Microsoft PowerPoint - Sol7 [Compatibility Mode]
|
|
|
- こうしろう わかはら
- 7 years ago
- Views:
Transcription
1 ミニクイズ 4 E ハザード ( つ前の命令の結果を必要とする状況 ) が発生する条件を つ挙げよ. また それぞれの時に 制御線 ForwardA, ForwardB はどのように設定すれば良いか? ( 回答 ) E/.RegWrite= かつ E/.RegisterRd = ID/.RegisterRs この時,ForwardA = と制御すれば良い. E/.RegWrite= かつ E/.RegisterRd = ID/.Register この時,ForwardB = と制御すれば良い. ( 解説 ) E/.RegisterRd は, 今 ステージにある命令 ( 先行命令 ) の書き込みレジスタ番号 * 教科書には E/.RegisterRd も条件に書かれていますが, 本質でないので割愛します.
2 ミニクイズ 5 前ページのミニクイズ 4 の回答は, 実は不完全です. どのような場合に正しく動作しないか? そして, 正しい回答を示せ. ( 回答 ) E/.RegWrite= かつ E/.RegisterRd = ID/.RegisterRs に加えて, /E.RegisterRd ID/.RegisterRs この時,ForwardA = と制御すれば良い. E/.RegWrite= かつ E/.RegisterRd = ID/.Register に加えて, /E.RegisterRd ID/.Register この時,ForwardB = と制御すれば良い. ( 前ページのままではうまくいかない例 ) add $, $, $ add $, $, $3 3add $, $, $4 3 の実行時に, フォワードしないといけないのは, それとも どちらの結果でしょう? 4
3 重要問題 クロックサイクル で, 以下の命令列の最初の sub 命令のフェッチを開始するとする 最初に $=, $=, $3=3 であったとする それ以前の命令は全て無視することにする クロックサイクル,,3,4 のそれぞれの時刻に, 図 6.36 の回路の各結線の値とレジスタ $ の値を述べよまた,ALU の入力となっている が何を選択しているかも回答せよ. ( この問題の設定だけでは値が不明な結線は答える必要はない ) sub $, $, $3 #$に引き算の結果を格納 and $, $, $5 # 第 オペランドがsubに依存 or $3, $6, $ # 第 オペランドがsubに依存 add $4, $, $ # 第, オペランドがsubに依存 sw $5, ($) # インデックスがsubに依存
4 IF/IDWrite 重要問題 回答 clock= ハザード 検出ユニット ID/.emRead 現在の $= PCWrite and IF/ID 制御 sub ID/ /E E/ PC 命令メモリ 3 reg 書込 reg reg レジスタ IF/ID.RegisterRs IF/ID.Register IF/ID.RegisterRd 3 3 ForwardB Rd ALU ForwardA アドレス データメモリ データ /E.RegisterRd ID/.Register Rs フォワーディング ユニット E/.RegisterRd sub 命令は 番レジスタ 3 番レジスタから読み出し その値の と 3 は次のステージで使うためにパイプラインレジスタにいったん覚えられる IF/ID.Register の Rs,, Rd は sub 命令の rs, rt, rd フィールドで指定されたレジスタ番号で これがパイプラインレジスタを介して 次のステージに渡される
5 IF/IDWrite 重要問題 回答 clock= ハザード 検出ユニット ID/.emRead $5 の値は不明 現在の $= PCWrite or IF/ID 制御 and ID/ sub /E E/ PC 命令メモリ 5 reg 書込 reg reg レジスタ IF/ID.RegisterRs IF/ID.Register IF/ID.RegisterRd ID/.Register $ Rs ALU ForwardA ForwardB Rd フォワーディング ユニット - アドレス データメモリ データ /E.RegisterRd E/.RegisterRd sub 命令は と 3 の引き算をして結果の - をパイプラインレジスタに保存 ALU の入力の は上下とも 番ポートを選択 Sub の書き込みレジスタの番号は rd で指定された 番であるため 一番下の は Rd の を選択して この情報は 書き込みレジスタ番号 (Rd) としてパイプラインレジスタを介して次の段に送られる
