貯ダイレクトをご利用下さい 郵便局から口座記号番号 : 口座名称 ( 漢字 ): 日本放線菌学会第 32 回大会口座名称 ( カナ ): ニホンホウセンキンガッカイダイサンジュウニカイタイカイ 他行等から銀行名 : ゆうちょ銀行店名 : 一一八 ( イチイチハチ ) 店 店番 :118 預金種目 : 普通口座番号 : 口座名称 ( カナ ): ニホンホウセンキンガッカイダイサンジュウニカイタイカイ 講演要旨 : 大会登録システムにある雛形をダウンロードして登録システムで入稿して下さい 所属は和文 英文とも省略形で記載してください 英文タイトル等は英文プログラムに使用しますので, 2 頁目に記載して下さい 発表形式の詳細等は 電子メールにてお知らせいたします 発表スライドならびにポスターは英語で作成することを推奨します お問合せ先 ( 大会事務局 ) 長野市若里 信州大学工学部片岡研内第 32 回放線菌学会大会事務局 Tel: saj32@shinshu-u.ac.jp 20

74 2017 年度日本放線菌学会三賞授賞者の決定について 2017 年 4 月 21 日 会長早川正幸 日本放線菌学会は 下記のように2017 年度日本放線菌学会三賞授賞者を決定しましたので以下にご報告致します 日本放線菌学会大村賞 ( 学会賞 ) および日本放線菌学会功績功労賞候補者については 理事 評議員 監事およびその経験者が推薦することができます 日本放線菌学会浜田賞 ( 研究奨励賞 ) 候補者については 自薦も含めてすべての正会員が推薦できることになっておりますので 今後も 積極的なご推薦をお願い申し上げます 大村賞 ( 学会賞 ) 田村朋彦氏 ( 独立行政法人製品評価技術基盤機構バイオテクノロジーセンター ) 日本及びアジア地域の放線菌多様性の研究と NBRC 放線菌リソースの充実 功績功労賞 浅野行蔵氏 ( 北海道大学大学院農学研究院名誉教授, 旭川食品産業支援センターセンター長 ) 希少放線菌属の探索 発見に関する研究および学会への貢献 浜田賞 ( 研究奨励賞 ) 稲橋佑起氏 ( 北里大学北里生命科学研究所 ) 植物由来放線菌の分離とその応用研究 以上 21

75 報告第 60 回日本放線菌学会学術講演会 主催 : 日本放線菌学会日時 : 平成 29 年 3 月 10 日 ( 金 ) 13:00~17:40 場所 : 北里大学薬学部 1 号館 6 階 1603 教室参加者 : 64 名 プログラム 1. 切らないゲノム塩基編集の多様な生物への応用 西田敬二 ( 神戸大学大学院科学技術イノベーション研究科 ) 2. 微生物解析におけるバイオインフォマティクスの活用 岩崎渉 ( 東京大学大学院理学系研究科 ) 3. 動物に病原性を示す放線菌 Actinomycetaceae 村上覚史 ( 東京農業大学農学部 ) 4. ホウ素を元にした創薬 米国ベンチャー企業で2 剤の FDA 認可を受けた経験談とともにー 赤間勉 ( 元 Anacor Pharmaceuticals,Inc.) 5. 一流誌で目立つ論文撤回: その論文 信じられますか? 長田裕之 ( 理化学研究所環境資源科学研究センター ) 切らないゲノム塩基編集の多様な生物への応用 西田敬二 ( 神戸大学大学院科学技術イノベーション研究科 ) keiji_nishida@people.kobe-u.ac.jp 様々な生物種のゲノム情報を直接操作することが出来るゲノム編集技術は近年著しい進歩を遂げており 生物工学はもちろんのこと生命科学全域においても革命的なツールとなりつつある 代表的な ZFN TALEN CRISPR などは人工ヌクレアーゼと呼ばれるものであるが これらの技術はいずれも標的としたい DNA 配列を特異的に認識するようデザインすることが可能であり 標的部位において DNA 二重鎖切断を引き起こして その後に宿主細胞が修復する過程で配列の変換を期待するものである これまで相同組み換えおよびジーンターゲッティングが困難であった材料においても非常に有効であることから 動物など高等真核生物を中心に急速に導入が進んでいる しかしながら染色体切断による細胞毒性が問題となり 特に多くの微生物等では多くの場合に致死的で利用法が限定的となっている 私たちは新たなゲノム編集技術として ヌクレアーゼ活性と代わる脱アミノ化による塩基変換反応を採用することによって DNA を切らずに書き換える新たなゲノム編集技術 Target-AID の開発に成功 22

76 した これにより標的に点変異を直接導入してゲノム情報を書き換えることが可能で より精密でかつ細胞毒性の低いゲノム編集技術として確立することができた あらゆる生物種において実証が進められているが 特に微生物においては多点同時変異などが容易に行えるようになり 幅広い応用展開が期待される 参考文献 1) Nishida et al., Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science (2016) 2) Shimatani et al., Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature Biotechnology. accepted 微生物解析におけるバイオインフォマティクスの活用 岩崎渉 ( 東京大学大学院理学系研究科 ) iwasaki@bs.s.u-tokyo.ac.jp 近年の微生物解析においてバイオインフォマティクスは不可欠なものとなった 特に第二世代 DN Aシーケンサ ( 次世代 DNAシーケンサ 超並列 DNAシーケンサとも ) の登場はゲノム メタゲノムデータ取得のスピードを革命的に向上するとともに そのコストを大幅に押し下げた 1) 急激な技術革新を表す経験則としてはコンピュータの集積回路に使われる ムーアの法則 が人口に膾炙しているが 驚くべきことに DNAシーケンサの性能向上のスピードはそのムーアの法則によるコンピュータの性能向上のスピードを遥かに上回っている 必然的に 第二世代 DNAシーケンサから産出されるデータを 力ずくで コンピュータ解析するアプローチには限界が見えつつあり バイオインフォマティクス分野においては 最新の情報科学のテクニックに基づいた高速なアルゴリズムの開発 および 新しい生物学的アイデアに基づいた巧妙な切り口からの解析手法の開発が喫緊の課題となっている DNAシーケンサの性能向上が微生物学分野にもたらした最も大きな変化は 第一に解読済み微生物ゲノム配列数の加速度的なペースでの増加であり 第二に環境中の微生物ゲノムDNAを直接読み取るメタゲノム解析の普遍化であろう 世界中で決められつつあるゲノム配列の全貌を把握しうる組織はすでにどこにも存在しないが このことは 微生物ゲノム配列データを大規模に比較解析することで 微生物ゲノムがどのように形作られるのか そのメカニズムを探求することが可能になりつつあることを意味している これまでに演者ら自身も 過去の微生物種がどのようなゲノムを持っていたかを高精度に推定するためのアルゴリズムを開発する 2) とともに 微生物ゲノムの進化の過程で遺伝子水平伝播や遺伝子 ゲノムの重複が大きな役割を果たしたことを明らかにしてきた 3,4,5) また メタゲノム解析は数年前まではごく限られたプロジェクトにおいて採用される研究アプローチであ 23

