cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1

Size: px
Start display at page:

Download "cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1"

Transcription

1 cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 W. Kohnen } $SL_{2}(\mathbb{Z})$ \sigma ) $E^{l\downarrow}$ Kim-Shahi 2 1 Symmetric cube zeta 3 $[8],[9],$ [7] W. Kohnen $S_{2k-2}(SL_{2}(\mathbb{Z}))$ $2k-2$ $SL_{2}(\mathbb{Z})$ $S_{k-1/2}(\Gamma_{0}(4))$ $k-1/2$ $k-1/2$

2 138 $e(x)=e^{2\pi ix}$ $H_{1}$ $\theta(\tau)=\sum_{p\in \mathbb{z}}e(p^{2}\tau)(\tau\in H_{1})$ $\gamma=(\begin{array}{ll}a b4c d\end{array})\in\gamma_{0}(4)$ $( \theta(\gamma\tau)/\theta(\tau))^{2}=(\frac{-1}{d})(c\tau+d)$ $\theta(\gamma\tau)/\theta(\tau)$ 1/2 $H_{1}$ $f$ (\mbox{\boldmath $\tau$}) $\gamma\in\gamma_{0}(4)$ $f(\gamma\tau)=f(\tau)(\theta(\gamma\tau)/\theta(\tau))^{2k-1}$ $k-1/2$ $S_{k-1/2}(\Gamma_{0}(4))$ 4 1 new forms Kohnen $f\in S_{k-1/2}(\Gamma_{0}(4))$ $f$ $f( \tau)=\sum_{\mathrm{n}=1}^{\infty}\mathrm{c}(n)e(n\tau)$ $n\equiv 0$ or $(-1)^{k}$ -1 $\mathrm{m}\mathrm{o}\mathrm{d} $S_{k-1/2}(\Gamma_{0}(4))$ (Shimura, Kohnen) 4$ $\mathrm{a}\mathrm{a}$ $S_{k-1/2}^{+}(\Gamma_{0}(4))$ $c(n)=0$ Kohnen $S_{2k-2}(SL_{2}(\mathbb{Z}))\cong S_{k-1/2}^{+}(\Gamma_{0}(4))$. Hecke index 1 $f_{\hat{u}}$ index 1 ( Zagier Skoruppa )

3 138 2 \S 1 2 $GL_{2}(\mathbb{C})$ $\rho_{k,j}(g)=\det(g)^{k}$ Sym(j)(g) 4) $Sym(j)$ { $j$ $H_{2}$ 2 $Sp(2, \mathbb{r})$ 4 $H_{2}$ $F$ $(F _{k,j}[g])(z)=\rho_{k_{\dot{j}}},(cz+d)^{-1}f(gz)$ $g=(\begin{array}{ll}a BC D\end{array})\in Sp(2, \mathbb{r})$ $Sp(2,\mathbb{R})$ $H_{2}$ $F$ $Sp(2,\mathbb{Z})$ $\rho_{k,j}=\det Sym$ (D $\Phi(F)(\tau)=\lim_{\lambdaarrow\infty}F(_{0}^{\mathcal{T}}$ i0\lambda $\Phi(F)=0$ $F$ $\rho_{k,j}$ $S_{k,j}$ (Sp(2, $\mathbb{z}$)) ( $k,$ $j$ ) 3 (g) 1 $\sim$. $Z\in $\theta(z)$ $\det$ H_{2}$ $\theta(z)=\sum_{p\epsilon \mathbb{z}^{2}}e(^{t}pzp)$