6 IF/IDWrite 重要問題 回答 clock=3 ハザード 検出ユニット ID/.emRead $6 の値は不明 現在の $= PCWrite add IF/ID 制御 or ID/ and /E sub E/ PC 命令メモリ 6 reg 書込 reg reg レジスタ IF/ID.RegisterRs IF/ID.Register IF/ID.RegisterRd ID/.Register $6 6 3 $5 5 - ALU ForwardA ForwardB Rd Rs フォワーディング ユニット - アドレス データメモリ データ /E.RegisterRd E/.RegisterRd sub 命令の結果の-は 次のステージで書き込むためにE/レジスタに書き込まれる また 番レジスタに書き込まないといけないが その の情報は 上記 /E.RegisterRdを通してパイプラインレジスタに書き込まれる ステージは ALUの上側の入力には $が来ないといけないが これはレジスタから読み出したではなく 先行命令の結果の-をフォワードしてくる そのため 上側のはポートを選択している フォワーディングユニットへの入力 Rs, /E.RegisterRdがともにで等しいため 上側のはポートを選択するようにForwardAを設定する 3
7 IF/IDWrite 重要問題 回答 clock=4 ハザード 検出ユニット ID/.emRead 現在の $=- ( このクロックの途中で - に更新され 新しい値が add 命令のために正しくパイプラインレジスタに保存される :Chap5 p 参照 ) PCWrite sw IF/ID 制御 add ID/ or /E and E/ sub PC 命令メモリ reg 書込 reg reg レジスタ IF/ID.RegisterRs IF/ID.Register IF/ID.RegisterRd ID/.Register $6 6 - ALU ForwardA ForwardB Rd 3 Rs 3 フォワーディング ユニット アドレス データメモリ データ /E.RegisterRd E/.RegisterRd - sub 命令の結果の - は このステージでやっと書き込まれる レジスタを高速なものを使うようにしたので (Chap5 p 参照 ) このステージで書き込んだと同時にステージの後半では その新しい - という値はレジスタの読み出しポートに出てくる ( 上図はその様子 ) そのため add 命令の ID ステージの最後には正しく読み出せて パイプラインレジスタには - が書き込まれる ステージは ALU の下側の入力には clock=4 で読み出した $ の値ではなく E/ レジスタから適切にフォワードされた sub の結果の - が選ばれるように は設定される 4
8 章末問題 の回答その 単一サイクルの 命令の実行時間 = 7ps ( 命令フェッチ + レジスタ読み出し +ALU+ メモリアクセス + レジスタ書き込みの時間 ) マルチサイクルの クロックは 各ステップのうち時間が一番長いものにあわせないといけないので ps となる また ロード (5%) は 5 サイクルストア (%) は 4 サイクル分岐 (%) は 3 サイクルジャンプ (%) は 3 サイクル ALU 命令 (5%) は 4 サイクルそれぞれかかるので 命令にかかるサイクル数は平均で 5x x. + 3x. + 3x. + 4 x.5 = 4. サイクルである そのため 命令にかかる平均時間は x4.=84ps 5
9 章末問題 の回答その パイプラインの クロックは マルチサイクル同様 ps 基本的に平均すると クロックで 命令の処理が終わる しかし ハザードで以下の場合は余分なクロックがかかる. lw 命令の半分はその結果を使用する命令が直後に続く クロックストール. ジャンプ命令, 分岐命令の予測が外れた場合は,3 クロック分ストールする ( 講義で行った単純な方式 ) とする. ロード全体の半分なので 5/ =.5% の命令は余分に クロックかかる ジャンプ命令は その後余分に 3 クロックかかり それは全体の % 分岐命令のうち /4 は予測に失敗して そのとき余分に 3 クロックかかる そのような命令の割合は 全体の /4=.75 % 以上を考えると 平均 クロックでは命令は終了せず 全体の平均では x x. + 3 x.75 =.675 つまり 命令にかかるクロック数は平均で.675 クロックのため そのため 命令にかかる平均時間は x.675 = 53.5 ps と他の方式の 倍以上早いことになります 6
Microsoft PowerPoint - Chap4 [Compatibility Mode]
計算機構成論 (Chap. ) @C01 http://www.ngc.is.ritsumei.ac.jp/~ger/lectures/comparch2012/index.html (user=ganbare, passwd = 初回の講義で言いました ) 講義に出るなら 分からないなら質問しよう 単位を取りたいなら 章末問題は自分で全部といておこう ( レポートと考えればいいんです!) ご意見
Microsoft PowerPoint - Chap3 [Compatibility Mode]
計算機構成論 (Chap. 3) @C4 http://www.ngc.is.ritsumei.ac.jp/~ger/lectures/comparch22/index.html (user=ganbare, passwd = 初回の講義で言いました ) 講義に出るなら 分からないなら質問しよう 単位を取りたいなら 章末問題は自分で全部といておこう ( レポートと考えればいいんです!) ご意見 ご要望