77 ったが 現在では一つの研究室単位でも行われる日常的なアプローチとなった 6) これらのデータが もたらす膨大な環境微生物叢情報により 現在では 微生物と環境との関係をより俯瞰的な視点から 捉えることが可能になりつつある 7) 本講演では これらの大量のゲノムデータ メタゲノムデータに日々接しバイオインフォマティク ス研究を進めている立場から 話題を提供したい 参考文献 1) Satoshi Hiraoka, Ching-chia Yang, and Wataru Iwasaki. Metagenomics and bioinformatics in microbial ecology: Current status and beyond. Microbes and Environments, 31, (2016) 2) Wataru Iwasaki and Toshihisa Takagi. Reconstruction of highly heterogeneous gene-content evolution across the three domains of life. Bioinformatics, 23, i230-i239. (2007) 3) Wataru Iwasaki and Toshihisa Takagi. Rapid pathway evolution facilitated by horizontal gene transfers across prokaryotic lineages. PLOS Genetics, 5, e (2009) 4) Seishiro Aoki, Motomi Ito, and Wataru Iwasaki. From beta- to alpha-proteobacteria: the origin and evolution of rhizobial nodulation genes nodij. Molecular Biology and Evolution, 30, (2013) 5) Sira Sriswasdi, Masako Takashima, Ri-ichiroh Manabe, Moriya Ohkuma, Takashi Sugita, and Wataru Iwasaki. Global deceleration of gene evolution following recent genome hybridizations in fungi. Genome Research, 26, (2016) 6) Satoshi Hiraoka, Asako Machiyama, Minoru Ijichi, Kentaro Inoue, Kenshiro Oshima, Masahira Hattori, Susumu Yoshizawa, Kazuhiro Kogure, and Wataru Iwasaki. Genomic and metagenomic analysis of microbes in a soil environment affected by the 2011 Great East Japan Earthquake Tsunami. BMC Genomics, 17, 53. (2016) 7) Ching-chia Yang and Wataru Iwasaki. MetaMetaDB: A database and analytic system for investigating microbial habitability. PLOS ONE, 9, e (2014) 24

78 動物に病原性を示す放線菌 Actinomycetaceae 村上覚史 ( 東京農業大学農学部畜産学科家畜衛生学研究室 ) s1muraka@nodai.ac.jp 獣医師は放線菌と聞くと 誰もが牛の顎に形成される放線菌症の原因菌 Actinomyces bovis を思い浮かべます 放線菌学会の会員の方々は放線菌と言えば 抗生物質などを生産する Streptomyces 属のことを思い浮かべることでしょう 寄生虫の駆虫薬 イベルメクチンを知らない獣医師はいませんが 大村智先生のノーベル賞受賞で それが放線菌の産物であったことを知った獣医師も多かったのではないかと思います 獣医師や医師は放線菌と言えばイコール放線菌症を思い浮るのです そこで 今回特に動物における Actinomycetaceae について 私が経験してきた幾つかの症例をもとに病原体としての放線菌についてお話してみようと思います. 臨床的に動物の放線菌症は牛でよく知られ 顎に腫瘍のようなゴツゴツと盛り上がる病巣が形成され 通称 lumpy jaw と言われていました その病巣内に放射状に広がる菌塊 (ray-fungus of the cow) がみられることから A. bovis という種名が誕生しました 豚においても臨床的な放線菌症は昔から知られており 牛と同様の病巣が乳房に形成されます 起因菌は Actinomyces suis と名付けられていましたが しかしその種名である A. suis は現在 尿路感染症の起因菌である Eubacterium suis から転属された種名として扱われています したがって 豚の乳房放線菌症の起因菌としての種名ではありません Actinomyces 属は口腔内常在菌であると一般に考えられていることから牛の口腔で A. bovis の存在の有無が調べられています しかし分離された Actinomyces は A. denticolens, A. howellii, A. slackii という新種ばかりで 肝心の A. bovis はこれまで分離されていません ヒトの扁桃では その陰窩に腐生的な放線菌塊がよくみられます 動物では豚の扁桃陰窩で普通に放線菌塊が存在し この菌塊は典型的な放線菌病巣を形成します 豚扁桃分離株を母豚の乳房に接種すると乳房放線菌症を惹起します われわれは 牛に病原性の強い A. bovis も扁桃陰窩で放線菌病巣を形成するはずだと考え 67 頭の口蓋扁桃を集めて調べましたが 病巣は全く存在しませんでした 最近 海外の馬下顎リンパ節膿瘍から A. denticolens が分離されたことから馬の扁桃を調べたところ ほとんどの扁桃陰窩に放線菌塊が存在し それらの分離菌は牛の口腔から分離された A. denticolens と同一菌種でした 1) さらに驚いたことには 豚の扁桃で常在し 乳房放線菌症を起こした Actinomyces sp. も A. denticolens と同一種であることが判明しました ( 第 31 回放線菌学会 ) その他 Actinomyces 以外にも Arcanobacterium pyogenes は牛に流産を 豚に皮下膿瘍を起こしますが 豚での流産は知られていません ある時 豚の流産胎仔を調べたところ その肺病変が牛のそれとよく類似したことから豚の Arcanobacterium pyogenes による流産かと考えましたが 細菌学的及び 16S rrna 解析の結果 新種となり Arcanobacterium abortisuis と命名されました 2) 現在 両種は Trueperella という新たな属に転属されています 3) 25

79 参考文献 1) Azuma, R., Murakami, S., Ogawa, A., Okada, Y., Myazaki, S. and Makino, T., Arcanobacterium abortisuis sp., isolated from a placenta of a sow following an abortion. Int. J. Syst. Evol. Microbiol., 59: (2009) 2) Murakami, S., Otaki, M., Hayashi, Y., Higuchi, K., Kobayashi, T., Torii, Y., Yokoyama, E., and Azuma, R., Actinomyces denticolens colonisation identified in equine tonsillar crypts. Vet Rec Open 8, 3(1):e (2016) 3) Yassin AF, Hupfer H, Siering C. and Schumann P., Comparative chemotaxonomic and phylogenetic studies on the genus Arcanobacterium Collins et al emend. Lehnen et al. 2006: proposal for Trueperella gen. and emended description of the genus Arcanobacterium. Int J Syst Evol Microbiol., 61: (2011) ホウ素を元にした創薬 - 米国ベンチャー企業で 2 剤の FDA 認可を受けた経験談とともに - 赤間勉 (( 元 )Anacor Pharmaceuticals, Inc.) gakama@gmail.com ホウ素は植物に必須な微量栄養素であり ヒトは野菜や果物などから 平均して1 日数ミリグラム程度のホウ素を摂取していると考えられている 1) 天然のホウ素は 主にホウ酸またはそのエステル類として存在し 炭素 -ホウ素結合を有する有機ホウ素化合物は天然からは見つかっていな い 2) 元素周期表上で炭素の左隣に位置するホウ素を含む化合物には 空の p 軌道のルイス酸性のため アルコールの水酸基などと相互作用することにより sp2-sp3 の 2 つのコンフォメーション間の平衡が存在する この性質を利用することにより タンパク質や核酸など様々な創薬ターゲットと相互作用させることができ 従来の炭素ベースのものとは異なる 新規な医薬品の開発につながることが期待された しかしながら 化学合成された多くの含ホウ素有機化合物が様々な生理活性を示すことは 長年知られてきたものの 2002 年以前は医薬品として開発されるまでには至らなかった 1) 2003 年に 世界初のホウ素含有医薬品となる bortezmib (Velcade ) が多発性骨髄腫の治療薬 ( 注射剤 ) として FDA から認可された 3) その後 2014 年に tavaborole (Kerydin ) が爪白癬の外用剤として 4) 2015 年に bortezmib の第 2 世代となる ixazomib (Ninlaro ) が経口剤として 5) そして 2016 年に crisaborole (Eucrisa TM ) がアトピー性皮膚炎の外用剤として FDA から認可される 6) という ここ数年の認可ラッシュにより 現在までに 4 剤のホウ素含有医薬品が生まれている 26