4 (-1) 140 $Sp(2, \mathbb{z})$ $\Gamma_{0}(4)=\{\gamma=(\begin{array}{ll}A BC D\end{array})$ $\in Sp(2,\mathbb{Z})$ ; $C\equiv 0\mathrm{m}\mathrm{o}\mathrm{d} 4\}$ $\gamma=(\begin{array}{ll}a BC D\end{array})$ $\psi(\gamma)=(_{\neg\det(d}^{-1})$ $(\theta(\gamma Z)/\theta(Z))^{2}=\psi(\gamma)\det(CZ+D)$ $\theta(\gamma Z)/\theta(Z)$ 1/2 $\chi$ $\Gamma_{0}$ \epsilon $F$ $H_{2}$ $\chi$ $F(\gamma Z)=\chi(\gamma)$ ( $\theta$ (4) $\det Sym(j)$ $\gamma\in\gamma_{0}(4)$ ( $\gamma$z)/ $\theta$(z)) -1Sym $(j)$ ($CZ+$ D)F(Z) $S_{k-1/2,j}(\Gamma_{0}(4), \chi)$ $\psi$ $\chi$ $\chi)$ Hecke $S_{k-1/2,j}($\Gamma 0(4), $\chi$ Haupt type, $\chi=\psi$ Neben type $\ovalbox{\tt\small REJECT}$ 1 Neben type $1_{2}$ -1 2 $-1_{4}$ $\det(-1_{2})=1$ Neben type $\psi^{l})$ $l=0$ 1 $F\in S_{k-1/2,j}($\Gamma 0(4), $F(Z)= \sum a(t)\prec tr(tz)$ $T$ ( $T$ \text{ }\star\backslash \mathrm{f}\mathrm{f}\mathrm{f}\text{ }\acute{1}\overline{\mathrm{t}}f^{ }\mathrm{j}$) $\text{ }\mathrm{i}\mathrm{e}\text{ }\{\mathrm{i}\xi $a(t)$ $j+1\text{ }\grave{\grave{\text{ }} }J\mathrm{s}\text{ ^{}\mathrm{v}}\text{ ${}^{t}\mu\mu \mathrm{m}$od $4_{\text{ }}$ \supset $(\begin{array}{ll}1 11 1\end{array})$ $\text{ }$ $k+lt$ $(\begin{array}{ll}0 $\mathrm{f}\mathrm{h}\ovalbox{\tt\small REJECT}_{\grave{1}}\ovalbox{\tt\small REJECT}^{\backslash }\Phi$ _{ } ^{}-}C_{\text{ } }\mu\in \mathbb{z}^{2}$ 00 0\end{array})$ $(\begin{array}{ll}1 00 0\end{array})$ $(\begin{array}{ll}4a 2b2b 4c\end{array})$ (a, $b,$ $c\in \mathbb{z}$ ) $7\mathrm{F} $ $(-1)^{k+l}T\equiv$ $(\begin{array}{ll}0 00 1\end{array})$, $\text{ _{}\mathrm{n}}^{\mathrm{a}}$ $\#[]\mathrm{h}$

5 141 $a(t)=0$ $F$ $S_{k-1/2,j}^{+}$ $(\Gamma_{0}(4), \psi^{l})$ $\mathrm{a}\mathrm{a}$ $l=0$ $l=1$ (Haupt Neben) (Haupt Neben ) 2 $\psi^{l})$ (Hayashida and Ibukiyama) $S_{k-1/2,j}^{+}$ ( 0(4)) $k+l$ $Sp(2, \mathbb{z})$ index 1 $k+l$ $Sp(2, \mathbb{z})$ index 1 2 Hecke $j$ $S_{k-}^{+}$1/2,j $(\Gamma_{0}(4),\psi)\cong S_{j+\theta}$,2k-6(Sp(2, $\mathbb{z}$)) Spinor Zhuravlev 2 Euler factor 2 (1) $j$ $j$ (2) $j+3$ $\psi$ 1 (3)

6 142 $j=0,$ =3 $\det 3Sym(2k-6)$ $\det Sym(j)$ (Neben) (4) $Sp(2, \mathbb{r})$ $Sp(2)$ Ihara, Langlands $Sp(2)/\{\pm 1_{2}\}\cong SO$ (5) $SO$ (5) $Sp(2, \mathbb{r})$ 2 $SP(2, \mathbb{r})$ $Sp(2, \mathbb{r})$ 2 ( ) (4) (3) 2 $Sp(2)$ $SO$ (5) $Sp(2)$ $SO$ (5) SO $(3,2)$ 5 Spinor (Andrianov ). $F\in S_{k,j}$ (Sp(2, $\mathbb{z}$)) $L(s, F)= \prod_{\mathrm{p}}$ ( $1-\lambda(p)p^{-s}+(\lambda(p)^{2}-\lambda(p^{2})-p-1$ ) $p-2s-\lambda$ (p)p $-3s+p2\mu-4s$ ) $-1$ $\mathrm{a}\mathrm{a}$ $\mu=2k+j-3$ $\delta$ $\lambda(p^{\delta})$ Hecke $T(p^{\delta})=\{g\in M_{4}(\mathbb{Z})_{1}.{}^{t}gJg=p^{\delta}J\}$