ソフトウェア基礎技術研修
マルチサイクルを用いた実現方式 ( 教科書 5. 節 ) マルチサイクル方式 () 2 つのデータパス実現方式 単一クロックサイクル : 命令を クロックサイクルで処理 マルチクロックサイクル : 命令を複数クロックサイクルで処理 単一クロックサイクル方式は処理効率が悪い. CLK 処理時間 命令命令命令命令命令 時間のかかる命令にクロック サイクル時間をあわさなければならない. 余り時間の発生 クロック
MIPSのマイクロアーキテクチャ
今回はパイプラインの動作を妨げるハザードとその対処法をやります 1 前回紹介した構造ハザードは 資源の競合により起こるハザードで回避は簡単 ( というか複製しか手がない ) でした 今回はハザードの中のハザード データハザードを紹介します 2 パイプライン処理では 直前の命令の結果がレジスタファイルに書き込まれないうちに 後続の命令が読み出しを行うため この命令間にデータの依存性があると 誤って更新前の値を読み出してしまいます
計算機アーキテクチャ
計算機アーキテクチャ 第 18 回ハザードとその解決法 2014 年 10 月 17 日 電気情報工学科 田島孝治 1 授業スケジュール ( 後期 ) 2 回 日付 タイトル 17 10/7 パイプライン処理 18 10/17 ハザードの解決法 19 10/21 並列処理 20 11/11 マルチプロセッサ 21 11/18 入出力装置の分類と特徴 22 11/25 割り込み 23 12/2 ネットワークアーキテクチャ
計算機アーキテクチャ
計算機アーキテクチャ 第 11 回命令実行の流れ 2014 年 6 月 20 日 電気情報工学科 田島孝治 1 授業スケジュール ( 前期 ) 2 回日付タイトル 1 4/7 コンピュータ技術の歴史と コンピュータアーキテクチャ 2 4/14 ノイマン型コンピュータ 3 4/21 コンピュータのハードウェア 4 4/28 数と文字の表現 5 5/12 固定小数点数と浮動小数点表現 6 5/19 計算アーキテクチャ
-2 外からみたプロセッサ GND VCC CLK A0 A1 A2 A3 A4 A A6 A7 A8 A9 A10 A11 A12 A13 A14 A1 A16 A17 A18 A19 D0 D1 D2 D3 D4 D D6 D7 D8 D9 D10 D11 D12 D13 D14 D1 MEMR
第 回マイクロプロセッサのしくみ マイクロプロセッサの基本的なしくみについて解説する. -1 マイクロプロセッサと周辺回路の接続 制御バス プロセッサ データ バス アドレス バス メモリ 周辺インタフェース バスの基本構成 Fig.-1 バスによる相互接続は, 現在のコンピュータシステムのハードウェアを特徴づけている. バス (Bus): 複数のユニットで共有される信号線システム内の データの通り道
Microsoft PowerPoint - NxLecture ppt [互換モード]
011-05-19 011 年前学期 TOKYO TECH 命令処理のための基本的な 5 つのステップ 計算機アーキテクチャ第一 (E) 5. プロセッサの動作原理と議論 吉瀬謙二計算工学専攻 kise_at_cs.titech.ac.jp W61 講義室木曜日 13:0-1:50 IF(Instruction Fetch) メモリから命令をフェッチする. ID(Instruction Decode)
Microsoft PowerPoint - NxLec-2010-11-01.ppt
2010 年 後 学 期 レポート 問 題 計 算 機 アーキテクチャ 第 二 (O) 4. シングルサイクルプロセッサの 実 装 とパイプライン 処 理 大 学 院 情 報 理 工 学 研 究 科 計 算 工 学 専 攻 吉 瀬 謙 二 kise _at_ cs.titech.ac.jp S321 講 義 室 月 曜 日 5,6 時 限 13:20-14:50 1 1. 1から100までの 加 算
ソフトウェア基礎技術研修
算術論理演算ユニットの設計 ( 教科書 4.5 節 ) yi = fi (x, x2, x3,..., xm) (for i n) 基本的な組合せ論理回路 : インバータ,AND ゲート,OR ゲート, y n 組合せ論理回路 ( 復習 ) 組合せ論理回路 : 出力値が入力値のみの関数となっている論理回路. 論理関数 f: {, } m {, } n を実現.( フィードバック ループや記憶回路を含まない
スライド 1
RL78/G13 周辺機能紹介安全機能 ルネサスエレクトロニクス株式会社 ルネサス半導体トレーニングセンター 2013/08/02 Rev. 0.00 00000-A コンテンツ 安全機能の概要 フラッシュ メモリ CRC 演算機能 RAM パリティ エラー検出機能 データの保護機能 RAM ガード機能 SFR ガード機能 不正メモリ アクセス機能 周辺機能を使用した安全機能 周波数検出機能 A/D
Microsoft PowerPoint - Lec pptx
