Genetic Algorithm for Multi-Objective Optimization 2001 Shinya Watanabe

Size: px
Start display at page:

Download "Genetic Algorithm for Multi-Objective Optimization 2001 Shinya Watanabe"

Transcription

1 Genetic Algorithm for Multi-Objective Optimization 2001 Shinya Watanabe

2 i VEGA... 17

3 ii WBGA MOGA NSGA NPGA SPEA NSGA-II SPEA (error : I error ) (cover rate: I cover ) ,, (Max and Min and Average: I MMA ) Ratio of Non-dominated Individuals: I RNI ) (Sampling of the Pareto Frontier Lines of Intersection: I LI GA GA GA... 65

4 iii GA GA

5 iv A 157

6 v 2.1 The concept of Pareto optimal solution Schematic of GA Flowchart of GA procedure Schematic of GA search Schematic of VEGA Distribution of Pareto Solutions in VEGA The concept of Pareto-ranking The concept of Non-dominated Sorting method The SPEA fitness assignment scheme Schematic of the NSGA-II procedure The crowding distance calculation Comparison of fitness assignement schemes in SPEA and SPEA Archive truncation method used in SPEA Schematic of I cover An example of I MMA Schematic of I RNI(X,Y ) Schematic of I LI Schematic of master slave model Schematic of distributed population model Schematic of neighborhood model Schematic of the Total Sharing procedure Pareto optimum individuals (T2) Pareto optimum individuals (T4) I error of T2 and T

7 vi 5.8 I cover of T2 and T Schematic of DRMOGA Pareto optimum individuals(ndp) Pareto optimum individuals(vb3) Pareto optimum individuals (f2 f3, VB3) I error of NDP I cover of NDP and VB Schematic of DC-Scheme Pareto optimum individuals (ZDT4) Pareto optimum individuals (KUR) I error of ZDT I cover of ZDT4 and KUR Pareto-optimal front of F discon I cover and I error of F discon (N = 10) I MMA of F discon (N = 10) I RNI and I LI of F discon (N = 10) Pareto optimum individuals(f discon (N = 10)) I cover and I error of F discon (N = 100) I MMA of F discon (N = 100) I RNI and I LI of F discon (N = 100) Pareto optimum individuals(f discon (N = 100)) I cover and I error of ZDT I MMA of ZDT I RNI and I LI of ZDT Pareto optimum individuals(zdt4) I cover and I error of ZDT I MMA of ZDT I RNI and I LI of ZDT Pareto optimum individuals(zdt6) I cover of KUR I MMA of KUR I RNI and I LI of KUR Pareto optimum individuals(kur)

8 vii 6.22 I cover of KP I MMA of KP I RNI and I LI of KP Pareto optimum individuals(kp-2) I cover of p I error of p I RNI and I LI of F discon (N = 10) Pareto optimum individuals(f discon (N = 10)) I RNI and I LI of F discon (N = 100) Pareto optimum individuals(f discon (N = 100)) I RNI and I LI of ZDT Pareto optimum individuals(zdt4) I RNI and I LI of ZDT Pareto optimum individuals(zdt6) I RNI and I LI of KUR Pareto optimum individuals(kur) Optimization System Coding method Derived non-dominated solutions Derived non-dominated solutions(sfc,nox) Derived non-dominated solutions(sfc,soot) Derived non-dominated solutions(nox,soot) Concept of sequence-pair Coding example of sequence-pair Horizontal/Vertical Constrain graphs Placement-based Partially Exchanging Crossover(PPEX) Results of I LI (33 blocks) I MMA of 33 blocks Derived non-dominated solutions(33 blocks) Results of I LI (50 modules) Results of I LI (100 modules) I MMA of 50 modules I MMA of 100 modules

9 viii 7.18 Derived non-dominated solutions(50 modules) Derived non-dominated solutions(100 modules) Results of I LI (500 blocks) I MMA of 500 blocks Derived non-dominated solutions(500 blocks) The placement of the modules(33 modules) The placement of the modules(100 modules)

10 ix 3.1 A brief history of EMO A example of weight vector Table GA parameters Specification of the target diesel engine GA parameters Cluster System Calculation time GA Parameter

11 ( ) (Evolutionary Multi-Objective Optimization:

12 2 1 EMO) 2 9 EMO 1 (Genetic Algorithm: GA) GA 2 9 GA GA GA 1 GA 2 9 Deb NSGA-II 8 Zitzler SPEA2 9 GA GA 2 GA GA GA GA GA GA (Neighborhood Cultivation GA :) 2 GA

13 i) NOx 3 1 NOx 3 ii) , GA 2 2 4

14 4 1 3 GA GA GA 3 Schaffer VEGA Hajela WBGA Fonseca MOGA Horn NPGA Srinivas NSGA Deb NSGA-II Zitzler SPEA SPEA2 4 GA GA GA GA GA 5 GA GA 3 6 GA 6 NSGA-II, SPEA2 GA, NSGA-II SPEA

15 ( )., ( ) 1 Pareto-optimal solution 1 Multiobjective Optimization Problems MOPs

16 n k f i (x 1,x 2,...,x n ) (i =1, 2,...,k) (2.1) m g j (x 1,x 2,...,x n ) 0 (j =1, 2,...,m) (2.2) ( ) 1 f i (x) (Pareto-optimal solution) Pareto x 1 x 2 I(x =(x 1,x 2,...,x n )) a) f i (x 1 ) f i (x 2 )( i =1,...,k) x 1 x 2 b) f i (x 1 ) <f i (x 2 )( i =1,...,k) x 1 x 2 x 1 x 2 x 1 x 2 2 x 0 I a) x 0 x I x 0 (Weak Pareto-optimal solution) 2

17 2.3 7 f2(x) Feasible region Weak Pareto-optimal solutions o Pareto-optimal solutions on f1(x) 2.1 The concept of Pareto optimal solution b) x 0 x I x 0 (Pareto-optimal solution) ( 2.1 ) (weight method) w i wf(x) 1 w =(w 1,w 2,...,w k ) 3

18 8 2 k min wf(x) = w i f i (x) (2.3) x X w i 0 i=1 k w k = 1 (2.4) w ( ε )(constraint method) 1 f j (x) (k 1) ε i (i =1, 2,...,k,i k) ε i=1 min x X f j (x) (2.5) subject to w i f i (x) ε i,i=1, 2,...,k,i j (2.6) i ε k f 1 f 1 f 1 f 2 f

19 (Genetic Algorithm: GA) GA 1

20

21 (Evolutionary Computation: EC) (Evolutionary Multi- Criterion Optimization: EMO) 2, 6 9 EMO 1 (Genetic Algorithm: GA) GA GA 2 GA 4, 10 GA, 1 GA 1 ( ) 2 1

22 12 3 GA GA 3.2 (Genetic Algorithm: GA) GA Michigan Holland 1975 Adaptation in Natural and Artificial System Goldberg Genetic Algorithms in Search, Optimization, and Machine Learning 4 4, GA GA (Individual) Chromosome (Geno Type) (Pheno Type) (Population) GA (Selection) (Crossover) (Mutation) 3.1 GA GA 3.2 Initialization : (Population Size)

23 Objective Function GA Operators Selection Crossover Mutation etc.. Chromosome Decoding Pheno Type Encoding Geno Type Gene Individual 3.1 Schematic of GA Evaluation : (Evaluation Value) Selection : Crossover : (Crossover Rate)

24 14 3 Start Initialization Evaluation Selection Crossover Mutation Evaluation No Terminate Check Yes End 3.2 Flowchart of GA procedure Mutation : (Gene) (locus) DNA (Mutation Rate) Terminate Check : GA Goldberg GA 4 4

25 GA GA 1 12, 13, GA No.6 No.1 Optimum Solutions A : global B,C : local A Schematic of GA search GA

26 Schaffer VEGA 3 EMO 01(Conference on Evolutionary Multi-Criterion Optimization) 18 (Genetic Algorithm: GA) GA 18 GA GA GA GA GA 1 GA 2 GA 1 ( ) 3 ( ) GA

27 ( ) GA Schaffer VEGA(Vector Evaluated Genetic Algorithm) Goldberg Fonseca MOGA(Multi-Objective Genetic Algorithm) GA A brief history of EMO Year Name Proposer(s) Characteristic 1985 VEGA Schaffer The first multi-objective GA 1993 WBGA Hajela and Lin Weighted function 1993 MOGA Fonseca and Fleming Pareto-based selection 1993 NPGA Horn and Nafpiliotis Niching 1994 NSGA Srinivas and Deb Non-dominated Sorting 1999 SPEA Zitzler and Thiele Archiving + elitism 2000 NSGA-II Deb Crowding distance 2001 SPEA2 Zitzler and etc Archive truncation + improved fitness assignment shceme VEGA Schaffer 1985 GA (Vector Evaluated Genetic Algorithm: VEGA) 3 VEGA ( ) VEGA GA VEGA VEGA

28 18 3 t generation The objrctive function f1 The partial population 1 t +1 generation popration fp The partial population P popration Selection Crossover & Mutation 3.4 Schematic of VEGA M N VEGA Step 1 i =1 q = N/M Step 2 j =1+(i 1) q j = i q F (x j )=f i (x j ) (3.1) Step 3 q P i Step 4 i = M Step 5 i = i +1 Step 2 Step 5 P i P (P = M i=1 P i). P VEGA GA VEGA

29 VEGA 1 VEGA ( 3.5) Dominated Solution Non-dominated Solution f2 Pareto-optimal solution f1 3.5 Distribution of Pareto Solutions in VEGA WBGA Hajela Lin 1993 WBGA( Weight-Based Genetic Algorithm ) 2 (2.3.1 ) GA 1 GA, 1 WBGA 2 a) b) ( )