80 N N O N H O H N Bortezomib OH B OH F OH B O Tavaborole Cl Cl O N H O H N Ixazomib OH B OH N O Crisaborole OH B O 上記 4 剤のうち tavaborole および crisaborole は 米国カリフォルニア州 Palo Alto に位置する Anacor Pharmaceuticals によって開発された 従来の生理活性有機ホウ素化合物の大部分が脂肪族ホウ酸誘導体であったのに対して Anacor 社は芳香環と縮環した benzoxaborole 誘導体に注目して研究開発を行った Benzoxaborole 誘導体は 医薬品候補物質として考えた場合 化学的および代謝的安定性 水溶性や脂溶性等の物性のコントロールのしやすさなど 脂肪族ホウ酸誘導体と比較して様々な利点があることが見出されてきた 1 13 年余りに渡り tavaborole および crisaborole を始めとする 様々な含ホウ素低分子医薬品の研究開発の現場にいた経験を元に 含ホウ素医薬品が従来のものと比べてどう違うのか その利点および課題について紹介する 参考文献 1) Baker, S. J., Ding, C. Z., Akama, T., Zhang, Y-K., Hernandez, V. S., Xia, Y., Therapeutic potential of boron-containing compounds. (Review) Future Med. Chem., 1 (7), (2009) 2) Dembitsky, V. M., Smoum, R., Al-Quntar, A. A., Ali, H. A., Pergament, I., Srebnik, M., Natural occurrence of boron-containing compounds in plants, algae and microorgamisms. Plant Sci., 163, (2002) 3) Navon, A., Ciechanover, A., The 26 S proteasome: From basic mechanism to drug targeting. J. Biol. Chem., 284 (49), (2009) 4) Jinna, S., Finch, J., Spotlight on tavaborole for the treatment of onychomycosis. Drug Des. Devel. Ther., 9, (2015) 5) Shirley, M., Ixazomib: First global approval. Drugs, 76 (3), (2016) 6) 27

81 一流誌で目立つ論文撤回 : その論文 信じられますか? 長田裕之 ( 理研環境資源科学研究センター ) hisyo@riken.jp 2012 年に Nature 誌に驚くべきコメントが掲載された 1) Amgen 社と MD Anderson が がん研究で一流誌に報告された論文を調査したところ 53 報中 6 報 ( 約 11%) しか再現性が得られなかったとのコメントである 2015 年に発表された Global Biological Standards Institute の調査結果では 米国で前臨床試験に使われている予算は約 6 兆円であるが その半分の研究成果が再現できないので 約 3 兆円が無駄になっているとのことである 2) 生物実験では 生物の不均一性や抗体の特異性などが原因となって再現性が得られない場合も多いようだが 最近は 意図的なデータの改ざん ねつ造も目立ってきている 3) 本講演では 私自身の経験 ( 自分で犯したミス 自分が見つけた他者のミス ) を紹介し どうしたらデータ解釈の誤りをなくせるか? 再現性の低い論文を出さないようにできるか? を 聴衆とともに考えたい 参考文献 1) G. Begley & L. M. Ellis: Nature 483: 531 (2012) 2) L. P. Freedman, I. M. Cockburn & T. S. Simcoe: PLOS Biol 13: e (2015) 3) F. C. Fang, F. G. Steen & A. Casadevall: Proc. Natl. Acad. Sci. USA 109: (2012) 28

82 18th International Symposium on the Biology of Actinomycetes (ISBA) 見聞録 去る 2017 年 5 月 23 日から 27 日にかけて 18th International Symposium on the Biology of Actinomycetes (ISBA) が韓国済州島にある ICC で開催された 今回はアメリカ 中国 イギリスを含む 33 カ国から 600 近くの参加者が集まった 日本からは約 70 人が参加した オープニングセレモニーのあと まず ノーベル賞受賞者である大村智博士による特別講演が行われた それに続く最初のプレナリーレクチャーはハーバード大学教授 Roberto Kolter 氏が勤め 微生物間相互作用に関する最新の研究を紹介した 2 日目以降 合計 13 のセッション 5 のワークショプ 7 つのプレナリーレクチャーが行われた 2 日目の Genetics and Cell Biology のセッションでは GFP などの蛍光ラベリングを駆使し 染色体の局在や FtsZ リングの形成に関わる因子の機能解析などの発表が行われ 放線菌に独特の細胞生物学に関して多くを学ぶことができた 3 日目には David Sherman 博士による講演が行われ 電子顕微鏡を駆使したポリケタイド合成酵素の構造変化のダイナミクスに関する発表が行われた 最終日のプレナリーレクチャーは Giles van Wezel 氏が務め 電子顕微鏡を駆使して放線菌の細胞内の構造の解析に関する素晴らし発表を行った いずれも電子顕微鏡を利用した新規発見であり 高解像度の電子顕微鏡の利用は今後 放線菌研究の発展にも大きく寄与することを感じさせた ポスターセションは 2 回に分かれており 合計 301 の発表があった そのうち 約 130 演題が生合成に関連するものであり 放線菌における生合成研究の重要さが伺える また 植物放線菌相互作用や微生物間の相互作用に関わる演題も増加傾向にあり 今後これらの分野の発展が期待される 最終日にはポスター賞の発表があり 合計 12 名がポスター賞を受賞した 日本の参加者からは東京大学 河内護之氏の Soil Cultivation System for Physiological Analysis of Streptomyces griseus と産業技術総合研究所 菅野学氏の Plant-Associated Streptomyces Consume Atmospheric H2 Usin a High-Affinity Hydrogenase 東邦大学 飯坂洋平氏の Effective Production of New Rosamicin Derivatives by Engineered Micromonospora rosaria Mutants with Disruption of a Cytochrome P450 Generated Introduction of the D-mycinose Biosynthetic Genes が受賞した 最後に次回の ISBA の開催地がトロントであることが告知され 本大会は閉会した ( 東京大学大学院農学生命科学研究科勝山陽平 ) 29

83 大村智先生の特別講演 ポスター発表の様子 ポスター賞授賞 30

84 9th US-Japan Seminar on Natural Product Biosynthesis 見聞録 五年に一度 日米の天然物の生合成研究者が一堂に集まって研究発表を行う 9th US-Japan Seminar on Natural Product Biosynthesis が 5 月 30 日から 6 月 4 日まで米国カリフォルニア州のレークアローヘッドで行われました 今回は日米合わせて 49 名の参加者で皆さんそれぞれ 30 分の発表を 6 日間にわたって行うという きわめて内容の濃いセミナーでした SAJ からは東大の阿部郁郎氏 西山真氏 葛山智久氏 勝山陽平氏 北大の大利徹氏 筑波大学の小林達彦氏 福井県大の濱野吉十氏 広島大学の荒川賢治氏 理研の長田裕之氏 そして私とたくさんの方が参加しました これだけ生合成研究者ばかりが一堂に集まっての発表を聴くと 生合成研究の現代の潮流が理解できてとても興味深いセミナーでした 生合成研究は以前より深く 細かい結果が求められていると感じました 分析機器の進歩などを巧みに組み込んで研究を進めて行くことが求められているようです たとえば結晶構造なら単なるスナップショットではなく各反応段階ごとに解析したり クライオ EM なども駆使して よりダイナミックに酵素反応をとらえる感じに進んでいます また ポスト生合成研究も重要性を増しており 得られた生合成反応から新しい化合物の創製やバイオインフォを用いてより簡単により正確に天然物を探索する手法なども今後の天然物生合成研究の流れなのではないかと感じました 標高 1 マイルのアローヘッド湖のほとりに建っている UCLA のカンファレンスセンターが会場でしたが その会場が素晴らしく まるで軽井沢の別荘のような感じ ( 行ったことないけど ) でした 皆さんで同じところに泊まって文字通り寝食を共にして勉強しましたので さしずめ合宿のような感じでしょうか 8 時から朝食 9 時から 12 時まで午前のセッション 12 時からランチ 13 時から 18 時までフリータイム 18 時から 20 時まで夕食 20 時から 23 時まで夜のセッションとなっており お昼がフリーなので 皆さんテニスをしたり散歩したり 部屋で仕事したりして過ごしていました 食事もレストランでみんなで丸テーブルに座って食べているので 本当に合宿のようです 次回は 5 年後に日本でということになっています ( 東京大学大学院農学生命科学研究科尾仲宏康 ) 31