Course number: CSC.T341 コンピュータ論理設計 Computer Logic Design 10. シングルサイクルプロセッサのデータパス Datapath for Single Cycle Processor 吉瀬謙二情報工学系 Kenji Kise, Department of Computer Science kise _at_ c.titech.ac.jp www.arch.cs.titech.ac.jp/lecture/cld/
コンピュータ工学Ⅰ
コンピュータ工学 Ⅰ 中央処理装置 Rev. 2019.01.16 コンピュータの基本構成と CPU 内容 ➊ CPUの構成要素 ➋ 命令サイクル ➌ アセンブリ言語 ➍ アドレッシング方式 ➎ CPUの高速化 ➏ CPUの性能評価 コンピュータの構成装置 中央処理装置 (CPU) 主記憶装置から命令を読み込み 実行を行う 主記憶装置 CPU で実行するプログラム ( 命令の集合 ) やデータを記憶する
2ALU 以下はデータ幅 4ビットの ALU の例 加算, 減算,AND,OR の4つの演算を実行する 実際のプロセッサの ALU は, もっと多種類の演算が可能 リスト 7-2 ALU の VHDL 記述 M use IEEE.STD_LOGIC_1164.ALL; 00 : 加算 use IEE
差し替え版 第 7 回マイクロプロセッサの VHDL 記述 マイクロプロセッサ全体および主要な内部ユニットの,VHDL 記述の例を示す. 1)MPU(Micro Processor Uit) Module 1MPU のエンティティ記述とコントローラの例以下は, 簡単な MPU の VHDL 記述の例である ただし, アーキテクチャ部分は, 命令読み込みと実行の状態遷移のみを実現したステートマシンである
ディジタル回路 第1回 ガイダンス、CMOSの基本回路
1 前回教育用の RISC POCO を導入しました 今日はその Verilog 記述を紹介します まず この復習をやっておきましょう 2 最も重要な点は メモリの読み書きで レジスタ間接指定の理解です これはポインタと一緒なので 間違えないように修得してください 3 RISC なので 基本の演算はレジスタ同士でしかできません MV はレジスタ間のデータ移動なので気をつけてください 4 イミーディエイト命令は
Microsoft PowerPoint - 01-VerilogSetup-2019.pptx
2019 年 4 月 26 日ハードウエア設計論 :3 ハードウエアにおける設計表現 ハードウエア設計記述言語 VerilogHDL ~ 種々の記述 ~ ALU の実装とタイミングに関して always @(A or B or C) Ubuntu を起動し verilog が実行できる状態にしておいてください 79 演習 4: 簡単な演算器 1 入力 A:8 ビット 入力 B:8 ビット 出力 O:8
Microsoft PowerPoint - 3.3タイミング制御.pptx
3.3 タイミング制御 ハザードの回避 同期式回路と非同期式回路 1. 同期式回路 : 回路全体で共通なクロックに合わせてデータの受け渡しをする 通信における例 :I 2 C(1 対 N 通信 ) 2. 非同期式回路 : 同一のクロックを使用せず データを受け渡す回路間の制御信号を用いてデータの受け渡しをす 通信における例 :UART(1 対 1 通信 ) 2 3.3.1 ハザード 3 1 出力回路のハザード
QuartusII SOPC_Builderで利用できるGPIF-AVALONブリッジとは?
レジスタ アクセスの拡張機能 1. レジスタ アクセスの概要 Smart-USB Plus 製品で利用できるレジスタ アクセスとは FPGA 内にハードウエア レジスタを実装し ホスト PC の制御ソフトウエアから USB 経由でそれらのレジスタに値を設定したり レジスタの設定値を読み出すことができる機能です このレジスタ アクセス制御には USB バス仕様に基づく コントロール転送 を利用しています
1. ボードの複数台制御 コンフィグ ROM から FPGA が起動できる場合を想定しています FPGA 回路には 特定のレジスタアドレスにプリセットしたデータが必要です 製品出荷時のサンプル FPGA 回路では レジスタ No.3 を 8bit 幅に設定し FPGA 外部の 4bit ディップスイ
LabVIEW 用リファレンス制御アプリケーション RefAppLV の使い方 概要 LabVIEW 開発ツールで設計したリファレンス制御アプリケーションです LabVIEW を所有していないユー ザ環境でも インストーラを利用して RefAppLV.exe を利用することができます 機能 1. 複数台ボード制御 2. USB コンフィグ機能 3. レジスタアクセス機能 4. 拡張レジスタアクセス機能
コンピュータの仕組み(1)ハードウェア
Copyright 守屋悦朗 2005 コンピュータの仕組み (1) ハードウェア 2.1 CPU の基本原理 2 つの整数の和を出力するプログラムを考えよう main() { int a, b, c; /* 変数 a,b が整数値をとる変数であることを宣言する */ a = 1; /* a に 1 を代入する */ b = 2; /* b に 2 を代入する */ c = a+b; /* a と
QuartusII SOPC_Builderで利用できるGPIF-AVALONブリッジとは?