7 143 $J=(\begin{array}{ll}0-1_{2}\mathrm{l}_{2} 0\end{array})$ $\text{ }$ 6 normalization $GSp(+2,\mathbb{R})=\{g=(\begin{array}{ll}A BC D\end{array})\in$ $M_{4}(\mathbb{R}),{}^{t}gJg=n(g)J(n(g)>0)\}$ $g$ $F\in S_{k,j}$ $(2, (Sp \mathbb{z})$ $F _{k,j}[g]=\rho_{k,j}(cz+d)^{-1}f(gz)$ $T(p^{\delta})= \bigcup_{\mathit{9}i}sp(2, \mathbb{z})g_{i}$ (disjoint) $F _{k,j}t(p^{\delta})=p^{\delta(2k+j-3)} \sum_{i}f [g_{i}]$ $F _{k,j}t(p^{\delta})=\lambda(p^{\delta})f$ { Zhuravlev Zhuravlev $\Gamma_{0}(4)\ni\gamma\prec$ $(\gamma, \theta(\gamma Z)/\theta(Z))$ $\tilde{\gamma}_{0}(4)$ $g\in M_{4}(\mathbb{R}),{}^{t}gJg=m^{2}g$ $g_{1}=m^{-1}g=(\begin{array}{ll}a BC D\end{array})$ $H_{2}$ $F _{k-1/2,j}$ [( $\phi$(z))] $g,$ $=Sym(j)(CZ+D)^{-1}\phi(Z)^{-2k+1}F(gZ)$ $K_{1}=((_{0}^{1}00p000p000$2 $p$ $00,p^{1/2}$) $K_{2}=($, $p)$ $p0$) $\tilde{\gamma}_{0}(4)$ $T_{i}(p)= \tilde{\gamma}_{0}(4)k_{i}\tilde{\gamma}_{0}(4)=\bigcup_{j}\tilde{\gamma}_{0}(4)\tilde{g_{j}}$

8 $\text{ }$ \check 144 $F _{k-}$ 1/2,pTi $(p)=p^{i(k+j-7/2)} \sum_{j}f _{k-1/2,\rho}[\tilde{g}_{j}]\psi(\det(d_{j}))$ $D_{j}$ 2 2 $p^{-1}g_{j}$ $S_{k-1/2,j}^{+}($ \Gamma 0(4), $\psi)$ $\psi)$ (cf $p=2$ $S_{k-1/2,j}^{+}($ 0(4) $\rangle$ [?] $)$. C $F\in S_{k-1/2,j}(\Gamma_{0}(4))$ \mathrm{t}\dot{\text{ }^{}\vee}\mathrm{c}$ 1(p) $\mathrm{f}\mathrm{p}\text{ }$ $rightarrow $T_{1}(p)F=\lambda(p)F$, $T_{2}(p)F=\alpha)(p)F$ $L(s, F)$ $=$ $\prod_{p}(1-\lambda(p)\psi(p)p^{-s}+(\mu(p)+p^{2k+2j-5}(1+p^{2}))p^{-2s}-\lambda(p)\psi(p)p^{2k+2j-s}+p^{4k+4j-6})^{-1}$ $a\leq b\leq d\leq c$ $a+c=b$ + $d=\delta$ $T$(pa, c, $p^{b},p$ $p^{d}$ ) $\psi(p^{\delta})t(p^{a+b},p^{a+d},p^{c+d},p^{b+c})$ (1) $k\geq 5$ ( $k\geq 5$ )

9 145.. $j$ $\dim S_{k-1/2,j}^{+}(\Gamma_{0})=\dim S_{j+}$ $(Sp(2, \mathbb{z}))$ 3,2k-6 $k,$ $j$ ( ) $k=3$ $j=$ $0$ ( ) 1 $\det 3Sym(j)$ (2) : $j$ $\sum_{k=0}^{\infty}s_{k-1/2,j}$ (\Gamma 0(4)) $A=$ { (4Z); } I $f$ $f(z)\in\oplus_{k=0}^{\infty}a_{2k}(sp(2,\mathbb{z}))$ $A_{2k}$ $\mathbb{z})$ (Sp(2, ) $2k$ $j=2$ $j=4$ $\mathrm{a}\backslash _{\mathrm{o}}$ 9 $S_{k-1/2,j}^{+}$ $\psi)$ $($ 0(4), ( ) \mathbb{z})$ $S_{k,j}$ (Sp $(2,

10 148 ( ) (3) 7Kim-Shahidi lifling $f$ 1 $f= \sum_{n=1}^{\infty}a$ (n)qn $L(s, f)= \prod_{pgood}(1-a(p)p^{-s}+p^{k-1-2s})^{-}1$ $1-a(p)p^{-s}+p^{k-1-2s}=(1-\alpha p^{-\ell})(1-\beta p^{-s})$ symmetric cube zeta $L(s, f, Sym(3))= \prod_{pgood}((1-\alpha^{\theta}p^{-s})(1-\alpha^{2}\beta p^{-s})(1-\alpha\beta^{2}p^{-s})(1-\beta^{3}p^{-s}))^{-1}$ $\mathrm{g}\mathrm{l}(4)$ Kim Shahidi $k=2$ (s, $f,$ $Sym(3)$ ) 3 Spinor zeta l Kim (1) 1 2 $\det Sym(k-2)$ (2) 1 $\Gamma_{0}(p)$ Iwahori subgroup $\mathrm{a}\mathrm{a}$ ( local rep. Steinberg rep. ) level 1 $\mathrm{a}\mathrm{a}$ level 1? Kim 2 $\Gamma_{0}(11)$ Ihara- Langlands 11 Steinberg ( level 11 Iwahori subgroup new form ) 1 ( ) 2 $k=12$ $SL_{2}(\mathbb{Z})$ Ramanujan Delta $\det Sym$ (10),