85 参加者の集合写真 ( 上 ) セミナー会場 ( 上 ) セミナー参加者そろっての夕食風景 ( 右上 ) 会場となった UCLA レークアローヘッドカンファレンスセンター ( 右 ) 32

86 日本放線菌学会賛助会員 中外製薬 ( 株 ) 鎌倉研究所創薬資源研究部長瀬産業 ( 株 ) 研究開発センターアステラスファーマテック ( 株 ) 富山技術センター技術開発部協和発酵キリン ( 株 ) 研究本部創薬化学研究所 ( 公財 ) 微生物化学研究会微生物化学研究所第一三共 RD ノバーレ ( 株 ) 合成化学研究部天然物グループ Meiji Seika フアルマ ( 株 ) 足柄研究所日本マイクロバイオファーマ ( 株 ) 研究開発部合同酒精 ( 株 ) 酵素医薬品研究所図書室味の素株式会社 イノベーション研究所大鵬薬品工業株式会社天然物フロンティア研究所トヨタ紡織株式会社基礎研究所富士シリシアチーム未来グループ 著作権について 本誌に掲載された論文 抄録 記事等の著作権は 日本放線菌学会に帰属します これら著作物の 一部または全部をいかなる形式でもそのまま転載しようとするときは 学会事務局から転載許可を得 て下さい 日本放線菌学会誌第 31 巻 1 号 ACTINOMYCETOLOGICA 平成 29 年 7 月 14 日発行 編集兼発行日本放線菌学会 千葉県木更津市かずさ鎌足 独立行政法人製品評価技術基盤機構 バイオテクノロジーセンター (NBRC) 生物資源利用促進課内 TEL FAX info@actino.jp 年間購読料 5,000 円 ( 会員無料 ) 33

87

88

SAJ NEWS Vol 27, No 1, 2013 Contents Outline of SAJ: Activities and Membership S 2 List of new scientific names and nomenclatural changes in the class

SAJ NEWS Vol 27, No 1, 2013 Contents Outline of SAJ: Activities and Membership S 2 List of new scientific names and nomenclatural changes in the class ISSN 0914-5818 2013 VOL 27 NO 1 ACTINOMYCETOLOGICA VOL 27 NO 1 CTINOMYCETOLO GIC SAJ NEWS Vol 27, No 1, 2013 Contents Outline of SAJ: Activities and Membership S 2 List of new scientific names and nomenclatural

More information

Abstract 1 1 2 Abstract Fig. 1 Fig. 2 Fig. 3 Abstract 1 2 3 4 5 6 7 8 10 9 Abstract 1 1 2 3 4 5 6 7 8 9 Abstract 1 2 3 4 Abstract 1 1 2 2 3 4 5 6 3 7 8 9 4 Abstract 1 2 3 4 5 6 7 8 9 10

More information

A message from Mr. Ben McCracken, Resident Director of Japan Center for Michigan Universities. News Letters Annual Meeting Activity report for the Year 2013 Other Activities Board Meetings MSU Alumni

More information

untitled

untitled ASCO DAILY NEWS SATURDAY JUNE 5, 2010 THE OFFICIAL DAILY NEWSPAPER OF THE ASCO ANNUAL MEETING 2010 ANNUAL MEETING CHICAGO, IL ISSUE 1 SECTION A INSIDE THIS SECTION 2A 4A 6A 8A 10A 11A 15A Translation of

More information

06’ÓŠ¹/ŒØŒì

06’ÓŠ¹/ŒØŒì FD. FD FD FD FD FD FD / Plan-Do-See FD FD FD FD FD FD FD FD FD FD FD FD FD FD JABEE FD A. C. A B .. AV .. B Communication Space A FD FD ES FD FD The approach of the lesson improvement in Osaka City University

More information

GH_013_JP.indb

GH_013_JP.indb GH CONTENTS 2 3 4 5 6 7 8 9 1 14 15 18 19 2 21 22 24 25 26 27 33 34 34 35 36 37 38 39 1 GH 7 GH 17 GH 24 2 GH 4 3 4 5 1. 2. 3. 4. 5. 6. 7. 8. 6 7 8 GH7 GH17 GH24 GH4 GH1 11 461/41 4.25 1-5 21 21 69 5

More information

Vol.40 No.5△/△0 目次[三]10.23

Vol.40 No.5△/△0 目次[三]10.23 ! Department of Management, Miyagi University, 2 2 1 Hatatate Taihaku-ku Sendai, Miyagi 982 0215 Industrial Technology Institute, Miyagi Prefectural Government, 2 2 Akedoori Izumi-ku Sendai, Miyagi 981

More information

/ p p

/ p p http://alce.jp/journal/ 14 2016 pp. 33-54 ISSN 2188-9600 * 3 Copyright 2016 by Association for Language and Cultural Education 1 2012 1 1 * E-mail: mannami.eri@gmail.com 33 1980 1990 2012 1998 1991/1993

More information

February 5, 2019 Japan Pulp & Paper Co., Ltd. Change of Directors of the Board and Executive Officers Japan Pulp & Paper Co., Ltd. resolved the follow

February 5, 2019 Japan Pulp & Paper Co., Ltd. Change of Directors of the Board and Executive Officers Japan Pulp & Paper Co., Ltd. resolved the follow February 5, 2019 Japan Pulp & Paper Co., Ltd. Change of Directors of the Board and s Japan Pulp & Paper Co., Ltd. resolved the following changes at the meeting of the board of directors on February 5,2019.

More information

日本感性工学会論文誌

日本感性工学会論文誌 Vol.13 No.2 pp.391-402 2014 PROGRESS Consideration of the Transition in Mitsubishi Electric Corporate Website Design Transition in Response to Environmental Change and Record through the Case of Corporate

More information

CRA3689A

CRA3689A AVIC-DRZ90 AVIC-DRZ80 2 3 4 5 66 7 88 9 10 10 10 11 12 13 14 15 1 1 0 OPEN ANGLE REMOTE WIDE SET UP AVIC-DRZ90 SOURCE OFF AV CONTROL MIC 2 16 17 1 2 0 0 1 AVIC-DRZ90 2 3 4 OPEN ANGLE REMOTE SOURCE OFF

More information

.\..ol.eps

.\..ol.eps 1 2007 2008 2008 88 38 NGO 44 1 1 18 33 2008 10 2 2008 30 1 2006 18 2006 11 24 12 2007 2007 2007 11 2008 101 1297 Dragutin Dado Kovacevic 34 111 15 14 16 2007 11 3 12 1 10 a b c d e 4 25 1950 2008 11 25

More information

一部の論文は web 非掲載です Journal of International Student Advisors and Educators Volume 18 / 2015 3 7 13 19 31 45 57 71 85 111 115 101 123 124 126 135 131 132 146 Vol.18 pp.3 Vol.18 3 4 Vol.18 Vol.18 5 6 Vol.18

More information

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e No. 1 1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e I X e Cs Ba F Ra Hf Ta W Re Os I Rf Db Sg Bh

More information

untitled

untitled JAIS A s the profession of interpreting matures, it becomes important to create shared understandings of what is considered high quality and what is the expected level of ethical behavior. To this end,