アルテラ FPGA 向け PLL リコンフィグの応用回路 1. PLL リコンフィグとは アルテラ FPGA は PLL 機能を内蔵しています PLL を利用して基本周波数を逓倍 分周したクロックを利用することができます 通常 FPGA 開発ツール Quartus2( 以下 Q2) の MegaWizard プラグインマネージャを利用して PLL を設定し 希望のクロック周波数を得ることができます
命令セットの構成例 a) 算術 演算命令 例 )ADD dest, source : dest dest + source SUB dest, source : dest dest - source AND dest, source : dest dest AND source SHR reg, c
第 11 回機械語とアーキテクチャ コンピュータは, 記号で組み立てられ, 記号で動く機械 : ソフトウェアソフトウェア としても理解されなければならない ソフトウェアの最も下位レベルのしくみが ( 命令セット ) アーキテクチャ である 講義では命令符号 ( 機械語 ) の構成と種類についてまとめる また, 機械語を効率良く実行するために採用されている技術について紹介する 機械語とアセンブリ言語
DRAM SRAM SDRAM (Synchronous DRAM) DDR SDRAM (Double Data Rate SDRAM) DRAM 4 C Wikipedia 1.8 SRAM DRAM DRAM SRAM DRAM SRAM (256M 1G bit) (32 64M bit)
2016.4.1 II ( ) 1 1.1 DRAM RAM DRAM DRAM SRAM RAM SRAM SRAM SRAM SRAM DRAM SRAM SRAM DRAM SRAM 1.2 (DRAM, Dynamic RAM) (SRAM, Static RAM) (RAM Random Access Memory ) DRAM 1 1 1 1 SRAM 4 1 2 DRAM 4 DRAM
Microsoft PowerPoint - ProcML-12-3.ppt
プロセッサと 年次前次前期 ( 第 回 ) 進数の加減算 (overflow( overflow) 演習 次の ビット演算の結果は overflow か? () + + () + + 答 答 中島克人 情報メディア学科 [email protected] () - = + + 答 進数の加減算 (overflow( overflow) 演習 次の ビット演算の結果は overflow
Microsoft PowerPoint - CompArch_Exercise3.pptx
2018 年度 ( 平成 30 年度 ) 版 Ver. 2018-10-14a Course number: CSC.T363 コンピュータアーキテクチャ演習 (3) Computer Architecture Exercise(3) 情報工学系吉瀬謙二 Kenji Kise, Department co Computer Science kise_at_c.titech.ac.jp CSC.T363
<4D F736F F D208AC888D B836A F C91808DEC837D836A B81698AC7979D8ED A E646F6
簡易 e ラーニングシステム EL for USB 操作マニュアル ( 管理者用 ) 香川高等専門学校情報工学科宮武明義平成 22 年 8 月 17 日 URL: http://www.di.kagawa-nct.ac.jp/~miyatake/open/ 1. はじめに 本システムの機能は, システム管理 ( 管理者用 ), レポート, 小テスト, アンケート, 掲示板, 配布ファイル, 講義記録,
目次 1. はじめに 1 2. マルチALUプロセッサ MAP MAP の構成 MAP 命令セットアーキテクチャ 並列 連鎖判定のアルゴリズムについて 5 3. Booth 乗算のアルゴリズム 次 Booth アルゴリズム 次 Bo
目次 1. はじめに 1 2. マルチALUプロセッサ MAP 2 2.1 MAP の構成 2 2.2 MAP 命令セットアーキテクチャ 3 2.3 並列 連鎖判定のアルゴリズムについて 5 3. Booth 乗算のアルゴリズム 7 3.1 1 次 Booth アルゴリズム 7 3.2 2 次 Booth アルゴリズム 8 3.3 3 次 Booth アルゴリズム 10 4. シミュレーションによる並列化の評価
PIC の書き込み解説 PICライターを使うときに間違った使い方を見受ける 書き込み失敗の原因は知識不足にある やってはいけないことをしている 単に失敗だけならまだしも部品を壊してしまう 正しい知識を身に着けよう 書き込みに必要なピンと意味 ICSPを意識した回路設計の必要性 ICSP:In Cir
PIC の書き込み解説 PICライターを使うときに間違った使い方を見受ける 書き込み失敗の原因は知識不足にある やってはいけないことをしている 単に失敗だけならまだしも部品を壊してしまう 正しい知識を身に着けよう 書き込みに必要なピンと意味 ICSPを意識した回路設計の必要性 ICSP:In Circuit Serial Programmming 原則論を解説 PIC の種類によって多少異なる 1