30 20 3 a) WBGA F (x) = k i=1 w if i (x) w i x 1 F (x 1 )= M j=1 f w xi w j (x 1 ) fj min j f max j f min j (3.2) (3.2) (3.2) x i w A example of weight vector Table x w Weight vector (0.1,0.9) (0.2,0.8) (0.3,0.7)... (0.9,0.1) Sh(d) 2 i j d i,j d i,j = x i w x j w (3.3) d i,j Sh(d i,j ) (niche count) nc i nc i Sh(d i,j ) F i = F (xi )/nc i Sh(d i,j ) i (σ share ) j 0 1 (3.4) { Sh(d i,j )= 1 d i,j σ share, ifd i,j σ share ; 0, otherwise. (3.4) (3.4) Sh(d i,j ) (d i,j ) 1 σ share 0

31 Sh(d i,j ) i nc i (3.5) N nc i = Sh(d i,k ) (3.5) k=1 Step 1 f j fj max fj min Step 2 i =1, 2,...,N d i,k = x i w xk w (3.4) Sh(d i,k ) i nc i (3.5) Step 3 i =1, 2,...,N F i = F (xi )/nc i WBGA GA GA WBGA x w GA WBGA WBGA 2

32 22 3 b) VEGA K w (k) (k =1, 2,...,K) N (3.2) w (k) N w (k) N/K w (k) K 1 1 ( ) K w (k) (k = 1, 2,...,K) 1 K M Step 1 k=1 Step 2 w (k) x (i) F j F (x (i) )= M j=1 f w x(i) w j (x (i) ) fj min j f max j f min j (3.6) F N/K. P k Step 3 Step 4 P k. N/K k<k k 1 ( k = k +1) Step2 P = K k=1 P k. P <N N

33 Step 2 N K K N K N O(N ) 2 GA MOGA 1993 Fonseca MOGA(Multi-Objective Genetic Algorithm) 19 MOGA X i n i X i r(x i ) r(x i )=1+n i (3.7) ( 1 ) Fonseca Fleming ( 3.4) i j

34 24 3 f2(x) f1(x) The concept of Pareto-ranking (3.8) f max k ( d ij = M f i k f j k k=1 f max k f min k ) 2 (3.8),fk min k (3.4) Sh(d ij ) nc i = j=1 µ ri Sh(d i,k ) (3.9) (3.9) µ ri r i MOGA Step 1 (µ(j) =0(j =1,...,N):i =1) µ(j) j Step 2 i n i i r i r i =1+n i r i µ(r i ) (µ(r i )=µ(r i )+1) Step 3 i<n i = i +1 Step 2 Step 4 Step 4 µ(r i ) > 0 r i r (3.10)

35 r i 1 F i = N µ(k) 0.5(µ(r i ) 1) (3.10) k=1 r i =1 i (3.10) F i = N 0.5(µ(1) 1) F i µ(1) N N µ(1) + 1 r c =1 Step 5 r c i (3.9) F j = F j/nc j F j F jµ(r c ) µ(rc) k=1 F F k j (3.11) Step 6 r c <r r c = r c +1 Step 5 r i 1 ( ) r i ( ) MOGA MOGA MOGA ( 1 ) 2 MOGA

36 NSGA GA(Non-dominated Sorting Genetic Algorithm: NSGA) 1994 Deb, Srinivas Goldberg 4 1 (nondominated sorting) MOGA NSGA NSGA (3.12) ( d i,j = P 1 x i k x j k k=1 x max k x min k ) 2 (3.12) NSGA NSGA Step 1 r =1 Step 2 (P ) r Step 3 P r = r +1 Step 4 ( P ) Step 2 Step 3 MOGA 3.7 NSGA

37 f2(x) f2(x) f1(x) f1(x) (a) Pareto Ranking method(moga) (b) Non-dominated Sorting method(nsga) 3.7 The concept of Non-dominated Sorting method Step 1 σ share ɛ F min = N + ɛ, j =1 Step 2 P : (P 1,P 2,...,P ρ ) = Sort(P, ) Step 3 P j q Step 3a F (q) j = F min ɛ Step 3b (3.4) P j nc p Step 3c F q j = F q j nc q Step 4 P j F min = min( F q j : q P j) Step 5 j = j +1 P j P ρ (j ρ) Step 3 NSGA NSGA

38 28 3 σ share NSGA σ share NPGA NPGA(Niched Pareto Genetic Algorithm) 1994 Horn Nafpliotis MOGA NSGA 21 NPGA 11 NPGA NPGA NPGA N P 2 i j t dom ( N) 2 i j 1 i j i j 2 i j Q, NPGA winner = NPGA-tournament(i, j, Q) Step T1 P t dom T ij Step T2 i T ij α i j T ij α j

39 Step T3 α i =0 α j > 0 i Step T4 α i > 0 α j =0 j Step T5 Q < 2 i j 5 Q 2 Q i j i σ share (k Q) i j d ik ( ) d ik = M f i m fm k 2 fm max fm min (3.13) (3.13) f max m f min m m=1 m Step T6 nc i nc j i j NPGA 2 GA NPGA 2 NPGA NPGA Step 1 P i =1,Q = Step 2 1 p 1 =NPGA-tournament(i, i+ 1,Q). Step 3 i = i +2 2 p 2 =NPGA-tournament(i, i +1,Q). Step 4 p 1 p 2 c 1 c 2 c 1 c 2 Step 5 Q Q = Q {c 1,c 2 }.

40 30 3 Step 6 i = i +1 i<n Step 2 Q = N/2 P i =1 Step 2 NPGA VEGA NSGA MOGA GA NPGA NPGA t dom N NPGA M NPGA O(Mt dom ), O(N 2 ) NPGA NPGA σ share t dom 2 NPGA GA NSGA MOGA σ share NPGA i σ share NSGA MOGA (3.4) i Sh(d) NPGA NPGA σ share t dom SPEA 1999 Zitzler,Thiele SPEA 6 SPEA a) ( ) GA 2, 9, 21

41 b) c) SPEA Step 1 P P Step 2 P P Step 3 P 1 Step 4 P N P Step 5 P P Step 6 P + P, P SPEA Step 7 P Step 8 Step2 SPEA SPEA

42 32 3 SPEA 2 P ( )P Step 1 i P s i [0, 1) 4 s i P N i j P n (s i = n N +1 ) i s i (f i = s i ) Step 2 j P j i P s i : f j =1+ i,i j s i where f j [1,N) (3.14) (3.14) 1 P P SPEA 3.8 SPEA 3.8 σ share SPEA P N N P N N (N > N) P 5 N cluster distance 4 SPEA Strength Strength 5

43 f2(x) 1/5 4/5 6/5 4/5 13/5 10/5 16/5 12/5 population P extermal population P 3/5 f1(x) 3.8 The SPEA fitness assignment scheme C 1 C 2 d 12 (i C 1,j C 2 ) d = 1 C 1 C 2 i C 1,j C 2 d(i, j) (3.15) SPEA d(i, j) (3.15) SPEA N N Step 1 C N i P C = {C 1,C 2,...,CN } Step 2 C N Step 5 Step 3 Step 3 ( C 2 ) Step 4 d C 1 C 2 ; C 1 Step 2 Step 5

44 34 3 SPEA SPEA SPEA SPEA 2 SPEA N N N SPEA N N SPEA N N SPEA 1:4 SPEA NSGA-II NSGA-II(Elitist Non-Dominated Sorting Genetic Algorithm) NSGA Deb, Agrawal NSGA-II NSGA ( ) (Crowded Tournament Selection Operator) (Crowding Distance) NSGA-II NSGA

45 NSGA-II NSGA NSGA-II NSGA-II P t Q t 2 NSGA-II P t Q t t P t Q t Q t Q t Q t P t R t = P t Q t 2N R t N P t+1 NSGA-II Step 1 R t = P t Q t R t ( ) F i,i=1, 2,..., etc. Step 2 P t+1 = i =1 P t+1 + F i <N P t+1 = P t+1 F i i = i +1 Step 3 (Crowding-sort) N P t+1 P t+1 Step 4 P t+1 Q t+1 NSGA-II P t Q t R t N P t+1 ( )Q t P t P t

46 36 3 P t Q t NSGA-II P t 3.9 P t Non-dominated sorting F 1 F 2 Crowding distance sorting P t+1 F 3 Q t R t F 4 Rejected 3.9 Schematic of the NSGA-II procedure (Crowded Tournament Selection Operator) (r) (F r ) 2 i 2 1) (i rank ) 2) (i distance ) i j 2 i j 1) i j :(i rank <j rank ) 2) i j i j :(i rank = j rank )and(i distance >j distance )

47 (Crowding Distance) i ( ) 3.10 front F 1 f2(x) i-1 front F 2 d i2 i i+1 d i f1(x) The crowding distance calculation Step C1 F l :l = F i :d i =0 Step C2 m =1, 2,...,M :I m = sort(f m,>). Step C3 m =1, 2,...,M, ( m ) : d I m 1 = d I m l = 6 (j =2,...,l 1) 6 I j j d I m j = d I m j + f Im j+1 m f Im j 1 m f max m f min m (3.16)

48 38 3 NSGA-II σ share P t Q t R t = P t Q t N N SPEA2 SPEA2(Strength Pareto Evolutionary Algorithm 2) SPEA Zitzler SPEA NSGA-II SPEA SPEA2 SPEA SPEA2 SPEA2 N