More information

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf 1,a) 2,b) 4,c) 3,d) 4,e) Web A Review Supporting System for Whiteboard Logging Movies Based on Notes Timeline Taniguchi Yoshihide 1,a) Horiguchi Satoshi 2,b) Inoue Akifumi 4,c) Igaki Hiroshi 3,d) Hoshi

More information

昭和25年8月24日 第3種郵便物認可 平成25年4月10日発行 毎月1回10日発行 第69巻4号 通巻第805号 CODEN:SENGA 5 ISSN 0037-9875 h t t p : / / w w w. f i b e r. o r. j p / The Society of Fiber Science and Technology, Japan 繊 維 学 会 誌 繊維と工業 Reviews

More information

16_.....E...._.I.v2006

16_.....E...._.I.v2006 55 1 18 Bull. Nara Univ. Educ., Vol. 55, No.1 (Cult. & Soc.), 2006 165 2002 * 18 Collaboration Between a School Athletic Club and a Community Sports Club A Case Study of SOLESTRELLA NARA 2002 Rie TAKAMURA

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

Keynote Speech lntroducing the IAMCR: The International Association for Media & Communication Research Janet Wasko President of IAMCR (Professor, University of Oregon) IAMCR is a global professional association

More information

Bull. of Nippon Sport Sci. Univ. 47 (1) Devising musical expression in teaching methods for elementary music An attempt at shared teaching

Bull. of Nippon Sport Sci. Univ. 47 (1) Devising musical expression in teaching methods for elementary music An attempt at shared teaching Bull. of Nippon Sport Sci. Univ. 47 (1) 45 70 2017 Devising musical expression in teaching methods for elementary music An attempt at shared teaching materials for singing and arrangements for piano accompaniment

More information

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [ Vol.2, No.x, April 2015, pp.xx-xx ISSN xxxx-xxxx 2015 4 30 2015 5 25 253-8550 1100 Tel 0467-53-2111( ) Fax 0467-54-3734 http://www.bunkyo.ac.jp/faculty/business/ 1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The

More information

Frequently Asked Questions (FAQ) About Sunsetting the SW-CMMR

Frequently Asked Questions (FAQ) About Sunsetting the SW-CMMR SW-CMM FAQ(Frequently Asked Questions) SEI Frequently Asked Questions (FAQ) About Sunsetting the SW-CMM The SEI Continues Its Commitment to CMMI SEI SEI SEI PDF WWW norimatsu@np-lab.com 2002/11/27 SEI

More information

<95DB8C9288E397C389C88A E696E6462>

<95DB8C9288E397C389C88A E696E6462> 2011 Vol.60 No.2 p.138 147 Performance of the Japanese long-term care benefit: An International comparison based on OECD health data Mie MORIKAWA[1] Takako TSUTSUI[2] [1]National Institute of Public Health,

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

Juntendo Medical Journal

Juntendo Medical Journal * Department of Health Science Health Sociology Section, Juntendo University School of Health and Sports Science, Chiba, Japan (WHO: Ottawa Charter for Health promotion, 1986.) (WHO: Bangkok Charter

More information

英国のFunding Agency としてのResearch Councils の役割

英国のFunding Agency としてのResearch Councils の役割 Funding Agency Research Councils Chief Scientific Advisor Cabinet Parliament Council for Science & Technology Department of Trade & Industry Office of Science & Technology Director General of the Research

More information

Microsoft Word - PCM TL-Ed.4.4(特定電気用品適合性検査申込のご案内)

Microsoft Word - PCM TL-Ed.4.4(特定電気用品適合性検査申込のご案内) (2017.04 29 36 234 9 1 1. (1) 3 (2) 9 1 2 2. (1) 9 1 1 2 1 2 (2) 1 2 ( PSE-RE-101/205/306/405 2 PSE-RE-201 PSE-RE-301 PSE-RE-401 PSE-RE-302 PSE-RE-202 PSE-RE-303 PSE-RE-402 PSE-RE-203 PSE-RE-304 PSE-RE-403

More information

APUにおける国際化と課題

APUにおける国際化と課題 APU APU Globalization & Issues Specific to APU APU YAKUSHIJI Kimio Vice President, APU 1 2008 Annual report of self-evaluation and evaluation activities Clarifying aims of mid-term plan and organization

More information

Title < 論文 > 多重債務者の救済活動 : ある 被害者の会 のエスノグラフィー Author(s) 大山, 小夜 Citation 京都社会学年報 : KJS = Kyoto journal of so 113-137 Issue Date 1998-12-25 URL http://hdl.handle.net/2433/192561 Right Type Departmental Bulletin

More information

m m Satoshi SATO 48

m m Satoshi SATO 48 46 22 3 23 REPORT OF HYDROGRAPHIC AND OCEANOGRAPHIC RESEARCHES No.46 March, 2010 Activities on Tides at Hydrographic Department in Meiji Era Satoshi SATO : Environmental and Oceanographic Division Abstract

More information

大学論集第42号本文.indb

大学論集第42号本文.indb 42 2010 2011 3 279 295 COSO 281 COSO 1990 1 internal control 1 19962007, Internal Control Integrated Framework COSO COSO 282 42 2 2) the Committee of Sponsoring Organizations of the Treadway committee

More information

日本感性工学会論文誌

日本感性工学会論文誌 pp.343-351 2013 Changes in Three Attributes of Color by Reproduction of Memorized Colors Hiroaki MIYAKE, Takeshi KINOSHITA and Atsushi OSA Graduate School of Science and Engineering, Yamaguchi University,

More information

untitled

untitled VQT3B82-1 DMP-BDT110 μ μ μ 2 VQT3B82 ÇÕÇ¹Ç Ç +- VQT3B82 3 4 VQT3B82 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ij SD 1 2 3 4 5 6 7 8 Í VQT3B82 5 BD DVD CD SD USB 6 VQT3B82 2 ALL 1 2 4 VQT3B82 7

More information

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alternative approach using the Monte Carlo simulation to evaluate

More information

03J_sources.key

03J_sources.key Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E

More information

空き容量一覧表(154kV以上)

空き容量一覧表(154kV以上) 1/3 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量 覧 < 留意事項 > (1) 空容量は 安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発 する場合があります (3) 表 は 既に空容量がないため

More information

2010 No Campus News 01

2010 No Campus News 01 No.46 2010 3 Yokohama National University 2010 No.46 2 8 10 12 12 14 Campus News 01 Campus News 02 03 Campus News Campus News 04 05 Campus News Campus News 06 07 Campus News Campus News 08 09 Campus News

More information

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし 1/8 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発生する場合があります (3)

More information

学位研究17号

学位研究17号 1715 3 The Student Transfer and the Articulation System in Chinese Higher Education HUANG Meiying Research in Academic Degrees, No. 17 March, 2003the article The Journal on Academic Degrees of National

More information

7)核41-3 索引 (出力

7)核41-3 索引 (出力 393 PET WG WP Work in Progress ( ) (S22 S23 ) 2 272 2 404 2 356 3 459 1 124 2P044, 3 449 2P058 1 055 2P060 2P042, 2P045, 3 458 1 062, 1 184, 1 185, 1 194, 2 382 2 290 2P029 2 246, 2 371, 2P030 2P048 1

More information

2

2 Vol. 107, No.2 February-March, 2010 Monthly Journal of the Japan-India Association 2 3 4 5 6 7 200910 64 2010 8 9 10 11 12 13 14 15 16 17 व स भ रत य स म न 18 The Japan-India Association (JIA) will highly