11 J. 147 $S_{13,10}(Sp(2, \mathbb{z}))$ $\dim S_{13,10}(Sp(2, \mathbb{z}))=2$ Euler 2-factor 3-factor $L(, s, \triangle, Sym(3))$ Euler factors [9] References [1] T. Arakawa, Vector Valued Siegel s Modular Forms of Degree Two and the Associated Andrianov $\mathrm{l}$-functions. Manuscripta Math. 44(1983), [2] M. Eichler and D. Zagier, The Theory of Jacobi Forms, Birkh\"auser, 1985, Boston-Basel-Stuttgart. [3] S. Hayashida, Skew-holomorphic Jacobi forms of index 1 and Siegel $\mathrm{w}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}\mathrm{s}_{)}$ modular forms of half integral Number Theory 106(2004), [4] T. Ibukiyama, Construction of half integral weight Siegel modular forms of from automorphic forms of the compact twist $Sp(n, \mathbb{r})$ $\mathrm{s}_{7}1$). $(2)$ J. reine $\mathrm{u}$. angew. Math. 359 (1985), [5] T. Ibukiyama, On Jacobi forms and SIegel modular forms of half integral weights, Comment. Math. Univ. St. Paul, 41 (1992), n0.2, [6] S. Hayashida and T. Ibukiyama, Siegel modular forms of half integral $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}_{\text{ }}$ weight and a lifting preprint. [7] T. Ibukiyama, Vector valued Siegel modular forms of half integral weight, preprint. [8] T. Ibukiyama, Conjecture on Shimura correspondence of Siegel modular forms of degree two, in preparation. [9] T. Ibukiyama, Numerical example of a cubic zeta function coming from a Siegel modular form, in preparation. [10] W. Kohnen, Modular forms of half-integral weight on 248 (1980), n0.3, , Math. Ann.

12 148 [11] N.-P. Skoruppa, Developments in the theory of Jacobi forms, AutOmorphic functions and their applications (Khabarovsk, 1988), , Acad. Sci. USSR, Inst. Appl. Math., Khabarovsk, See also MPIpreprint (1989). [12] G. Shimura, On modular forms of half integral weight, Ann. of Math. 97(1973), [13] R. Tsushima, An explicit dimension formula for the spaces of generalized Siegel modular forms with respect to, Proc. Japan Acad. Ser. $Sp(2, \mathbb{z})$ A Math. Sci. 59(1983), no. 4, [14] R. Tsushima, Dimension Formula for the Spaces of Siegel Cusp Forms of Half Integral Weight and Degree Two, Comm. Math. Univ. St. Pauli Vol. 52 No. 1(2003), [15] R. Tsushima, Dimension Formula for the Spaces of Jacobi Forms of Degree Two, in preparation. [16] V. G. Zhuravlev, Hecke rings for covering of a symplectic group, Math. Sbornik 121 (163) (1983), [17] V. G. Zhuravlev, Euler expansions of theta transforms of Siegel modular forms of half-integral weight and their analytic properties, Math. Sbornik 123 (165) (1984), Tomoyoshi Ibukiyama Department of Mathematics, Graduate School of Science Osaka University Machikaneyama 1-16, Toyonaka, Osaka 56&0043 Japan

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

$2_{\text{ }}$ weight Duke-Imamogle weight Saito-Kurokawa lifting ( ) weight $2k-2$ ( : ) Siegel $k$ $k$ Hecke compatible liftin

$2_{\text{ }}$ weight Duke-Imamogle weight Saito-Kurokawa lifting ( ) weight $2k-2$ ( : ) Siegel $k$ $k$ Hecke compatible liftin $2_{\text{ }}$ weight 1103 1999 187-199 187 Duke-Imamogle weight Saito-Kurokawa lifting ( ) weight $2k-2$ ( : ) Siegel $k$ $k$ Hecke compatible lifting $([\mathrm{k}\mathrm{u}])$ 1980 Maass [Ma2], Andrianov