ディジタル回路 第1回 ガイダンス、CMOSの基本回路
POCO の 1 サイクルマイクロアーキテクチャ POCO は 作りながら学ぶコンピュータアーキテクチャ ( 倍風館 ) で使っている教育用の 16 ビット RISC である www.am.ics.keio.ac.jp/parthenon/pocobook/ も参照のこと POCO の構成 1 + + ext func[2:0] 2:0 THB ADD 00 01 10 comsel com S A
PowerPoint プレゼンテーション
コンピュータアーキテクチャ 第 13 週 割込みアーキテクチャ 2013 年 12 月 18 日 金岡晃 授業計画 第 1 週 (9/25) 第 2 週 (10/2) 第 3 週 (10/9) 第 4 週 (10/16) 第 5 週 (10/23) 第 6 週 (10/30) 第 7 週 (11/6) 授業概要 2 進数表現 論理回路の復習 2 進演算 ( 数の表現 ) 演算アーキテクチャ ( 演算アルゴリズムと回路
修士論文 各種プロセッサアーキテクチャの設計に基づいた デザインパターンの検討 氏名 : 安倍厚志 学籍番号 : 指導教員 : 山崎勝弘教授 提出日 : 2011 年 2 月 14 日 立命館大学大学院理工学研究科創造理工学専攻
修士論文 各種プロセッサアーキテクチャの設計に基づいた デザインパターンの検討 氏名 : 安倍厚志 学籍番号 : 6162080004-9 指導教員 : 山崎勝弘教授 提出日 : 2011 年 2 月 14 日 立命館大学大学院理工学研究科創造理工学専攻 内容梗概 本論文では, コンピュータアーキテクチャを体系的に学習しながら, ソフトウェアとハードウェアのトレードオフをバランスよく理解できることを目的に,
COMET II のプログラミング ここでは機械語レベルプログラミングを学びます 1
COMET II のプログラミング ここでは機械語レベルプログラミングを学びます 1 ここでは機械命令レベルプログラミングを学びます 機械命令の形式は学びましたね機械命令を並べたプログラムを作ります 2 その前に プログラミング言語について 4 プログラミング言語について 高級言語 (Java とか C とか ) と機械命令レベルの言語 ( アセンブリ言語 ) があります 5 プログラミング言語について
1) 書込 読出機器構成 KEYENCE KV-7500~MPC 接続 KV-7500 の PLC リンクモードを用いて MPC と通信します KV STUDIO Ver9 KV-7500 KV-XL202 Ref No:ti2K Last Modify バス接続ユニット
1) 書込 読出機器構成 KEYENCE KV-7500~MPC 接続 KV-7500 の PLC リンクモードを用いて MPC と通信します KV STUDIO Ver9 KV-7500 KV-XL202 Ref No:ti2K-171026 Last Modify 180305 バス接続ユニット エンドユニット USB 操作 モニタータッチパネル ( 任意 ) KV-XL202 ポート 1 設定
MIPSのマルチサイクル マイクロアーキテクチャ
MIPSのマルチサイクル マイクロアーキテクチャ 慶應義塾大学 天野 1 命令フォーマット 3種類の基本フォーマットを持つ 31 R-type opcode 31 I-type 21 20 rs 26 25 opcode 31 J-type 26 25 16 15 rt 21 20 rs 11 10 rd 5 16 15 rt 0 0 immediate 26 25 opcode 6 shift function
Microsoft Word - ランチョンプレゼンテーション詳細.doc
PS1-1-1 PS1-1-2 PS1-1-3 PS1-1-4 PS1-1-5 PS1-1-6 PS1-1-7 PS1-1-8 PS1-1-9 1 25 12:4514:18 25 12:4513:15 B PS1-1-10 PS1-2-1 PS1-2-2 PS1-2-3 PS1-2-4 PS1-2-5 PS1-2-6 25 13:1513:36 B PS1-2-7 PS1-3-1 PS1-3-2
PLCシリアル通信 MODBUS通信 データ送信/受信プログラム例
MODBUS RTU 通信時の配線例 ( 例 )FPΣ と弊社製温調器 KT シリーズ通信します マスタとして使用する FPΣ の MODBUS マスタ機能を使用し スレーブの KT シリーズのデータを読み出し 書き込みを行います マスタ データ書き込み スレーブ データ読み出し RS485 FPΣ の通信カセットは COM3 カセット (FPG-COM3) もしくは COM4 カセット (FPG-COM4)
ソフトウェア基礎技術研修
命令と命令表現 ( 教科書 3.1 節 ~3.4 節 ) プロセッサの命令と命令セット 命令 : プロセッサへの指示 ( プロセッサが実行可能な処理 ) 加算命令 減算命令 論理演算命令 分岐命令 命令セット : プロセッサが実行可能な命令の集合 ( プログラマから見えるプロセッサの論理仕様 ) プロセッサ A 加算命令分岐命令 プロセッサ B 加算命令減算命令 命令セットに含まれない命令は直接実行できない!