More information

Title < 論文 > 公立学校における在日韓国 朝鮮人教育の位置に関する社会学的考察 : 大阪と京都における 民族学級 の事例から Author(s) 金, 兌恩 Citation 京都社会学年報 : KJS = Kyoto journal of so 14: 21-41 Issue Date 2006-12-25 URL http://hdl.handle.net/2433/192679 Right

More information

1951 3 27 1,328199 6,815 1973 1974 11973 1974 1 23 2 1 18 19 20 1943 1952 2 20097 62

1951 3 27 1,328199 6,815 1973 1974 11973 1974 1 23 2 1 18 19 20 1943 1952 2 20097 62 1945 6 11 1940 17 18 20 7 10 18 19 20 1 2006218 1 2003263 1951 1951 5 51 61 1951 3 27 1,328199 6,815 1973 1974 11973 1974 1 23 2 1 18 19 20 1943 1952 2 20097 62 199 01-001 01-035 02-001 02-083 03-001 03-021

More information

*.E....... 139--161 (..).R

*.E....... 139--161 (..).R A Preliminary Study of Internationalization at the Local Level: The Case of Aikawa Town in Kanagawa Prefecture, Japan FUKUSHIMA Tomoko and FUJISHIRO Masahito In recent years, as foreign residents increase

More information

B5 H1 H5 H2 H1 H1 H2 H4 H1 H2 H5 H1 H2 H4 S6 S1 S14 S5 S8 S4 S4 S2 S7 S7 S9 S11 S1 S14 S1 PC S9 S1 S2 S3 S4 S5 S5 S9 PC PC PC PC PC PC S6 S6 S7 S8 S9 S9 S5 S9 S9 PC PC PC S9 S10 S12 S13 S14 S11 S1 S2

More information

ANNUALREPORT2011

ANNUALREPORT2011 5 / 5.1 5 078 5.2 079 5.3 082 5.4 089 5.5 097 5.6 / 100 5.7 117 5.8 118 5.9 120 5.10 121 / 20072008200920102011 3 31 3 31 2007 2008 2009 2010 2011 969,713 1,202,965 1,076,165 840,427 943,080 607,401 783,465

More information

EVALUATION OF MAGNETIC RESONANCE IMAGING (MRI) IN DIAGNOSIS OF ACOUSTIC NEUROMA-COMPARATIVE STUDY WITH PLAIN X-RAY AND CTS- KIMIHISA NOMURA, M.D., MAK

EVALUATION OF MAGNETIC RESONANCE IMAGING (MRI) IN DIAGNOSIS OF ACOUSTIC NEUROMA-COMPARATIVE STUDY WITH PLAIN X-RAY AND CTS- KIMIHISA NOMURA, M.D., MAK EVALUATION OF MAGNETIC RESONANCE IMAGING (MRI) IN DIAGNOSIS OF ACOUSTIC NEUROMA-COMPARATIVE STUDY WITH PLAIN X-RAY AND CTS- KIMIHISA NOMURA, M.D., MAKOTO SAKAI, M.D., ATSUSHI SHINKAWA, M.D. and HIROSATO

More information

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C( 3 3.1 3.1.1 1 1 A P a 1 a P a P P(a) a P(a) a P(a) a a 0 a = a a < 0 a = a a < b a > b A a b a B b B b a b A a 3.1 A() B(5) AB = 5 = 3 A(3) B(1) AB = 3 1 = A(a) B(b) AB AB = b a 3.1 (1) A(6) B(1) () A(

More information

r' /'!\

r' /'!\ r' /'!\ Dear Fellow Rotarians and Guests. Please accept from June and I the warmest greetings for a successful and enjoyable Conference. District Governor Hisayoshi Nakamura and his District Conference

More information

04-“²†XŒØ‘�“_-6.01

04-“²†XŒØ‘�“_-6.01 Bull. Natn. Sci. Mus., Tokyo, Ser. E, 28, pp. 31 47, December 22, 2005 169 0073 3 23 1 153 8904 4 6 1 270 2261 2 16 4 124 0014 2 10 15 523 0058 961 The Mechanism of Automatic Display for the Temporal Hour

More information

Vol.60 No.3 December JACAR Ref. A - -

Vol.60 No.3 December JACAR Ref. A - - Title 明治期の大阪高等工業学校 Author(s) 沢井, 実 Citation 大阪大学経済学. 60(3) P.1-P.21 Issue 2010-12 Date Text Version publisher URL http://doi.org/10.18910/51033 DOI 10.18910/51033 Rights Osaka University Vol.60 No.3 December

More information

Title 社 会 化 教 育 における 公 民 的 資 質 : 法 教 育 における 憲 法 的 価 値 原 理 ( fulltext ) Author(s) 中 平, 一 義 Citation 学 校 教 育 学 研 究 論 集 (21): 113-126 Issue Date 2010-03 URL http://hdl.handle.net/2309/107543 Publisher 東 京

More information

VQT3B86-4 DMP-HV200 DMP-HV150 μ μ l μ

VQT3B86-4 DMP-HV200 DMP-HV150 μ μ l μ -4 DMP-HV200 DMP-HV150 μ μ l μ [DMP-HV200] l [DMP-HV200] l +- l l j j j[dmp-hv200] l l l [DMP-HV200] l l l l [DMP-HV200] l [DMP-HV200] l l [DMP-HV200] l [DMP-HV200] [DMP-HV150] l l Ë l l l l l l l l l

More information

VQT3A26-1 DMR-T2000R μ μ μ ! R ! l l l [HDD] [BD-RE] [BD-R] [BD-V] [RAM] [-R] [-R]DL] [-RW] [DVD-V] [CD] [SD] [USB] [RAM AVCREC ] [-R AVCREC ] [-R]DL AVCREC ] [RAM VR ][-R VR ] [-R]DL VR ] [-RW VR ]

More information

.D.q

.D.q October COS October October October G H b October b b b a a a b October a October c a b c a b October a b Taneaki Hara s Career and Achievements: Focus on His Activities at the Central Charity Association

More information

[2] 1. 2. 2 2. 1, [3] 2. 2 [4] 2. 3 BABOK BABOK(Business Analysis Body of Knowledge) BABOK IIBA(International Institute of Business Analysis) BABOK 7

[2] 1. 2. 2 2. 1, [3] 2. 2 [4] 2. 3 BABOK BABOK(Business Analysis Body of Knowledge) BABOK IIBA(International Institute of Business Analysis) BABOK 7 32 (2015 ) [2] Projects of the short term increase at present. In order to let projects complete without rework and delays, it is important that request for proposals (RFP) are written by reflecting precisely

More information

CA HP,,,,,,.,,,,,,.,,,,,,.,,,,,,.,,,,,,.,,,,,,.,,,,,,.,,,,,.,,,,,.,,,,,.,,,,,.,,,,,.,,,,,.,,,,,.,,,,,.,,,,,,.,,,,,.,,,,,,.,,,,,.,,,,,.,,,,,,.,,,,,,.,,

CA HP,,,,,,.,,,,,,.,,,,,,.,,,,,,.,,,,,,.,,,,,,.,,,,,,.,,,,,.,,,,,.,,,,,.,,,,,.,,,,,.,,,,,.,,,,,.,,,,,.,,,,,,.,,,,,.,,,,,,.,,,,,.,,,,,.,,,,,,.,,,,,,.,, Ritsumeikan Alumni Program CA HP,,,,,,.,,,,,,.,,,,,,.,,,,,,.,,,,,,.,,,,,,.,,,,,,.,,,,,.,,,,,.,,,,,.,,,,,.,,,,,.,,,,,.,,,,,.,,,,,.,,,,,,.,,,,,.,,,,,,.,,,,,.,,,,,.,,,,,,.,,,,,,.,,,,,.,,,,,. ,,, :,, :,,,