49 NSGA-II SPEA2 SPEA2 NSGA-II 2 ( P P ) Step 1 : P 0 :P 0 =0.Set t =0. Step 2 : P t P t (3.3.9 ) Step 3 : P t P t P t+1 P t+1 > N P t+1 P t+1 < N P t N P t+1 P t+1 P t+1 N Step 4 : t T P t+1 Step 5 Step 5 : P t+1 N P t+1 Step 6 : P t+1 (Environmental Selection) (Mating selection) P t P t P t P t P t+1 (Mate) SPEA2 NSGA-II (binary tournament selection)

50 40 3 SPEA2 i s(i) f(i) s(i) i 0 SPEA SPEA f2(x) 1/5 4/5 6/5 13/5 4/5 10/5 16/5 12/5 f2(x) /5 0 f1(x) (a) SPEA fitness assiignment f1(x) (a) SPEA2 fitness assiignment 3.11 Comparison of fitness assignement schemes in SPEA and SPEA SPEA2 s(i) SPEA SPEA2 SPEA SPEA2 SPEA 2 (i) (ii) (archive truncation method) SPEA2 P t P t 0 P t+1

51 P t+1 = i i P t + P t F (i) < 1 (3.17) ( P t+1 = N ) N P t+1 P t + P t P t + P t F (i) 1 N P t+1 i P t+1 1 P t+1 = N P t+1 N Step A1 i j k =2 Step A2 i j k (σi k,σk j )7 Step A3 σi k >σj k σk i <σj k σi k = σk j k = k +1 Step A SPEA2 SPEA 9 NSGA-II NSGA-II 7 σi k i k

52 42 3 f 2 f f 1 f 1 (a) before (b) after (N=5) 3.12 Archive truncation method used in SPEA2 SPEA SPEA σ k O(M 3 )(M = N + N) 2 3 O(M 2 log M) 3.4 GA NSGA-II SPEA2 2, 9 GA

53 i) ii) iii) NSGA-II SPEA2 GA GA GA GA 23 22, 24 GA GA GA GA PC GA GA 2 1. GA 2. GA

54 44 3 GA

55 GA 3 3 6, 22, 25,

56 46 4 i) ii) iii) iv) 2 v) (error : I error ) (I error ) 3 k x k = (x k i,...,xk m) f(x 1,...,x m )=C e(x k ) (4.1) e(x k )=C f(x k i,...,x k m) (4.1) I error e(x) E 1 N e(x k ) (4.2) N (4.2) N k=1

57 Min Max Max f2 Min f1 4.1 Schematic of I cover (cover rate: I cover ) (I cover ) 22 f k I coverk I coverk N k N (4.3) (4.3) N N k I cover I coverk I cover 1 N I coverk (4.4) N k=

58 48 4 Maximum f(x) Avrage Minimum 4.2 An example of I MMA 4.2.3,, (Max and Min and Average: I MMA ),., I MMA. I MMA 4.2., I MMA,,, Ratio of Non-dominated Individuals: I RNI ) I RNI 2 Tan X Y S U., S U, S P., S P I RNI(X,Y ) 4.3 I RNI(X,Y ) 100

59 Method X Method Y 67% 33% Method X f2 Method X = 4/6 = Method Y = 2/6 = f 1 f2 f2 Method Y f 1 f Schematic of I RNI(X,Y ) (Sampling of the Pareto Frontier Lines of Intersection: I LI ), Knowels Corne (X, Y ) 4.4. ( 4.4 ).,,,. 2 (X, Y ), I LI (X, Y ), X Y., X I LI (X, Y )=1, I LI (Y,X)=0. I LI (X, Y ) 3

60 50 4 f2 X Y f Schematic of I LI i) ii) iii) X Y I LI (X, Y )=1,I LI (Y,X)=0

61 (I error ) (I cover ) (I MMA ) 3 2 (I RNI ) (I LI ) 2 3 1) (I error ) (I RNI ) 2) (I cover ) (I MMA ) 3) (I LI )

62

63 GA 2 GA GA GA GA GA 30 GA GA 23 22, 24 GA

64 54 5 GA GA 1 PC 31 GA GA 3 GA(Total Sharing Genetic Algorithm: TSGA) GA(Divided Range Multi-Objective Genetic Algorithm: DRMOGA) (Distributed Cooperation Scheme: DC-Scheme) GA 5.2 GA GA 3

65 5.2 GA 55 Population Shared Memory PE 5 PE 4 PE 1 PE 2 PE 3 Individual PE # Evaluation Processor 5.1 Schematic of master slave model (master slave model) (distributed population model) (subpopulation)

66 56 5 Sub population Individual Migration 5.2 Schematic of distributed population model GA 27, 28 1 GA (Migration) (Migration interval) (Migration rate) PC (neighborhood model) GA

67 Processor Neighborhood Individual Exchange 5.3 Schematic of neighborhood model GA 3 30 GA GA 1) 2)

68 58 5 (Total Sharing GA: TSGA) 1) GA TSGA ( ) TSGA GA TSGA TSGA i) 33 ii) TSGA N P N 2N N 1 TSGA N N S N (N S <N) Fonseca 19 N N S N

69 TSGA M, N q = N/M Step 1 t S t. Step 2 S t >N Step 3 (t = t +1) Step 3 (Pi t) 1 (P t ) (P t = M i=1 P i t). Step 4 P P N Step 5 P q t = t +1 Step 4 Step TS1 Fonseca 19 P 2 P P P N> P N P P,P P N < P Step TS2 Step TS2 P N > P P N N s P,P P N < P Step TS3 Step TS N P 3 N 5.4 TSGA 2 1

70 60 5 if all population>p size ( ) 1 island 2 island P - 1 island Sharing with all populations 1 island 2 island P - 1 island P island P island 5.4 Schematic of the Total Sharing procedure GA(Single population GA: SGA) GA(Distributed GA:DGA) 27, 28 GA(TSGA) 2 34 T2, T4 T2 min f 1 (x)=x 2 1 x 2 min f 2 (x)= 1 2 x 1 x 2 1 s.t. g 1 (x)= 1 T2 : 2 x 1 + x g 2 (x)= 1 2 x 1 + x g 3 (x)= 1 2 x 1 + x g 4 (x)=x 1 0 g 5 (x)=x 2 0 (5.1) T4

71 GA parameters SGA DGA TSGA Terminal generation 250 Total population size 100 Crossover rate 1.0 Mutation rate 0.0 Number of islands - 5 Migration interval - 5 (sort interval) Migration rate min f 1 (x)= 2x 1 + x 2 min f 2 (x)=x 2 s.t. T4 : g 1 (x)=x 2 1 x 2 0 g 2 (x)=x 1 0 g 3 (x)=x (5.2) GA 35 GA SGA DGA TSGA 3 GA T2 T ,

72 T2 T DGA SGA TSGA TSGA SGA T4 T4 T2 5.6 DGA 5.8 DGA 5.7 T2 DGA SGA SGA f TSGA f f2 f2 f DGA f Pareto optimum individuals (T2)

73 f2 f SGA TSGA f1 f1 5.6 f DGA Pareto optimum individuals (T4) f SGA DGA TSGA (a) T I error of T2 and T4 SGA DGA TSGA (b) T4

74 SGA DGA TSGA (a) T I cover of T2 and T4 SGA DGA TSGA (b) T4 TSGA DGA ( ) DGA T2 T4 TSGA DGA SGA

75 DGA SGA TSGA DGA SGA TSGA TSGA DGA DGA SGA DGA SGA 2 GA 5.4 GA GA 1 TSGA GA TSGA (Divided Range Multi-Objective Genetic Algorithm: DRMOGA) GA DRMOGA GA N K f 1 f M M Step 1 N Step 2

76 66 5 division 1 division 2 division 3 f2 (x) Pareto-optimal solution Min f 1 (x) Max 5.9 Schematic of DRMOGA Step 3 f i f i f 1 f M N/K N/K K Step 4 GA GA Step 5 Step 5 GA s Step 3 K s (M =2) f 1 3 (K =3) 5.9 DRMOGA DGA SGA

77 DRMOGA DGA SGA GA Fonseca MOGA 19 DRMOGA NDP VB3 2 NDP min f 1 = x 1 min f 2 = x 2. min f n 1 = x n 1 NDP : min f n = x n s.t. g j = x j (j =1, 2,,n) g n+k = x k 6(k =1, 2,,n) g 2n+1 =1 x 1 x 2 x n (5.3) (5.3) NDP n (5.3) g 2n+1 VB3 min f 1 (x)=0.5(x x2 2 ) + sin(x2 1 + x2 2 ) min f 2 (x)= (3x 1 2x 2 +4) 2 + (x 1 x 2 +1) VB3 : min f 3 (x)= x 2 1 +x exp( x2 1 x2 2 ) s.t. g 1 (x)=x 1 3 g 2 (x)=x 2 3 (5.4) VB3 (5.4) Veldhuizen (x 1,x 2 )=(0.0, 0.0) f 3 (x) = 0.1 (x 1,x 2 )=(, ) f 3 (x) =0.0

78 f 2 (x) -2-3 SGA f 2 (x) -2-3 DGA f 1 (x) f 1 (x) 0-1 f 2 (x) -2-3 DRMOGA f 1 (x) 5.10 Pareto optimum individuals(ndp) 1 2 f 2 (x) f 2 (x) [15, 17.5] f 3 (x) =15 f 2 (x) [15, 17.5], 5.1 DRMOGA s VB3 f 2 (x) f 2 (x),f NDP NDP VB VB3.