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

Title SIEGEL CUSP FORMS の LIFTING の実例 ( 代数群上の形式 保型表現と保型的 $L$ 関数 ) Author(s) 池田, 保 Citation 数理解析研究所講究録 (2000), 1173: Issue Date URL http:

Title SIEGEL CUSP FORMS の LIFTING の実例 ( 代数群上の形式 保型表現と保型的 $L$ 関数 ) Author(s) 池田, 保 Citation 数理解析研究所講究録 (2000), 1173: Issue Date URL http: Title SIEGEL CUSP FORMS の LIFTING の実例 ( 代数群上の形式 保型表現と保型的 $L$ 関数 ) Author(s) 池田, 保 Citation 数理解析研究所講究録 (2000), 1173: 82-97 Issue Date 2000-10 URL http://hdlhandlenet/2433/64447 Right Type Departmental Bulletin

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+ 1160 2000 259-270 259 (Kohji Matsumoto) 1 [18] 1999 $- \mathrm{b}^{\backslash }$ $\zeta(s \alpha)$ Hurwitz $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+n)^{-S}$ $\zeta_{1}(s \alpha)=\zeta(s \alpha)-\alpha^{-}s$

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

Title Compactification theorems in dimens Topology and Related Problems) Author(s) 木村, 孝 Citation 数理解析研究所講究録 (1996), 953: Issue Date URL

Title Compactification theorems in dimens Topology and Related Problems) Author(s) 木村, 孝 Citation 数理解析研究所講究録 (1996), 953: Issue Date URL Title Compactification theorems in dimens Topology and Related Problems Authors 木村 孝 Citation 数理解析研究所講究録 1996 953 73-92 Issue Date 1996-06 URL http//hdlhandlenet/2433/60394 Right Type Departmental Bulletin

More information

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math $\mathrm{r}\mathrm{m}\mathrm{s}$ 1226 2001 76-85 76 1 (Mamoru Tanahashi) (Shiki Iwase) (Toru Ymagawa) (Toshio Miyauchi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology

More information

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M 1445 2005 88-98 88 Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of Mathematics Shimane University 1 2 $(\mathit{4}_{p}(\dot{x}))^{\circ}+\alpha\phi_{p}(\dot{x})+\beta\phi_{p}(x)=0$

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3 Title 異常磁気能率を伴うディラック方程式 ( 量子情報理論と開放系 ) Author(s) 小栗栖, 修 Citation 数理解析研究所講究録 (1997), 982: 41-51 Issue Date 1997-03 URL http://hdl.handle.net/2433/60922 Right Type Departmental Bulletin Paper Textversion

More information

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty $6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p 1233 2001 111-121 111 (Kazuhiro Sakuma) Dept of Math and Phys Kinki Univ ( ) \S 0 $M^{n}$ $N^{p}$ $n$ $p$ $f$ $M^{n}arrow N^{p}$ $n

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

数論的量子カオスと量子エルゴード性

数論的量子カオスと量子エルゴード性 $\lambda$ 1891 2014 1-18 1 (Shin-ya Koyama) ( (Toyo University))* 1. 1992 $\lambdaarrow\infty$ $u_{\lambda}$ 2 ( ) $($ 1900, $)$ $*$ $350-8585$ 2100 2 (1915 ) (1956 ) ( $)$ (1980 ) 3 $\lambda$ (1) : $GOE$

More information

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{ 26 [\copyright 0 $\perp$ $\perp$ 1064 1998 41-62 41 REJECT}$ $=\underline{\not\equiv!}\xi*$ $\iota_{arrow}^{-}\approx 1,$ $\ovalbox{\tt\small ffl $\mathrm{y}

More information

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2 1155 2000 104-119 104 (Masatake Mori) 1 $=\mathrm{l}$ 1970 [2, 4, 7], $=-$, $=-$,,,, $\mathrm{a}^{\mathrm{a}}$,,, $a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (11), $z=\alpha$ $c_{0}+c_{1}(z-\alpha)+c2(z-\alpha)^{2}+\cdots$

More information

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539 43-50 Issue Date 2007-02 URL http//hdlhandlenet/2433/59070 Right Type Departmental

More information

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2]. 1483 2006 112-121 112 (Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science Osaka University 1 [1] 30 (Rott) [2] $-1/2$ [3] [4] -\mbox{\boldmath $\pi$}/4 - \mbox{\boldmath $\pi$}/2

More information

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1 1040 1998 143-153 143 (Masatake MORI) 1 $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}$ (11) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1+x)3/4}$ 1974 [31 8 10 11] $I= \int_{a}^{b}f(\mathcal{i})d_{x}$