計算機アーキテクチャ特論 後半第2回 アウトオブオーダー実行 Out-of-Order Execution
計算機アーキテクチャ特論 後半第 2 回 アウトオブオーダー実行 Out-of-Order Execution 講師加藤真平 本資料は授業用です 無断で転載することを禁じます 前回の理解度クイズ 問 1 マルチコア (CMP) 化が進んだ理由を簡潔に述べよ 答え消費電力や発熱の問題により 単一プロセッサの動作周波数を上げることができなくなったため 複数のプロセッサコアを並べることで性能を改善するようになった
PowerPoint プレゼンテーション
コンピュータアーキテクチャ 第 11 週 制御アーキテクチャ メモリの仕組 2013 年 12 月 4 日 金岡晃 授業計画 第 1 週 (9/25) 第 2 週 (10/2) 第 3 週 (10/9) 第 4 週 (10/16) 第 5 週 (10/23) 第 6 週 (10/30) 第 7 週 (11/6) 授業概要 2 進数表現 論理回路の復習 2 進演算 ( 数の表現 ) 演算アーキテクチャ
Microsoft PowerPoint - vlsi4.ppt [互換モード]
(4) 工学部講義 坂井 修一 東京大学大学院情報理工学系研究科電子情報学専攻 東京大学工学部電子情報工学科 / 電気工学科 はじめに CPU の設計 (3) はじめに 本講義の目的 の基本を学ぶ : 機能 VLSI 対象者 : 工学部 4 年生以上 担当者 坂井修一 プロセッサ VLSI 池田誠 アルゴリズム VLSI 時間 場所 水曜日 8:30-10:15 工学部 2 号館 243 前提となる知識
VLSI工学
25/1/18 計算機論理設計 A.Matsuzawa 1 計算機論理設計 (A) (Computer Logic Design (A)) 東京工業大学大学院理工学研究科電子物理工学専攻 松澤昭 3. フリップフロップ回路とその応用 25/1/18 計算機論理設計 A.Matsuzawa 2 25/1/18 計算機論理設計 A.Matsuzawa 3 注意 この教科書では記憶回路を全てフリップフロップと説明している
サイボウズモバイル KUNAI Lite for Android マニュアル
サイボウズモバイル KUNAI Lite for Android マニュアル Copyright (C) 2011 Cybozu, Inc. 目次 導入ガイド システム管理者の作業...1 ユーザーの作業...1 インストールマニュアル KUNAI Lite for Android をインストールする...4 KUNAI Lite for Android をアンインストールする...5 ユーザーマニュアルアカウント情報を設定する...7
PowerPoint プレゼンテーション
電気 電子計測 第 3 回 第 8 章ディジタル計測制御システムの基礎 http://cobayasi.com/keisoku/3th/3th.pdf 今日の学習の要点 ( テキスト P85~P94). 計算機の基本的なしくみを学ぼう 2. 外部機器とのデータのやりとりについて知ろう 3. 計算機によるディジタル計測制御システムの構成法 物理量. 計算機の基本的なしくみを学ぼう ディジタル計測制御システムセンサから得た情報を
CommCheckerManual_Ver.1.0_.doc
通信チェックツール (CommChecker) 取扱説明書 (Ver.1.0) 2009 ESPEC Corp. 目次 1. 使用条件 4 2. ダウンロード & インストール 5 3. 環境設定 6 3-1.RS-485 通信 6 3-2.RS-232C 通信 7 3-3.GPIB 通信 8 4. ソフトウェアの使用方法 9 4-1. 起動 9 4-2. 通信設定 10 (1)RS485 通信 10
020105.メモリの高機能化
速化記憶階層の活用 5. メモリの高機能化 メモリインタリーブ メモリインタリーブとは 0 2 3 5 バンク番号 0 2 3 5 8 9 0 2 3 5 8 9 20 並列アクセス 主記憶装置をいくつかのバンクに分割し 各バンク毎にアクセスパスを設定する あるバンクの情報に対するアクセスがある時は それに続く全てのバンクの情報を同時にそれぞれのアクセスパスを経由して読み出す バンク数をウェイといい