79 f 3 (x) f 3 (x) f 2 (x) 15.5 f 3 (x) SGA f 1 (x) f (x) 15 0 DGA f 1 (x) f 2 (x) DRMOGA f 1 (x) 8 Pareto optimum individuals(vb3) f 3 (x) f 3 (x) f 2 (x) SGA f 2 (x) DGA f 3 (x) f 2 (x) DRMOGA Pareto optimum individuals (f2 f3, VB3)

80 SGA 5.13 DGA DRMOGA I error of NDP SGA DGA DRMOGA (a) NDP SGA I cover of NDP and VB3 DGA DRMOGA (b) VB3 NDP 5.10 SGA DRMOGA DGA DRMOGA SGA DGA DRMOGA 5.13 DRMOGA SGA DGA 2

81 VB3 (5.4) 3 3 f 2 (x) =15 f 2 (x) = DRMOGA SGA DGA 5.14 f 2 f SGA DRMOGA SGA DGA f 2 (x) =15 DRMOGA 2 DRMOGA VB3 f 2 f 3 DRMOGA SGA DRMOGA DGA DGA SGA DRMOGA DGA 5.3 DGA SGA DRMOGA SGA

82 72 5 DGA DRMOGA DRMOGA DGA GA GA(Divided Range Multi- Objective Genetic Algorithm: DRMOGA) DRMOGA DRMOGA 1. GA DGA SGA DRMOGA 2. DRMOGA 5.5 TSGA DRMOGA GA (Distributed Cooperation Scheme: DC- Scheme) GA GA

83 DC-Scheme GA GA(Single Objective Genetic Algorithm: SOGA) DC-Scheme M SOGA M GA(Multi Objective Genetic Algorithm: MOGA) 1 M +1 DC-Scheme GA SOGA MOGA DC-Scheme DC-Scheme DC-Scheme GA GA DC-Scheme MOGA SOGA MOGA DC-Scheme MOGA M+1 DC-Scheme MOGA SOGA GA M M SOGA GA MOGA M M +1 M SOGA 1 MOGA

84 74 5 DC-Scheme GA GA 2 SOGA MOGA F i (x) i =1, 2...M MOGA M B Mi N SOGA B Si MOGA B Mi SOGA B Si B Mi >B Si MOGA i SOGA B Si >B Mi SOGA MOGA GA 6, 8, 9. DC-Scheme N DC-Scheme Step 1

85 MOGA Group Multi-objective GAs Single-objective GAs SOGA(F1) Group Single-objective GAs SOGA(F2) Group 5.15 Schematic of DC-Scheme Step 2 MOGA F i M SOGA Step 3 GA Step 4 Step 5 MOGA B Mi F i SOGA F i SOGA B Si MOGA Step 6 B Mi B Si B Si >B Mi SOGA MOGA MOGA B Mi B Si MOGA SOGA Step 7 3. DC-Scheme

86 DC-Scheme DC-Scheme GA Fonseca 5 MOGA Zitler SPEA2 9 Deb NSGA-II 8 DC-Scheme MOGA ( ) MOGA Fonseca MOGA 5 GA GA DGA 27, Zitzler Deb ZDT4 40 Kursawe KUR 37 ZDT4 min f 1 (x)=x 1 x 1 min f 2 (x)=g(x) 1 g(x) ZDT4 : s.t. g(x) = i=2 [x2 i 10 cos(4πx i)] x 1 [0, 1], x i [ 5, 5], i=2,...,10 (5.5) 10 2 x 1 x i =0.0(i =2,...,10) KUR KUR : min min s.t. f 1 = n i=1 x ( 10 exp( i + x2 i+1 )) f 2 = n i=1 ( x i sin(x i ) 3 ) x i [ 5, 5], i=1,...,n, n= 100 (5.6) f 1 (x) 2 f 2 (x) 100

87 f 2 (x) f 2 (x) f 2 (x) MOGA Pareto-optimal solutions f 1 (x) SPEA2 Pareto-optimal solutions f 1 (x) NSGA-II Pareto-optimal solutions f 1 (x) f 2 (x) f 2 (x) f 2 (x) MOGA with DC Pareto-optimal solutions f 1 (x) SPEA2 with DC Pareto-optimal solutions f 1 (x) NSGA-II with DC Pareto-optimal solutions f 1 (x) 5.16 Pareto optimum individuals (ZDT4) ZDT ZDT4 KUR 5.16, 5.17 ZDT ZDT4 KUR KUR.

88 78 5 f 2 (x) f 2 (x) f 2 (x) MOGA f 1 (x) SPEA f 1 (x) NSGA-II f 1 (x) f 2 (x) f 2 (x) f 2 (x) MOGA with DC f 1 (x) SPEA2 with DC f 1 (x) NSGA-II with DC f 1 (x) 5.17 Pareto optimum individuals (KUR) without DC without DC without DC with DC with DC with DC MOGA SPEA2 NSGA-II 5.18 I error of ZDT4

89 without DC without DC without DC with DC with DC with DC MOGA SPEA2 NSGA-II (a) zdt without DC without DC without DC with DC with DC with DC MOGA SPEA2 NSGA-II I cover of ZDT4 and KUR (b) kur ZDT4 ZDT4 f 1 x 1 DC-Scheme DC-Scheme f 1 f 1 DC-Scheme DC-Scheme 5.18 DC-Scheme ZDT4 DC-Scheme KUR 100 DC-Scheme DC-Scheme DC-Scheme

90 80 5 DC-Scheme KUR DC-Scheme DC-Scheme DC-Scheme GA GA ZDT4 DC-Scheme (Distributed Cooperation Scheme: DC-Scheme) DC-Scheme GA GA GA DC-Scheme GA DC-Scheme MOGA 5 SPEA2 9 NSGA-II 8 3 GA GA DC-Scheme 5.6 GA 3 GA(Total Sharing Genetic Algorithm :TSGA) GA(Divided Range Multi-Objective Genetic Algorithm :DRMOGA) (Distributed Cooperation Scheme :DC-Scheme) TSGA DRMOGA GA GA 1)

91 ) TSGA DGA DRMOGA DRMOGA DRMOGA GA 1 GA DRMOGA DC-Scheme GA GA GA GA GA

92

93 GA Deb NSGA-II 8 Zitzler SPEA2 9 Erickson NPGA2 7 Fonseca MOGA GA DRMOGA 1 GA GA GA GA GA(Neighborhood Cultivation GA: ) Deb NSGA-II 8 Zitzler SPEA2 9

94 GA 1999 SPEA 6 NPGA2 7 NSGA-II 8 SPEA2 9 GA GA 6 9 a) (elitism) 8, 9 NSGA-II SPEA2 8, 9 b) NSGA-II SPEA2 8, 9 (mating selection) c)

95 SPEA2 (truncation method) 9 NSGA-II (crowding distance calculation) 8 d) GA MOGA SPEA2 NSGA-II 7 9 NPGA 2 21

96 86 6 NSGA NSGA-II SPEA2 e) NPGA2 7 ( ) O i = O i O i,min O i,max O i,min (6.1) (6.1) O i i O i O i O i,max O i,min i 6.3 (Neighborhood Cultivation GA: ) 6.2

97 Step1 t =1 (A t ). Step2 (A t ) (P t ) P t 1 f j (x) t M (t j (mod M)) Step 3 4 i 0 Step3 Step2 (P t ) i i +1 2 Step4 2 Step3 2 i 2 i Step3 Step4 (P t+1 ) Step5 (P t+1 ) (A t ) (A t+1 ) SPEA2 (environmental selection) 1 SPEA2 NSGA-II N Step6 t = t +1 Step

98 f i (x) t M (t i (mod M)) (A t ) SPEA2 9 (3.3.9 ) SPEA2 Step1 (P t+1 ) (A t ) R t Step2 R t SPEA2 (3.3.9 ) Step3 R t A t+1 SPEA2 NSGA-II (A t ) (P t ) (mating selection) 2 (A t ) (P t ) 6.4 Zitzler SPEA2 Deb NSGA-II (non-). 2

99 non-. non , 9 2 Deb (F discon ) 39 Zitzler Deb ZDT4 ZDT6 40 Kursawe KUR 37 4 (F discon ) ZDT6 ZDT4 KUR ( (5.5) (5.6) ) (F discon ) min f 1 = x 1, min f 2 (x) = g(x) h(f 1,g) F discon : s.t. g(x 2,...,x N )=1+10 h(f 1,g) = 1 N i=2 x i N 1 ) 0.25 f 1 g g sin(10πf 1) ( f1 x i [0, 1], i=1,...,n (6.2) [0,1] x i = 0 for i =2,...,N [0,1] x 1

100 90 6 f 2 (x) f 1 (x) Pareto-optimal front of F discon 6.1 f 1 (x 1 )=x 1 ([0, 1]) f 2 (x i )=1 x x 1 sin(10πx 1 ) ZDT6 min f 1 =1 exp( 4x 1 ) sin 6 (6πx 1 ) ( ) 2 f1 min f 2 = g(x) 1 g ZDT6 : s.t. (6.3) ( N i=2 g(x)=1+9 x ) 0.25 i 0 N 1 x i [0, 1], i=1,...,10 f 1 (x) x 1 f 1 (x) [0.28, 0.65] x 1 ([0.05, 0.125]) x 1 ([0.05, 0.125]) f 1 (x) [0.28, 0.65]

101 KP750 2 max f i (x)= 750 j=1 x j p (i,j) s.t. KP750 2 : g i (x)= 750 j=1 x j w (i,j) W i 1 i k, k =2 (6.4) p (i,j) w (i,j) i j W i i ( ) KP750 2 Zitzler 6, GA GA UNDX 41 1 Zitzler Deb 8, I MMA. I error. 2 I RNI I LI.