More information

共役類の積とウィッテンL-関数の特殊値との関係について (解析的整数論 : 数論的対象の分布と近似)

共役類の積とウィッテンL-関数の特殊値との関係について (解析的整数論 : 数論的対象の分布と近似) 数理解析研究所講究録第 2013 巻 2016 年 1-6 1 共役類の積とウィッテン \mathrm{l} 関数の特殊値との関係に ついて 東京工業大学大学院理工学研究科数学専攻関正媛 Jeongwon {\rm Min} Department of Mathematics, Tokyo Institute of Technology * 1 ウィツテンゼータ関数とウィツテン \mathrm{l}

More information

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: 33-40 Issue Date 2004-01 URL http://hdlhandlenet/2433/64973 Right Type Departmental Bulletin Paper Textversion

More information

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録 Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木 達夫 Citation 数理解析研究所講究録 (2004) 1408: 97-109 Issue Date 2004-12 URL http://hdlhandlenet/2433/26142

More information

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,. 1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (

More information

untitled

untitled Lie L ( Introduction L Rankin-Selberg, Hecke L (,,, Rankin, Selberg L (GL( GL( L, L. Rankin-Selberg, Fourier, (=Fourier (= Basic identity.,,.,, L.,,,,., ( Lie G (=G, G.., 5, Sp(, R,. L., GL(n, R Whittaker

More information

A Brief Introduction to Modular Forms Computation

A Brief Introduction to Modular Forms Computation A Brief Introduction to Modular Forms Computation Magma Supported by GCOE Program Math-For-Industry Education & Research Hub What s this? Definitions and Properties Demonstration H := H P 1 (Q) some conditions

More information

1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030

1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030 1 913 9001030 A B C D E F G H J K L M 9:00 1A0900 9:15 1A0915 9:30 1A0930 9:45 1A0945 10 : 00 1A1000 10 : 15 1B0900 1B0915 1B0930 1B0945 1B1000 1C0900 1C0915 1D0915 1C0930 1C0945 1C1000 1D0930 1D0945 1D1000

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

受賞講演要旨2012cs3

受賞講演要旨2012cs3 アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm 995 1997 11-27 11 3 3 Euclid (Reiko Aiyama) (Kazuo Akutagawa) (CMC) $H$ ( ) $H=0$ ( ) Weierstrass $g$ 1 $H\neq 0$ Kenmotsu $([\mathrm{k}])$ $\mathrm{s}^{2}$ 2 $g$ CMC $P$ $([\mathrm{b}])$ $g$ Gauss Bryant

More information

Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み, 非凸性の魅惑 ) Author(s) 中林, 健 ; 刀根, 薫 Citation 数理解析研究所講究録 (2004), 1349: Issue Date URL

Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み, 非凸性の魅惑 ) Author(s) 中林, 健 ; 刀根, 薫 Citation 数理解析研究所講究録 (2004), 1349: Issue Date URL Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み 非凸性の魅惑 ) Author(s) 中林 健 ; 刀根 薫 Citation 数理解析研究所講究録 (2004) 1349: 204-220 Issue Date 2004-01 URL http://hdl.handle.net/2433/24871 Right Type Departmental Bulletin Paper

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om

162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om 1256 2002 161-171 161 $L$ (Hirofumi Nagoshi) Research Institute for Mathematical Sciences, Kyoto Univ. 1. $L$ ( ) 2. ( 0 1 ) $X_{1},$ $X_{2},$ $X_{3},$ $\cdots$ $n^{-1/2}(x_{1}+$ $X_{2}+\cdots+X_{n})$

More information

: ( ) (Takeo Suzuki) Kakegawa City Education Center Sizuoka Prif ] [ 18 (1943 ) $A $ ( : ),, 1 18, , 3 $A$,, $C$

: ( ) (Takeo Suzuki) Kakegawa City Education Center Sizuoka Prif ] [ 18 (1943 ) $A $ ( : ),, 1 18, , 3 $A$,, $C$ Title 九州大学所蔵 : 中国暦算書について ( 数学史の研究 ) Author(s) 鈴木, 武雄 Citation 数理解析研究所講究録 (2009), 1625: 244-253 Issue Date 2009-01 URL http://hdlhandlenet/2433/140284 Right Type Departmental Bulletin Paper Textversion

More information

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2 1539 2007 109-119 109 DDS (Drug Deltvery System) (Osamu Sano) $\mathrm{r}^{\mathrm{a}_{w^{1}}}$ $\mathrm{i}\mathrm{h}$ 1* ] $\dot{n}$ $\mathrm{a}g\mathrm{i}$ Td (Yisaku Nag$) JST CREST 1 ( ) DDS ($\mathrm{m}_{\mathrm{u}\mathrm{g}}\propto