SiTCP ユーティリティユーザガイド 2014 年 6 月 18 日 0.73 版 Bee Beans Technologies 1
SiTCP ユーティリティユーザガイド 2014 年 6 月 18 日 0.73 版 Bee Beans Technologies 1 改版履歴 版数 日付 内容 備考 0.1 2013 年 04 月 04 日 ドラフト作成 0.11 2013 年 04 月 10 日 UI 等の微調整に対応 0.2 2013 年 04 月 24 日 サーバー機能追加 0.3 2013 年 06 月 18 日 各 OS
PowerPoint プレゼンテーション
マイコンプログラミング演習 I 第 04-05 回 LEDを用いたI/O 制御担当 : 植村 実験の目的 本実験ではマイコンシステムを用いた信号の入出力の制御方法を理解することを目的とし, マイコンのアーキテクチャを理解 実装するとともに, アセンブラによるプログラミング技術の習得を行う. 回路の構成として,PIC16F84A を用いてスイッチを入力とする LED の点灯 / 消灯の出力操作を行う回路ならびにアセンブラプログラムを実装する.
2014-11.key
2014-11 1 2 3 4 5 7 8 9 10 11 12 PC 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 45 46 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
「東京こどもネット・ケータイヘルプデスク(こたエール)」平成22年度相談実績の概要
734, 35% 62, 11% 84, 16% 530, 26% 235, 11% PC) 396, 73% 579, 28% ) (21 ) 2 3 4 5 6 7 8 9 10 11 12 13 200 150 100 22 182 200 150 100 22 50 54 PC 49 52 PC 50 41 14 17 1 1 4 16 3 6 14 180 250 200 150 235
6 30 2005 10 1 65 2,682 00 21.9 481 1 2,776 21.0 15 1,740 00 5.8 107 13.6 40 2025 24.2-0 - -1 - -2 - -3 - -4 - -5 - -6 - -7 - -8- -9 - - 10 - -11 - - 12 - - 13-10 11 59 4 59 3 10 17 - 14 - - 15 - - 16
ターゲット項目の設定について
Code Debugger CodeStage マニュアル別冊 ターゲット 項目の設定について Rev. 2.8 2018 年 4 月 13 日 BITRAN CORPORATION ご注意 1 本書及びプログラムの内容の一部または 全部を無断で転載することは プログラムのバックアップの場合を除き 禁止されています 2 本書及びプログラムの内容に関しては 将来予告なしに変更することがあります 3 当社の許可なく複製
また RLF 命令は 図 2 示す様に RRF 命令とは逆に 各ビットを一つずつ 左方向に回転 ( ローテイト ) する命令である 8 ビット変数のアドレスを A とし C フラグに 0 を代入してから RLF A,1 を実行すると 変数の内容が 左に 1 ビットシフトし 最下位ビット (LSB)
コンピュータ工学講義プリント (12 月 11 日 ) 今回は ローテイト命令を用いて 前回よりも高度な LED の制御を行う 光が流れるプログラム 片道バージョン( 教科書 P.119 参照 ) 0.5 秒ごとに 教科書 P.119 の図 5.23 の様に LED の点灯パターンが変化するプログラムを作成する事を考える この様にすれば 光っている点が 徐々に右に動いているように見え 右端まで移動したら
Nios II - PIO を使用した I2C-Bus (2ワイヤ)マスタの実装
LIM Corp. Nios II - PIO を使用した I 2 C-Bus (2 ワイヤ ) マスタの実装 ver.1.0 2010 年 6 月 ELSEN,Inc. 目次 1. はじめに... 3 2. 適用条件... 3 3. システムの構成... 3 3-1. SOPC Builder の設定... 3 3-2. PIO の設定... 4 3-2-1. シリアル クロック ライン用 PIO