More information

untitled

untitled Copyright - Zac Poonen (1999) This book has been copyrighted to prevent misuse. It should not be reprinted or translated without written permission from the author. Permission is however given for any

More information

CONTENTS 3 8 10 12 14 15 16 17 18 19 28 29 30 Public relations brochure of Higashikawa 9 2016 September No.755 2

CONTENTS 3 8 10 12 14 15 16 17 18 19 28 29 30 Public relations brochure of Higashikawa 9 2016 September No.755 2 9 2016 September No.755 CONTENTS 3 8 10 12 14 15 16 17 18 19 28 29 30 Public relations brochure of Higashikawa 9 2016 September No.755 2 3 5 4 6 7 9 8 11 10 HIGASHIKAWA TOWN NEWS 12 13 DVD 14 Nature Column

More information

IPSJ SIG Technical Report Vol.2010-NL-199 No /11/ treebank ( ) KWIC /MeCab / Morphological and Dependency Structure Annotated Corp

IPSJ SIG Technical Report Vol.2010-NL-199 No /11/ treebank ( ) KWIC /MeCab / Morphological and Dependency Structure Annotated Corp 1. 1 1 1 2 treebank ( ) KWIC /MeCab / Morphological and Dependency Structure Annotated Corpus Management Tool: ChaKi Yuji Matsumoto, 1 Masayuki Asahara, 1 Masakazu Iwatate 1 and Toshio Morita 2 This paper

More information

/‚“1/ŒxŒ{‚×›î’æ’¶

/‚“1/ŒxŒ{‚×›î’æ’¶ 60 1 pp.3-8 2010 1. H1N1 1) 2) 3) 4) ERATO 2009 H1N1 21 H1N1 HA PB2 2009 3 Pandemic H1N1 2009 WHO 6 11 21 2009 11 2010 4 21 H1N1 H1N1 2009 4 15 CDC 108-8639 4-6-1 TEL: 03-5449-5281 FAX: 03-5449-5408 E-mail:

More information

02Takeishi-Fukumori.pdf

02Takeishi-Fukumori.pdf (Research in Experimental Phonetics and Linguistics) 7: 45-63 (2015) /da/ /ra/ /ra/ /da/ 1. 1.1 ( ) ( ) ( ) [ɾ] 1 2 [l] 1 (1998 104-105) [ɾ] [ɺ] [d] / C 26370458 45 (2003 11) [ɾ] [t] [l] [ɺ] (2010 215)

More information

11 12 13 14 102 102 102 83 39 38 37 31 141 140 139 114 (1) 14 17/23(73.9% 9 ) 651/660(98.6%) (2) 14 9 356 (3) 1,200 1,000 100 100 (4) 1,600 2,000 (5) 14 8 (6) 10,633 8,308 (7) 14 14 660 14 383 14 14 1,043

More information

評論・社会科学 123号(P)☆/1.福田

評論・社会科学 123号(P)☆/1.福田 1 23 1 1-1 1-2 2 2-1 2-2 2-3 3 3-1 3-2 3-3 3-4 4 1 2 3 4 2017 9 27 2017 10 16 1 2015 1 1-1 A 2 A 2006 2007 A A 3 1-2 27 2 28 11 DVD 20 3 3 1 Nind Walmsley and Johnson 2008 Nind 2014 2017 8 Walmsley 4 Walmsley

More information

49148

49148 Research in Higher Education - Daigaku Ronshu No.24 (March 1995) 77 A Study of the Process of Establishing the Student Stipend System in the Early Years of the PRC Yutaka Otsuka* This paper aims at explicating

More information

Contents Logging in 3-14 Downloading files from e-ijlp 15 Submitting files on e-ijlp Sending messages to instructors Setting up automatic

Contents Logging in 3-14 Downloading files from e-ijlp 15 Submitting files on e-ijlp Sending messages to instructors Setting up automatic e-ijlp(lms) の使い方 How to Use e-ijlp(lms) 学生用 / Guidance for Students (ver. 2.1) 2018.3.26 金沢大学総合日本語プログラム Integrated Japanese Language Program Kanazawa University Contents Logging in 3-14 Downloading files

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

How to read the marks and remarks used in this parts book. Section 1 : Explanation of Code Use In MRK Column OO : Interchangeable between the new part

How to read the marks and remarks used in this parts book. Section 1 : Explanation of Code Use In MRK Column OO : Interchangeable between the new part Reservdelskatalog MIKASA MT65H vibratorstamp EPOX Maskin AB Postadress Besöksadress Telefon Fax e-post Hemsida Version Box 6060 Landsvägen 1 08-754 71 60 08-754 81 00 info@epox.se www.epox.se 1,0 192 06

More information

Core Ethics Vol. ALS QOL

Core Ethics Vol. ALS QOL Core Ethics Vol. : : :... : ; ; ; ; ; ; ; Core Ethics Vol. ALS QOL b: b: : - b: b: b: Core Ethics Vol. b: b: NHK b: Core Ethics Vol. b: ITP,, OTK Japan Patients Council JPC : JPC JPC Japan Patients Association

More information

『広島平和科学』24 (2002) pp

『広島平和科学』24 (2002)  pp 25 (2003) pp. 123-143 ISSN0386-3565 Hiroshima Peace Science 25 (2003) A Comparative Sociological Study of Peace Museums and Military Museums Toshifumi MURAKAMI Kyoto University of Education Affiliated

More information

〈論文〉近代日本の社会事業雑誌 : 『教誨叢書』

〈論文〉近代日本の社会事業雑誌 : 『教誨叢書』 Kwansei Gakuin University Rep Title 論 文 近 代 日 本 の 社 会 事 業 雑 誌 : 教 誨 叢 書 Author(s) Citation Murota, Yasuo, 室 田, 保 夫 関 西 学 院 大 学 人 権 研 究 = Kwansei Gakuin Universi rights studies, 15: 1-17 Issue Date 2011-03-31

More information

How to read the marks and remarks used in this parts book. Section 1 : Explanation of Code Use In MRK Column OO : Interchangeable between the new part

How to read the marks and remarks used in this parts book. Section 1 : Explanation of Code Use In MRK Column OO : Interchangeable between the new part Reservdelskatalog MIKASA MVB-85 rullvibrator EPOX Maskin AB Postadress Besöksadress Telefon Fax e-post Hemsida Version Box 6060 Landsvägen 1 08-754 71 60 08-754 81 00 info@epox.se www.epox.se 1,0 192 06

More information

H1-H4

H1-H4 42 S H He Li H He Li Be B C N O F Ne Be B C N O F Ne H He Li Be B H H e L i Na Mg Al Si S Cl Ar Na Mg Al Si S Cl Ar C N O F Ne Na Be B C N O F Ne Na K Sc T i V C r K Sc Ti V Cr M n F e C o N i Mn Fe Mg

More information

X線分析の進歩36 別刷

X線分析の進歩36 別刷 X X X-Ray Fluorescence Analysis on Environmental Standard Reference Materials with a Dry Battery X-Ray Generator Hideshi ISHII, Hiroya MIYAUCHI, Tadashi HIOKI and Jun KAWAI Copyright The Discussion Group

More information

The Plasma Boundary of Magnetic Fusion Devices

The Plasma Boundary of Magnetic Fusion Devices ASAKURA Nobuyuki, Japan Atomic Energy Research Institute, Naka, Ibaraki 311-0193, Japan e-mail: asakuran@fusion.naka.jaeri.go.jp The Plasma Boundary of Magnetic Fusion Devices Naka Fusion Research Establishment,