More information

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N $\mathbb{q}$ 1097 1999 69-81 69 $\mathrm{m}$ 2 $\mathrm{o}\mathrm{d}\mathfrak{p}$ ray class field 2 (Fuminori Kawamoto) 1 INTRODUCTION $F$ $F$ $K/F$ Galois $G:=Ga\iota(K/F)$ Galois $\alpha\in \mathit{0}_{k}$

More information

Title 井草氏の結果の多変数化 : 局所ゼータ関数がガンマ関数の積で書ける場合について ( 概均質ベクトル空間の研究 ) Author(s) 天野, 勝利 Citation 数理解析研究所講究録 (2001), 1238: 1-11 Issue Date URL

Title 井草氏の結果の多変数化 : 局所ゼータ関数がガンマ関数の積で書ける場合について ( 概均質ベクトル空間の研究 ) Author(s) 天野, 勝利 Citation 数理解析研究所講究録 (2001), 1238: 1-11 Issue Date URL Title 井草氏の結果の多変数化 : 局所ゼータ関数がガンマ関数の積で書ける場合について ( 概均質ベクトル空間の研究 ) Author(s) 天野 勝利 Citation 数理解析研究所講究録 (2001) 1238: 1-11 Issue Date 2001-11 URL http://hdlhandlenet/2433/41569 Right Type Departmental Bulletin

More information

第88回日本感染症学会学術講演会後抄録(III)

第88回日本感染症学会学術講演会後抄録(III) !!!! β! !!μ μ!!μ μ!!μ! !!!! α!!! γδ Φ Φ Φ Φ! Φ Φ Φ Φ Φ! α!! ! α β α α β α α α α α α α α β α α β! β β μ!!!! !!μ !μ!μ!!μ!!!!! !!!!!!!!!! !!!!!!μ! !!μ!!!μ!!!!!! γ γ γ γ γ γ! !!!!!! β!!!! β !!!!!! β! !!!!μ!!!!!!

More information

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用)

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用) 1751 2011 131-139 131 ( ) (B ) ( ) ( ) (1) (2) (3) (1) 4 (1) (2) (3) (2) $\ovalbox{\tt\small REJECT}$ (1) (2) (3) (3) D $N$ A 132 2 ([1]) 1 $0$ $F$ $f\in F$ $\Delta_{t\prime},f(p)=\sum_{\epsilon(\prime},(f(q)-f(p))$

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p .,.,.,..,, 1.. Contents 1. 1 1.1. 2 1.2. 3 1.3. 4 1.4. Eisenstein 5 1.5. 7 2. 9 2.1. e p 9 2.2. p 11 2.3. 15 2.4. 16 2.5. 18 3. 19 3.1. ( ) 19 3.2. 22 4. 23 1. p., Q Q p Q Q p Q C.,. 1. 1 Q p G Qp Q G

More information

$\langle$ 1 177 $\rangle$ $\langle 4\rangle(5)\langle 6$ ) 1855 ( 2 ) (2) 10 (1877 )10 100 (The Tokyo llathematical Society) 11 ( ) ( ) 117 ( ) ( ), (

$\langle$ 1 177 $\rangle$ $\langle 4\rangle(5)\langle 6$ ) 1855 ( 2 ) (2) 10 (1877 )10 100 (The Tokyo llathematical Society) 11 ( ) ( ) 117 ( ) ( ), ( 1195 2001 176-190 176 $\mathrm{w}_{b\gamma_{\mapsto\infty}}\cdot\cdot\leftrightarrow \mathfrak{b}\infty-\mathrm{f}\mathrm{f}\mathrm{l}$ffi Facul y of Economics, Momoyama Gakuin Univ. (Hiromi Ando) (1)

More information

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c}

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c} Title 狩野本 綴術算経 について ( 数学史の研究 ) Author(s) 小川 束 Citation 数理解析研究所講究録 (2004) 1392: 60-68 Issue Date 2004-09 URL http://hdlhandlenet/2433/25859 Right Type Departmental Bulletin Paper Textversion publisher Kyoto

More information

FA - : (FA) FA [3] [4] [5] 1.1 () 25 1:

FA - : (FA) FA [3] [4] [5] 1.1 () 25 1: 得点圏打率 盗塁 併殺を考慮した最適打順決定モデル Titleについて : FA 打者トレード戦略の検討 ( 不確実性の下での数理モデルとその周辺 ) Author(s) 穴太, 克則 ; 高野, 健大 Citation 数理解析研究所講究録 (2015), 1939: 133-142 Issue Date 2015-04 URL http://hdl.handle.net/2433/223766