102 ( SPEA2 NSGA-II non-) F discon ZDT4, ZDT6 x 1 0 x 1 x 1 0 ZDT4 KUR F discon F discon 10 (N = 10) 100 (N = 100) 2 N =10 F discon (N = 10) 10 (N = 10) I cover I error 6.2 I MMA 6.3 I RNI I LI SPEA2 NSGA-II non- (a) Icover SPEA2 NSGA-II non- (b) Ierror 6.2 I cover and I error of F discon (N = 10)

103 ( ) non- SPEA2 NSGA-II F discon (N = 100) 100 (N = 100) I cover I error 6.6 I MMA 6.7 I RNI I LI N =10 f 1 (x) f 2 (x) -0.1 SPEA2 NSGA-II non- 6.3 I MMA of F discon (N = 10) SPEA2 NSGA-II non- SPEA2 50% 50% NSGA-II algorithm A a% b% algorithm B SPEA2 50% 50% NSGA-II 49% 51% 49% 51% non- 46% 54% 46% 54% non- 49% 51% 49% 51% 50% 50% 46% 54% 46% 54% 50% 50% (a) I RNI (b) I LI 6.4 I RNI and I LI of F discon (N = 10)

104 94 6 f 2(x) f 2(x) f1(x) SPEA f1(x) f 2(x) f 2(x) n f1(x) NSGA-II f1(x) Pareto optimum individuals(f discon (N = 10)) SPEA2 NSGA-II non- (a) Icover 0.0 SPEA2 NSGA-II non- (b) Ierror 6.6 I cover and I error of F discon (N = 100)

105 (b) non- SPEA2 NSGA 6.6(a) I cover 6.9 x 1 x 1 ZDT4 ZDT6 6.9 f 1 (x) SPEA2 NSGA-II non- SPEA2 NSGA-II non- f 2 (x) 6.7 I MMA of F discon (N = 100) SPEA2 SPEA2 40% 60% NSGA-II 39% 61% NSGA-II 14% 86% 22% 78% non- 13% 87% 22% 78% non- 8% 92% 14% 86% 38% 62% 7% 93% 14% 86% 37% 63% (a) I RNI (b) I LI 6.8 I RNI and I LI of F discon (N = 100)

106 96 6 f 2(x) f1(x) f 2(x) n f1(x) f 2(x) SPEA f1(x) f 2(x) NSGA-II f1(x) 6.9 Pareto optimum individuals(f discon (N = 100)) 250 ZDT4 I cover I error 6.10 I MMA 6.11 I RNI I LI 6.12?? ZDT4 6.10(b) 6.11 non- SPEA2 NSGA-II 6.12 non- SPEA2 NSGA-II non- SPEA2 NSGA-II

107 SPEA2 NSGA-II non- (a) Icover 0.0 SPEA2 NSGA-II non- (b) Ierror 6.10 I cover and I error of ZDT4 f 1 (x) SPEA2 NSGA-II non- f 2 (x) SPEA2 NSGA-II non I MMA of ZDT4 SPEA2 SPEA2 49% 51% NSGA-II 49% 51% NSGA-II 32% 68% 34% 66% non- 32% 68% 34% 66% non- 25% 75% 28% 72% 48% 52% 25% 75% 28% 72% 48% 52% (a) I RNI (b) I LI 6.12 I RNI and I LI of ZDT4

108 SPEA2 NSGA-II 6 6 f 2(x) 4 f 2(x) Pareto-optimal front Pareto-optimal front f1(x) f1(x) 6 6 non- f 2(x) 4 f 2(x) Pareto-optimal front Pareto-optimal front f1(x) f1(x) 6.13 Pareto optimum individuals(zdt4) non- SPEA2 NSGA-II SPEA2 NSGA-II ZDT4 non- 6.10(a) ZDT6

109 SPEA2 NSGA-II non- (a) I RNI 0.0 SPEA2 NSGA-II non- (b) I LI 6.14 I cover and I error of ZDT6 f 1 (x) x 1 f 1 (x) I cover I error 6.14 I MMA 6.15 I RNI I LI ZDT6 ZDT4 f 1 (x) x f 1 (x) 6.16 non- SPEA2 NSGA-II SPEA2 NSGA-II f 1 (x) SPEA2 NSGA-II non- f 2 (x) SPEA2 NSGA-II non I MMA of ZDT6

110 100 6 SPEA2 SPEA2 38% 61% NSGA-II 38% 61% NSGA-II 80% 20% 90% 10% non- 80% 20% 90% 10% non- 21% 79% 12% 88% 49% 51% 22% 78% 12% 88% 49% 51% (a) I RNI (b) I LI 6.16 I RNI and I LI of ZDT6 2 2 SPEA2 NSGA-II f 2(x) 1 f 2(x) Pareto-optimal front 0.5 Pareto-optimal front f 1 (x) f 1 (x) non- f 2(x) 1 f 2(x) Pareto-optimal front 0.5 Pareto-optimal front f 1 (x) f 1 (x) 6.17 Pareto optimum individuals(zdt6)

111 ZDT6 ZDT4 SPEA2 NSGA-II ZDT4 ZDT4 ZDT6 KUR I cover I error 6.18 I MMA 6.19 I RNI I LI f 1 (x) f 2 (x) Cover rate SPEA2 NSGA-II non I cover of KUR f 1 (x) SPEA2 NSGA-II non- f 2 (x) SPEA2 NSGA-II non I MMA of KUR

112 102 6 SPEA2 SPEA2 41% 59% NSGA-II 40% 60% NSGA-II 38% 62% 47% 53% non- 36% 64% 46% 54% non- 6% 94% 8% 92% 9% 91% 5% 95% 7% 93% 8% 92% (a) I RNI (b) I LI 6.20 I RNI and I LI of KUR SPEA2 100 NSGA-II f 2(x) f 2(x) f1(x) f1(x) n f 2(x) f 2(x) f1(x) f1(x) 6.21 Pareto optimum individuals(kur)

113 ZDT4 ZDT i) ii) non- SPEA2,NSGA-II SPEA2,NSGA-II KUR KUR f 1 (x) SPEA2,NSGA-II, non- non- KUR x 1 ZDT4, ZDT6 KP I cover 6.22 I MMA 6.23 I RNI I LI KP750 2

114 Cover rate SPEA2 NSGA-II non I cover of KP750 2 f 1 (x) SPEA2 NSGA-II non- f 2 (x) SPEA2 NSGA-II non I MMA of KP750 2 SPEA2 SPEA2 51% 49% NSGA-II 49% 51% NSGA-II 64% 36% 66% 34% non- 56% 44% 60% 40% non- 3% 3% 25% 75% 21% 79% 97% 21% 79% 19% 81% 97% (a) I RNI (b) I LI 6.24 I RNI and I LI of KP750 2

115 SPEA NSGA-II f 2(x) f 2(x) f1(x) f1(x) n f 2(x) f 2(x) f1(x) f1(x) 6.25 Pareto optimum individuals(kp-2) KUR non- SPEA2,NSGA-II 6.24 NSGA-II SPEA2 non- NSGA-II SPEA2 non- KP750 2 ( ) 4 5 NSGA-II, SPEA2, non- 4

116 ZDT4 KUR non- SPEA2 NSGA-II ZDT6 SPEA2,NSGA-II non- SPEA2 NSGA-II KUR KP750 2 non- I RNI I LI F discon ZDT4 ZDT6 x 1 non- KUR KP750 2 F discon (N=100) KUR non- SPEA2 NSGA-II x j t P (t j (mod P ))

117 p- (plan sorting) (object sorting) (a) discontinuous problem ( N=10 ) p- (plan sorting) (object sorting) (b) discontinuous problem ( N=100 ) p- (plan sorting) (c) ZDT4 (object sorting) 0.0 p- (plan sorting) (d) ZDT6 (object sorting) 0.00 p- (plan sorting) (e) KUR (object sorting) 6.26 I cover of p- ( ) ( p- ) I cover I error F discon (N = 10) F discon 10 (N = 10) I RNI I LI KUR I error 6.27

118 p- (plan sorting) (object sorting) (a) discontinuous problem ( N=10 ) p- (plan sorting) (object sorting) (b) discontinuous problem ( N=100 ) p- (plan sorting) (c) ZDT4 (object sorting) 0.0 p- (plan sorting) (d) ZDT6 (object sorting) 6.27 I error of p-

119 p p p SPEA SPEA2 p SPEA SPEA2 p NSGA-II NSGA-II p NSGA-II NSGA-II p non non- p non non- (a) I RNI (b) I LI 6.28 I RNI and I LI of F discon (N = 10) p f 2(x) f1(x) 6.29 Pareto optimum individuals(f discon (N = 10)) p I cover 6.27 I error F discon (N = 100) F discon 100 (N = 100) I RNI I LI N 100 p- I error p- p-

120 p F discon (N = 100) ZDT4 ZDT6 x 1 (= f 1 ) 0 f 2 0 p p p- 70 p SPEA SPEA2 p SPEA SPEA2 p NSGA-II NSGA-II p NSGA-II NSGA-II p non non- p non non-ncg (a) I RNI (b) I LI 6.30 I RNI and I LI of F discon (N = 100) f 2(x) p f1(x) f 2(x) f1(x) 6.31 Pareto optimum individuals(f discon (N = 100))

121 p- p- non- ZDT4 ZDT4 I RNI I LI ZDT4 p- I cover I error F discon (N = 100) ZDT4 p- p p p SPEA SPEA2 p SPEA SPEA2 p NSGA-II NSGA-II p NSGA-II NSGA-II p non non- p non non- (a) I RNI (b) I LI 6.32 I RNI and I LI of ZDT p- 6 f 2(x) 4 f 2(x) Pareto-optimal front Pareto-optimal front f1(x) f1(x) 6.33 Pareto optimum individuals(zdt4)