More information

untitled

untitled TZ-BDT910M TZ-BDT910F TZ-BDT910P μ μ μ μ TM VQT3F51-1 l l l [HDD] [BD-RE] [BD-R] [DVD-V] [BD-V] [RAM] [CD] [SD] [-R] [USB] [-RW] [RAM AVCREC ] [-R AVCREC ] [RAM VR ][-R VR ] [-RW VR ] [-R V ] [-RW

More information

How to read the marks and remarks used in this parts book. Section 1 : Explanation of Code Use In MRK Column OO : Interchangeable between the new part

How to read the marks and remarks used in this parts book. Section 1 : Explanation of Code Use In MRK Column OO : Interchangeable between the new part Reservdelskatalog MIKASA MVC-50 vibratorplatta EPOX Maskin AB Postadress Besöksadress Telefon Fax e-post Hemsida Version Box 6060 Landsvägen 1 08-754 71 60 08-754 81 00 info@epox.se www.epox.se 1,0 192

More information

untitled

untitled c 1. 2 2011 2012 0.248 0.252 1 Data Envelopment Analysis DEA 4 2 180 8633 3 3 1 IT DHARMA Ltd. 272 0122 1 14 12 13.10.7 14.5.27 DEA-AR (Assurance Region) 1 DEA 1 1 [1] 2011 2012 220 446 [2] 2. [2] 1 1

More information

LM4663 2 Watt Stereo Class D Audio Pwr Amp w/Stereo Headphone Amplifier (jp)

LM4663 2 Watt Stereo Class D Audio Pwr Amp w/Stereo Headphone Amplifier (jp) 2 Watt Stereo Class D Audio Power Amplifier with Stereo Headphone Amplifier Literature Number: JAJS693 Boomer 2006 4 A very minor text edit (typo). (MC) Converted to nat2000 DTD. Few edits on Table 1 and

More information

untitled

untitled Quantitative Risk Assessment on the Public Health Impact of Pathogenic Vibrio parahaemolyticus in Raw Oyster 1 15 5 23 48 2 21 1 16 1 16 1 11 3 1 3 4 23 1 2 16 12 16 5 6 Hazard IdentificationExposure

More information

Radiation induced colour centres in vitreous systems Stevels, J.M. Published in: Yogyo Kyokaishi Gepubliceerd: 01/01/1967 Document Version Uitgevers PDF, ook bekend als Version of Record Please check the

More information

LX2_test.book

LX2_test.book LEICA D-LUX 3 O 6 H 8 7 A W I D J C E 1 2 K L J Z Q R R M C-AF N T U M 3 a j b l g R e & f i 0 N M L Q O i SCN 0 n n r n n n n n n n n n n n e w q r LEICA LEICA LEICA LEICA LEICA LEICA LEICA LEICA LEICA

More information

Fig.1 MICs of penicillins against 24 strains of B. pertussis Fig.2 MICs of cepherns against 24 strains of B. pertussis Fig.3 MICs of macrolides against 24 strains of B. pertussis Fig.4 MICs of nalidixic

More information

ISSN NII Technical Report Patent application and industry-university cooperation: Analysis of joint applications for patent in the Universit

ISSN NII Technical Report Patent application and industry-university cooperation: Analysis of joint applications for patent in the Universit ISSN 1346-5597 NII Technical Report Patent application and industry-university cooperation: Analysis of joint applications for patent in the University of Tokyo Morio SHIBAYAMA, Masaharu YANO, Kiminori

More information

SpecimenOTKozGo indd

SpecimenOTKozGo indd TM The Kozuka Gothic TM typeface family is composed of six weights that cover various uses ranging from body text composition to headline compositions. This typeface family is now available in OpenType

More information

How to read the marks and remarks used in this parts book. Section 1 : Explanation of Code Use In MRK Column OO : Interchangeable between the new part

How to read the marks and remarks used in this parts book. Section 1 : Explanation of Code Use In MRK Column OO : Interchangeable between the new part Reservdelskatalog MIKASA MCD-L14 asfalt- och betongsåg EPOX Maskin AB Postadress Besöksadress Telefon Fax e-post Hemsida Version Box 6060 Landsvägen 1 08-754 71 60 08-754 81 00 info@epox.se www.epox.se

More information

431 a s a s a s d a s a 10 d s 11 f a 12 g s 13 a 14 a 15

431 a s a s a s d a s a 10 d s 11 f a 12 g s 13 a 14 a 15 431 a s a s a s d a sa 10ds 11fa 12gs 13a 14a 15 a s d f g h a s d 10f 11g a 12h s 13j a 14k s 15 432 433 10 11 12 13 14 15 10 11 12 13 14 15 434 10 11 12 13 14 15 10 11 12 13 14 15 10 11 12 13 14 15 435

More information

高橋(由)氏_a_4.indd

高橋(由)氏_a_4.indd 55 2014 1950 2012 12 22 1977 Abegglen, J. C. OECD, 1958 The Japanese Factory 1 10 1973 Management and Worker 1974 2 OECD 1973 1 Abegglen, J. C. (1958), The Japanese Factory 1958 1982 165 194 2 Abegglen,

More information

IR0036_62-3.indb

IR0036_62-3.indb 62 3 2016 253 272 1921 25 : 27 8 19 : 28 6 3 1921 25 1921 25 1952 27 1954 291960 35 1921 25 Ⅰ 0 5 1 5 10 14 21 25 34 36 59 61 6 8 9 11 12 16 1921 25 4 8 1 5 254 62 3 2016 1 1938.8 1926 30 1938.6.23 1939.9

More information

MIDI_IO.book

MIDI_IO.book MIDI I/O t Copyright This guide is copyrighted 2002 by Digidesign, a division of Avid Technology, Inc. (hereafter Digidesign ), with all rights reserved. Under copyright laws, this guide may not be duplicated

More information

e-learning station 1) 2) 1) 3) 2) 2) 1) 4) e-learning Station 16 e-learning e-learning key words: e-learning LMS CMS A Trial and Prospect of Kumamoto

e-learning station 1) 2) 1) 3) 2) 2) 1) 4) e-learning Station 16 e-learning e-learning key words: e-learning LMS CMS A Trial and Prospect of Kumamoto e-learning station 1) 2) 1) 3) 2) 2) 1) 4) e-learning Station 16 e-learning e-learning key words: e-learninglms CMS A Trial and Prospect of Kumamoto University e-learning Station Hiroshi Nakano 1) Kazuhisa

More information

1 1 tf-idf tf-idf i

1 1 tf-idf tf-idf i 14 A Method of Article Retrieval Utilizing Characteristics in Newspaper Articles 1055104 2003 1 31 1 1 tf-idf tf-idf i Abstract A Method of Article Retrieval Utilizing Characteristics in Newspaper Articles

More information

pla85900.tsp.eps

pla85900.tsp.eps ( ) 338 8570 255 Tel: 048 858 3577, Fax: 048 858 3716 Email: tohru@nls.ics.saitama-u.ac.jp URL: http://www.nls.ics.saitama-u.ac.jp/ tohru/ 2006.11.29 @ p.1/38 1. 1 2006.11.29 @ p.2/38 1. 1 2. (a) H16 (b)

More information

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2 CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for

More information

鹿大広報149号

鹿大広報149号 No.149 Feb/1999 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Learned From Japanese Life and Experiences in Kagoshima When I first came to Japan I was really surprised by almost everything, the weather,

More information

pp a p p. 6 45

pp a p p. 6 45 http://alce.jp/journal/ 12 2014 pp. 42-87 ISSN 2188-9600 * Copyright 2014 by Association for Language and Cultural Education JSPS 23 25 C 24520588 * E-Mail: yuko_ota@waseda.jp 42 12 2014 pp. 42-87 43 3

More information