122 112 6 p p p SPEA SPEA2 p SPEA SPEA2 p NSGA-II NSGA-II p NSGA-II NSGA-II p non non- p non non- (a) I RNI (b) I LI 6.34 I RNI and I LI of ZDT p- 1.5 f 2(x) 1 f 2(x) Pareto-optimal front 0.5 Pareto-optimal front f 1 (x) f 1 (x) 6.35 Pareto optimum individuals(zdt6) p- non- F discon (N = 100) ZDT4 x 1 (= f 1 ) 0 ZDT6 ZDT6 I RNI I LI ZDT6 F discon (N = 100) ZDT4 p p- ZDT6 ZDT4 F discon (N = 100) F discon ZDT4 ZDT6 p- ZDT4

123 p- ZDT6 ZDT4 p- KUR KUR I RNI I LI p- N 100 F discon (N = 100) p- KUR 1 16 p p- 85 p SPEA SPEA2 p SPEA SPEA2 p NSGA-II 92 8 NSGA-II p NSGA-II 93 7 NSGA-II p non non- p non non- (a) I RNI (b) I LI 6.36 I RNI and I LI of KUR p- 100 f 2(x) f 2(x) f1(x) f1(x) 6.37 Pareto optimum individuals(kur)

124 114 6 p- non- (p-) () 2 F discon (N = 10) F discon (N = 100) ZDT4 ZDT6 KUR 5 i) p- F discon (N = 100) ii) KUR p- p- F discon ZDT4 ZDT6 p- non- x 1 0 p- 1 1

125 GA GA(Neighborhood Cultivation GA: ) Deb NSGA-II Zitzler SPEA2 ZDT6 SPEA2 NSGA-II non- GA 1 GA

126

127 GA(Neighborhood Cultivation GA: ) i) ii) 2 NOx

128 (NOx) ) 2) 3) NOx NOx 3 NOx 3 NOx NOx

129 PC CO 2 CO HC CO HC CO 2 NOx PM(Particulate Matter)

130 120 7 NOx 3 PM NOx PM NOx PM NOx PM NOx NO NO 2 N 2 O N 2 O 2 PM Particulate Matter Soot PM PM NOx PM ) (Thermodynamic Model) 2) (Phenomenological Model) : 3) (Detailed Multidimensional Model): 3 NOx

131 wrapper input file HIDECS output file optimizer analyzer 7.1 Optimization System 1 HIDECS 46 HIDECS KIVA code 47 1 HIDECS Injection Rate Atmosphere Condition Specific Fuel Consumption SFC NOx Soot HIDECS 7.1 HIDECS 4 18 /36 = 0.5

132 Specification of the target diesel engine Injected Fuel Volume 40mg/st Injection Timing ATDC 5.0 Injection Duration ATDC HIDECS Specific Fuel Consumption g/kwh Indicated Mean Effective Pressure kpa Indicated Power kw NOx g/kwh Soot g/kwh Specific Fuel Consumption SFC NOx Soot 36 HIDECS ( a l) 5 ATDC After Top Dead Center. ATDC 5.0 5

133 b a a-l : design variable d f h c e g j i l k Injection Rate(%) Time 7.2 Coding method bit gray GA parameters population size 100 crossover rate 1.0 crossover method 1X totale length of the chromosome bit mutation rate 1/120 total evaluation number PC FastEthernet Switching Hub

134 Cluster System CPU Memory OS Network Communication library Pentium III (1GHz)* Mb Linux2.4.4 FastEthernet TCP/IP LAM Soot (g/h Wh) SFC (g/w Wh) NOx (g/k Wh) 7.3 Derived non-dominated solutions

135 NOx (g/k Wh) Injection Rate (%) SFC (g/k Wh) Injection Timing Injection Timing Injection Timing Injection Timing 35 1 SFC:183.7, NOx:1.74, Soot: SFC:184.4, NOx:1.5, Soot: SFC:196.1, NOx:0.78, Soot: SFC299.6, NOx:0.43, Soot:0.15 Injection Rate (%) Injection Rate (%) Injection Rate (%) 7.4 Derived non-dominated solutions(sfc,nox) Soot (g/k Wh) Injection Rate (%) Injection Timing 1 SFC:183.7, NOx:1.74, Soot:0.26 Injection Rate (%) SFC (g/k Wh) Injection Rate (%) Injection Timing Injection Timing 2 SFC:202.0, NOx:1.6, Soot: SFC:229.9, NOx:1.2, Soot: Injection Rate (%) Injection Timing 4 SFC:267.8, NOx:1.05, Soot: Derived non-dominated solutions(sfc,soot)

136 SMOKE (g/k Wh) Injection Rate (%) Injection Rate (%) NOx (g/k Wh) Injection Timing Injection Timing Injection Timing 1 SFC299.6, NOx:0.43, Soot: SFC:291.9,NOx:0.64,Soot: SFC:278.1,NOx:0.87,Soot:0.10 Injection Rate (%) Injection Rate (%) Injection Timing 4 SFC:267.8, NOx:1.05, Soot: Derived non-dominated solutions(nox,soot) (Specific Fuel Consumption: SFC) NOx Soot 7.4 -NOx NOx 1 NOx Pilot 1 4 NOx NOx NOx ( )

137 Calculation time Total culculation time(sec) (About 3 hours) The average execution time of one trial of HIDECS(sec) The execution time of only master node running(sec) NOx NOx NOx HIDECS % 95% 3 HIDECS

138 128 7 GA HIDECS HIDECS NOx NOx NOx NOx GA HIDECS 7.3, ,, 2.,. 50 PPEX 51

139 ,, GA(Neighborhood Cultivation Genetic Algorithm :) 52, SPEA2, NSGA-II , (LSI), 48, ,,,.,.,.,.,,,., 49, 50, 53 LSI (Sequence-Pair) 50 BSG 53., BSG.,. 2 (Γ,Γ + ). (Γ,Γ + ) (a), 2 X,Y Γ,Γ + X,Y Γ,Γ + =(XY,XY) Γ Γ + X Y X Y Γ

140 130 7 Γ + Γ Γ + 7.7(b) (a)., Γ,Γ (c) (Γ, Γ + ) θ 7.8(c) (Γ,Γ + ) 7.8(b) 7.8(b) 7.7 X is the left of Y X is the right of Y X is the upper of Y X is the lower of Y (Γ_,Γ+ ) (XY,XY) (YX,YX) (YX, XY) (XY, YX) (a) relative position of each block Y Y X Y (Γ_,Γ + ) = (YX, YX) (Γ_,Γ + ) = (XY, YX) Y (Γ_,Γ + ) = (YX, XY) (Γ_,Γ + ) = (XY, XY) (b) concept figure 7.7 Concept of sequence-pair e a b c f d (a) floor plan e a 3 1 b 4 0 c 5 d f (b) relative position f c d e a b e c a b f d a b c d e f (c) coding of solution direction of block 7.8 Coding example of sequence-pair

141 end e a b e a b start c end c f d f d width 7.9 height Horizontal/Vertical Constrain graphs start (a), 2. min f 1 (x) =width (7.1) min f 2 (x) =height (7.2), width, height. 2,,., 7.9

142 ,., Zitler SPEA2, Deb NSGA-II, (non-). GA, ( Placement-based Partially Exchanging Crossover PPEX). 51,,. PPEX. Step 1: 1. Step 2: M c M nc M c Γ,Γ + Step 3: M nc, 6., PPEX 4., 1 a, b (M c )., (Γ,Γ + )=(da, da), 2 (Γ,Γ + )=(ad, ad). (M nc ) 1 1.,., 4 (33, 50, 100, 500 ), 6 (oblique grid), 7.8(b).

143 c 3 4 e 5 0 d 1 2 a c 3 4 e 5 0 a 1 2 d c 2 3 b f Parent f a e 3 d c 2 3 b f Child e a f 3 d 4 5 b b Parent 2 Child Placement-based Partially Exchanging Crossover(PPEX), Zitzler SPEA2 9 Deb NSGA- II 2 3 non-(non-) 4. GA GA GA Parameter number of blocks 33, 50, 100, 500 population size 200 crossover rate 1.0 mutation rate 1/bit length terminal generation 400 number of trial 30

144 134 7 SPEA2 46% 54% NSGA-II 54% 46% 56% 44% non- 36% 64% 39% 61% 31% 69% 7.11 Results of I LI (33 blocks), 33,50,100, VLSI CAD MCNC ami ,,SPEA2,NSGA-2,non non , I LI 7.11, I MMA 7.12., 7.13., ,,., 7.12 non-., non-., 7.11 I LI, non-

145 f1(x) SPEA2 NSGA-II non- f2(x) SPEA2 NSGA-II non I MMA of 33 blocks f 2(x) f 2(x) non f1(x) f1(x) SPEA f1(x) f 2(x) f 2(x) NSGA-II f1(x) 7.13 Derived non-dominated solutions(33 blocks)

146 136 7 SPEA2 50% 50% NSGA-II 56% 44% 57% 43% non- 37% 63% 37% 63% 28% 72% 7.14 Results of I LI (50 modules).,. 50, , I LI , I MMA 7.16, , , , 33.,,., I LI, I MMA., ,,., 33, 100.

147 SPEA2 42% 58% NSGA-II 59% 41% 61% 39% non- 37% 63% 42% 58% 25% 75% 7.15 Results of I LI (100 modules) f1(x) non- SPEA2 NSGA-II non- SPEA2 NSGA-II f 2(x) 7.16 I MMA of 50 modules f1(x) f 2(x) SPEA2 NSGA-II non- SPEA2 NSGA-II non I MMA of 100 modules

148 138 7 f 2(x) f 2(x) f1(x) SPEA f 2(x) f 2(x) f1(x) non f1(x) NSGA-II f1(x) 7.18 Derived non-dominated solutions(50 modules) , I LI 7.20,I MMA 7.21., I LI (, SPEA2) I LI (, NSGA-II) (50%, 50%). I LI,,.,., 7.22,. 1) SPEA2 NSGA-II. 2), SPEA2 NSGA-II. 500, ,

149 f 2(x) f 2(x) f1(x) SPEA f1(x) f 2(x) f 2(x) f1(x) non- NSGA-II f1(x) 7.19 Derived non-dominated solutions(100 modules) SPEA2 50% 50% NSGA-II 65% 35% 65% 35% non- 47% 53% 47% 53% 23% 77% 7.20 Results of I LI (500 blocks)

150 f1(x) SPEA2 NSGA-II non- SPEA2 NSGA-II non- f2(x) 7.21 I MMA of 500 blocks f 2(x) f1(x) f 2(x) SPEA2 f 2(x) f1(x) f1(x) f 2(x) non- NSGA-II f1(x) 7.22 Derived non-dominated solutions(500 blocks)

151 SPEA2 NSGA-II, non-,.,,, non- SPEA2,NSGA-II,.,.,. 33, , , A E ( ) A E A E,,. A E,., , 33.,., ,, 100! 100! (> ).

152 142 7 area A B C D aspect ratio (width/length) E A[0.21, ] B[0.39, ] C[0.57, ] D[0.767, ] E[0.991, ] 7.23 The placement of the modules(33 modules), 8000 (200, 400 ),.,,,.,,., 2,, , LSI, GA SPEA2, NSGA-II, non-.,.

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 1 1.1 1.2 one way two way (talk back) (... ) 1.3 0 C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 ( (coding theory)) 2 2.1 (convolution code) (block code), 3 3.1 Q q Q n Q n 1 Q

More information

Fourier Niching Approach for Multi-modal Optimization 2 Yan Pei Hideyuki Takagi 2 Graduate School of Design, Kyushu University 2 2 Faculty of Design,

Fourier Niching Approach for Multi-modal Optimization 2 Yan Pei Hideyuki Takagi 2 Graduate School of Design, Kyushu University 2 2 Faculty of Design, 九州大学学術情報リポジトリ Kyushu University Institutional Repository 多峰性最適化のためのフーリエ ニッチ法 裴, 岩九州大学大学院芸術工学府 高木, 英行九州大学大学院芸術工学研究院 Pei, Yan Graduate School of Design, Kyushu University Takagi, Hideyuki Faculty of Design,

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i 15 Comparison and Evaluation of Dynamic Programming and Genetic Algorithm for a Knapsack Problem 1040277 2004 2 25 n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i Abstract Comparison and

More information

soturon.dvi

soturon.dvi 12 Exploration Method of Various Routes with Genetic Algorithm 1010369 2001 2 5 ( Genetic Algorithm: GA ) GA 2 3 Dijkstra Dijkstra i Abstract Exploration Method of Various Routes with Genetic Algorithm

More information

大規模マルチエージェントシミュレーションに基づく社会システムデザインの可能性

大規模マルチエージェントシミュレーションに基づく社会システムデザインの可能性 a) Exploring Potential for Social System Design Using Multi-Agent Simulations Hiromitsu HATTORI a), Shunsuke JUMI, and Yuu NAKAJIMA MASim: Multi-Agent Simulation MASim MASim MASim MASim 1. MASim: Multi-Agent

More information

鉄鋼協会プレゼン

鉄鋼協会プレゼン NN :~:, 8 Nov., Adaptive H Control for Linear Slider with Friction Compensation positioning mechanism moving table stand manipulator Point to Point Control [G] Continuous Path Control ground Fig. Positoining

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

job-shop.dvi

job-shop.dvi 21 GA GA for job-shop scheduling problem by plural chromosome expression 1100303 2010 3 1 GA 1,,,,,,,, 4, 4,, i Abstract GA for job-shop scheduling problem by plural chromosome expression Tatsuki Shinohara

More information

(a) Picking up of six components (b) Picking up of three simultaneously. components simultaneously. Fig. 2 An example of the simultaneous pickup. 6 /

(a) Picking up of six components (b) Picking up of three simultaneously. components simultaneously. Fig. 2 An example of the simultaneous pickup. 6 / *1 *1 *1 *2 *2 Optimization of Printed Circuit Board Assembly Prioritizing Simultaneous Pickup in a Placement Machine Toru TSUCHIYA *3, Atsushi YAMASHITA, Toru KANEKO, Yasuhiro KANEKO and Hirokatsu MURAMATSU

More information

ProVisionaire Control V3.0セットアップガイド

ProVisionaire Control V3.0セットアップガイド ProVisionaire Control V3 1 Manual Development Group 2018 Yamaha Corporation JA 2 3 4 5 NOTE 6 7 8 9 q w e r t r t y u y q w u e 10 3. NOTE 1. 2. 11 4. NOTE 5. Tips 12 2. 1. 13 3. 4. Tips 14 5. 1. 2. 3.

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

IPSJ SIG Technical Report Vol.2009-CVIM-167 No /6/10 Real AdaBoost HOG 1 1 1, 2 1 Real AdaBoost HOG HOG Real AdaBoost HOG A Method for Reducing

IPSJ SIG Technical Report Vol.2009-CVIM-167 No /6/10 Real AdaBoost HOG 1 1 1, 2 1 Real AdaBoost HOG HOG Real AdaBoost HOG A Method for Reducing Real AdaBoost HOG 1 1 1, 2 1 Real AdaBoost HOG HOG Real AdaBoost HOG A Method for Reducing number of HOG Features based on Real AdaBoost Chika Matsushima, 1 Yuji Yamauchi, 1 Takayoshi Yamashita 1, 2 and

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

i

i i ii iii iv v vi vii viii ix x xi ( ) 854.3 700.9 10 200 3,126.9 162.3 100.6 18.3 26.5 5.6/s ( ) ( ) 1949 8 12 () () ア イ ウ ) ) () () () () BC () () (

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

エクセルカバー入稿用.indd

エクセルカバー入稿用.indd i 1 1 2 3 5 5 6 7 7 8 9 9 10 11 11 11 12 2 13 13 14 15 15 16 17 17 ii CONTENTS 18 18 21 22 22 24 25 26 27 27 28 29 30 31 32 36 37 40 40 42 43 44 44 46 47 48 iii 48 50 51 52 54 55 59 61 62 64 65 66 67 68

More information

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing 1,a) 1,b) 1,c) 2012 11 8 2012 12 18, 2013 1 27 WEB Ruby Removal Filters Using Genetic Programming for Early-modern Japanese Printed Books Taeka Awazu 1,a) Masami Takata 1,b) Kazuki Joe 1,c) Received: November

More information

01_.g.r..

01_.g.r.. I II III IV V VI VII VIII IX X XI I II III IV V I I I II II II I I YS-1 I YS-2 I YS-3 I YS-4 I YS-5 I YS-6 I YS-7 II II YS-1 II YS-2 II YS-3 II YS-4 II YS-5 II YS-6 II YS-7 III III YS-1 III YS-2

More information

メタヒューリスティクスに対する遺伝的プログラミングによる創発的パラメータ調整則の自動設計(本文)

メタヒューリスティクスに対する遺伝的プログラミングによる創発的パラメータ調整則の自動設計(本文) 学位論文博士 ( 工学 ) メタヒューリスティクスに対する遺伝的プログラミングによる創発的パラメータ調整則の自動設計 2015 年度 慶應義塾大学大学院理工学研究科 金政実 1 1 1.1.................. 1 1.2............. 3 1.3.................................. 6 1.4........... 6 2 9 2.1...................................

More information

SC-85X2取説

SC-85X2取説 I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11

More information

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D>

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D> i i vi ii iii iv v vi vii viii ix 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

18 2 20 W/C W/C W/C 4-4-1 0.05 1.0 1000 1. 1 1.1 1 1.2 3 2. 4 2.1 4 (1) 4 (2) 4 2.2 5 (1) 5 (2) 5 2.3 7 3. 8 3.1 8 3.2 ( ) 11 3.3 11 (1) 12 (2) 12 4. 14 4.1 14 4.2 14 (1) 15 (2) 16 (3) 17 4.3 17 5. 19

More information

1

1 PalmGauss SC PGSC-5G Instruction Manual PalmGauss SC PGSC-5G Version 1.01 PalmGauss SC PGSC5G 1.... 3 2.... 3 3.... 3 3.1... 3 3.2... 3 3.3 PalmGauss... 4 3.4... 4 3.4.1 (Fig. 4)... 4 3.4.2 (Fig. 5)...

More information

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133 A Study of Adaptive Array Implimentation for mobile comunication in cellular system 15 1 31 01GD133 LSI DSP CMA 10km/s i 1 1 2 LS-CMA 5 2.1 CMA... 5 2.1.1... 5 2.1.2... 7 2.1.3... 10 2.2 LS-CMA... 13 2.2.1...

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

3 5 18 3 5000 1 2 7 8 120 1 9 1954 29 18 12 30 700 4km 1.5 100 50 6 13 5 99 93 34 17 2 2002 04 14 16 6000 12 57 60 1986 55 3 3 3 500 350 4 5 250 18 19 1590 1591 250 100 500 20 800 20 55 3 3 3 18 19 1590

More information

困ったときのQ&A

困ったときのQ&A ii iii iv NEC Corporation 1997 v P A R T 1 vi vii P A R T 2 viii P A R T 3 ix x xi 1P A R T 2 1 3 4 1 5 6 1 7 8 1 9 1 2 3 4 10 1 11 12 1 13 14 1 1 2 15 16 1 2 1 1 2 3 4 5 17 18 1 2 3 1 19 20 1 21 22 1

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

23 Study on Generation of Sudoku Problems with Fewer Clues

23 Study on Generation of Sudoku Problems with Fewer Clues 23 Study on Generation of Sudoku Problems with Fewer Clues 1120254 2012 3 1 9 9 21 18 i Abstract Study on Generation of Sudoku Problems with Fewer Clues Norimasa NASU Sudoku is puzzle a kind of pencil

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4 Simpson H4 BioS. Simpson 3 3 0 x. β α (β α)3 (x α)(x β)dx = () * * x * * ɛ δ y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f()

More information

EGunGPU

EGunGPU Super Computing in Accelerator simulations - Electron Gun simulation using GPGPU - K. Ohmi, KEK-Accel Accelerator Physics seminar 2009.11.19 Super computers in KEK HITACHI SR11000 POWER5 16 24GB 16 134GFlops,

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

Fuzzy Multiple Discrimminant Analysis (FMDA) 5) (SOM) 6) SOM 3 6) SOM SOM SOM SOM SOM SOM 7) 8) SOM SOM SOM GPU 2. n k f(x) m g(x) (1) 12) { min(max)

Fuzzy Multiple Discrimminant Analysis (FMDA) 5) (SOM) 6) SOM 3 6) SOM SOM SOM SOM SOM SOM 7) 8) SOM SOM SOM GPU 2. n k f(x) m g(x) (1) 12) { min(max) SOM 1 2 2 3 1 (SOM: Self-Organizing Maps) 3 SOM SOM SOM SOM GPU A Study on Visualization of Pareto Solutions by Spherical Self-Organizing Maps MASATO YOSHIMI, 1 KANAME NISHIMOTO, 2 LUYI WANG, 2 TOMOYUKI

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

5 11 3 1....1 2. 5...4 (1)...5...6...7...17...22 (2)...70...71...72...77...82 (3)...85...86...87...92...97 (4)...101...102...103...112...117 (5)...121...122...123...125...128 1. 10 Web Web WG 5 4 5 ²

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e,   ( ) L01 I(2017) 1 / 19 I L01(2017-09-20 Wed) : Time-stamp: 2017-09-20 Wed 07:38 JST hig e, http://hig3.net ( ) L01 I(2017) 1 / 19 ? 1? 2? ( ) L01 I(2017) 2 / 19 ?,,.,., 1..,. 1,2,.,.,. ( ) L01 I(2017) 3 / 19 ? I. M (3 ) II,

More information

JIS Z803: (substitution method) 3 LCR LCR GPIB

JIS Z803: (substitution method) 3 LCR LCR GPIB LCR NMIJ 003 Agilent 8A 500 ppm JIS Z803:000 50 (substitution method) 3 LCR LCR GPIB Taylor 5 LCR LCR meter (Agilent 8A: Basic accuracy 500 ppm) V D z o I V DUT Z 3 V 3 I A Z V = I V = 0 3 6 V, A LCR meter

More information

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T 第 55 回自動制御連合講演会 212 年 11 月 日, 日京都大学 1K43 () Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. Tokumoto, T. Namerikawa (Keio Univ. ) Abstract The purpose of

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric

IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric IIC-1-19 Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric Vehicle Toru Suzuki, Hiroshi Fujimoto (Yokohama National

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

これわかWord2010_第1部_100710.indd

これわかWord2010_第1部_100710.indd i 1 1 2 3 6 6 7 8 10 10 11 12 12 12 13 2 15 15 16 17 17 18 19 20 20 21 ii CONTENTS 25 26 26 28 28 29 30 30 31 32 35 35 35 36 37 40 42 44 44 45 46 49 50 50 51 iii 52 52 52 53 55 56 56 57 58 58 60 60 iv

More information

パワポカバー入稿用.indd

パワポカバー入稿用.indd i 1 1 2 2 3 3 4 4 4 5 7 8 8 9 9 10 11 13 14 15 16 17 19 ii CONTENTS 2 21 21 22 25 26 32 37 38 39 39 41 41 43 43 43 44 45 46 47 47 49 52 54 56 56 iii 57 59 62 64 64 66 67 68 71 72 72 73 74 74 77 79 81 84

More information

これでわかるAccess2010

これでわかるAccess2010 i 1 1 1 2 2 2 3 4 4 5 6 7 7 9 10 11 12 13 14 15 17 ii CONTENTS 2 19 19 20 23 24 25 25 26 29 29 31 31 33 35 36 36 39 39 41 44 45 46 48 iii 50 50 52 54 55 57 57 59 61 63 64 66 66 67 70 70 73 74 74 77 77

More information

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1 2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

h23w1.dvi

h23w1.dvi 24 I 24 2 8 10:00 12:30 1),. Do not open this problem booklet until the start of the examination is announced. 2) 3.. Answer the following 3 problems. Use the designated answer sheet for each problem.

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

udc-2.dvi

udc-2.dvi 13 0.5 2 0.5 2 1 15 2001 16 2009 12 18 14 No.39, 2010 8 2009b 2009a Web Web Q&A 2006 2007a20082009 2007b200720082009 20072008 2009 2009 15 1 2 2 2.1 18 21 1 4 2 3 1(a) 1(b) 1(c) 1(d) 1) 18 16 17 21 10

More information

III

III III 1 1 2 1 2 3 1 3 4 1 3 1 4 1 3 2 4 1 3 3 6 1 4 6 1 4 1 6 1 4 2 8 1 4 3 9 1 5 10 1 5 1 10 1 5 2 12 1 5 3 12 1 5 4 13 1 6 15 2 1 18 2 1 1 18 2 1 2 19 2 2 20 2 3 22 2 3 1 22 2 3 2 24 2 4 25 2 4 1 25 2

More information

iii iv v vi vii viii ix 1 1-1 1-2 1-3 2 2-1 3 3-1 3-2 3-3 3-4 4 4-1 4-2 5 5-1 5-2 5-3 5-4 5-5 5-6 5-7 6 6-1 6-2 6-3 6-4 6-5 6 6-1 6-2 6-3 6-4 6-5 7 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9 7-10 7-11 8 8-1

More information

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [ Vol.2, No.x, April 2015, pp.xx-xx ISSN xxxx-xxxx 2015 4 30 2015 5 25 253-8550 1100 Tel 0467-53-2111( ) Fax 0467-54-3734 http://www.bunkyo.ac.jp/faculty/business/ 1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

橡3章波浪取扱.PDF

橡3章波浪取扱.PDF 2 2-2 * -* *EM EM -1- (2.1) Dally x κ ( F cos θ ) + ( F sin θ ) = ( F F s ) 2.1 y d 2-7 F F Stable wave energy flux d F (2.2) F s = E s gs = 1 8 ρgh 2 s gh = 1 8 ρg(γ h) 2 gh 2.2 η (2.3) ds xx = ρgd d

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

1

1 1 1 5 1.1....................................... 5 1............................................. 6 8 3 10 4 1 5 17 6 0 7 6 8 8 8.1 PTAS................................ 8 8. FPTAS...............................

More information

2017 (413812)

2017 (413812) 2017 (413812) Deep Learning ( NN) 2012 Google ASIC(Application Specific Integrated Circuit: IC) 10 ASIC Deep Learning TPU(Tensor Processing Unit) NN 12 20 30 Abstract Multi-layered neural network(nn) has

More information

1 158 14 2 8 00225 2 1.... 3 1.1... 4 1.2... 5 2.... 6 2.1...7 2.2... 8 3.... 9 3.1... 10 3.2... 16 4.... 17 4.1... 18 4.2... 20 4.3... 22 5.... 23 5.1... 24 5.2... 28 5.3... 34 5.4... 37 5.5... 39 6....

More information

ohgane

ohgane Signal Detection Based on Belief Propagation in a Massive MIMO System Takeo Ohgane Hokkaido University, Japan 28 October 2013 Background (1) 2 Massive MIMO An order of 100 antenna elements channel capacity

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

Memetic 26 2 (125T208T)

Memetic 26 2 (125T208T) Memetic 26 2 (125T208T) Abstract The Facility Dispersion Problem(FDP) is compinatorial optimization problem which is selecting facilities to maximize each distance as far as possible in case of selecting

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

untitled

untitled i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51

More information

平成18年版 男女共同参画白書

平成18年版 男女共同参画白書 i ii iii iv v vi vii viii ix 3 4 5 6 7 8 9 Column 10 11 12 13 14 15 Column 16 17 18 19 20 21 22 23 24 25 26 Column 27 28 29 30 Column 31 32 33 34 35 36 Column 37 Column 38 39 40 Column 41 42 43 44 45

More information

2

2 1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

パソコン機能ガイド

パソコン機能ガイド PART12 ii iii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 3 1 4 5 1 6 1 1 2 7 1 2 8 1 9 10 1 11 12 1 13 1 2 3 4 14 1 15 1 2 3 16 4 1 1 2 3 17 18 1 19 20 1 1

More information

パソコン機能ガイド

パソコン機能ガイド PART2 iii ii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 1 3 4 1 5 6 1 2 1 1 2 7 8 9 1 10 1 11 12 1 13 1 2 3 14 4 1 1 2 3 15 16 1 17 1 18 1 1 2 19 20 1 21 1 22

More information

kiyo5_1-masuzawa.indd

kiyo5_1-masuzawa.indd .pp. A Study on Wind Forecast using Self-Organizing Map FUJIMATSU Seiichiro, SUMI Yasuaki, UETA Takuya, KOBAYASHI Asuka, TSUKUTANI Takao, FUKUI Yutaka SOM SOM Elman SOM SOM Elman SOM Abstract : Now a small

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information