More information

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t ( ) 1 ( ) [6],[7] 1. 1928 J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t 6 7 7 : 1 5t +9t 2 5t 3 + t 4 ( :25400086) 2010 Mathematics Subject Classification: 57M25,

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$ 1075 1999 127-142 127 (Shintaro Yamashita) 7 (Takashi Watanabe) $\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{m}\mathrm{u}\mathrm{f}\mathrm{a}\rangle$ (Ikuo 1 1 $90^{\mathrm{o}}$ ( 1 ) ( / \rangle (

More information

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\ 1081 1999 84-99 84 \mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ) - $\text{ }$ 2 2 ( ) $\mathrm{c}$ 85 $\text{ }$ 3 ( 4 )

More information

14 6. $P179$ 1984 r ( 2 $arrow$ $arrow$ F 7. $P181$ 2011 f ( 1 418[? [ 8. $P243$ ( $\cdot P260$ 2824 F ( 1 151? 10. $P292

14 6. $P179$ 1984 r ( 2 $arrow$ $arrow$ F 7. $P181$ 2011 f ( 1 418[? [ 8. $P243$ ( $\cdot P260$ 2824 F ( 1 151? 10. $P292 1130 2000 13-28 13 USJC (Yasukuni Shimoura I. [ ]. ( 56 1. 78 $0753$ [ ( 1 352[ 2. 78 $0754$ [ ( 1 348 3. 88 $0880$ F ( 3 422 4. 93 $0942$ 1 ( ( 1 5. $P121$ 1281 F ( 1 278 [ 14 6. $P179$ 1984 r ( 2 $arrow$

More information

Confinement dual Meissener effect dual Meissener effect

Confinement dual Meissener effect dual Meissener effect BASED ON WORK WITH KENICHI KONISHI (UNIV. OF PISA) [0909.3781 TO APPEAR IN NPB] Confinement dual Meissener effect dual Meissener effect 1) Perturbed SU(N) Seiberg WiRen theory : 2) SU(N) with Flavors at

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m} 1209 2001 223-232 223 (Kazuo Iida) (Youichi Murakami) 1 ( ) ( ) ( ) (Taylor $)$ [1] $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}\mathrm{m}$ $02\mathrm{m}\mathrm{m}$ Whitehead and Luther[3] $\mathrm{a}1[2]$

More information

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 ro 980 1997 44-55 44 $\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{i}$ $-$ (Ko Ma $\iota_{\mathrm{s}\mathrm{u}\mathrm{n}}0$ ) $-$. $-$ $-$ $-$ $-$ $-$ $-$ 40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 46 $-$. $\backslash

More information

76 20 ( ) (Matteo Ricci ) Clavius 34 (1606) 1607 Clavius (1720) ( ) 4 ( ) \sim... ( 2 (1855) $-$ 6 (1917)) 2 (1866) $-4$ (1868)

76 20 ( ) (Matteo Ricci ) Clavius 34 (1606) 1607 Clavius (1720) ( ) 4 ( ) \sim... ( 2 (1855) $-$ 6 (1917)) 2 (1866) $-4$ (1868) $\mathrm{p}_{\mathrm{r}\mathrm{o}\mathrm{g}\mathrm{r}\mathrm{a}}\mathrm{m}\dagger 1$ 1064 1998 75-91 75 $-$ $\text{ }$ (Osamu Kota) ( ) (1) (2) (3) 1. 5 (1872) 5 $ \mathrm{e}t\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{r}$

More information

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t 1601 2008 19-27 19 (Kentaro Kanatani) (Takeshi Ogasawara) (Sadayoshi Toh) Graduate School of Science, Kyoto University 1 ( ) $2 $ [1, ( ) 2 2 [3, 4] 1 $dt$ $dp$ $dp= \frac{dt}{\tau(r)}=(\frac{r_{0}}{r})^{\beta}\frac{dt}{\tau_{0}}$

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理) 1713 2010 72-87 72 Introduction to the theory of delay differential equations (Rinko Miyazaki) Shizuoka University 1 $\frac{dx(t)}{dt}=ax(t)$ (11), $(a$ : $a\neq 0)$ 11 ( ) $t$ (11) $x$ 12 $t$ $x$ $x$

More information

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S Title 初期和算にみる Archimedean Spiral について ( 数学究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2000), 1130: 220-228 Issue Date 2000-02 URL http://hdl.handle.net/2433/63667 Right Type Departmental Bulletin Paper Textversion

More information

A9R799F.tmp

A9R799F.tmp !!!!! !!! " !!! ! "!!" " " ! ! " "!! "! " "!! !! !!! !!! ! !!!!! α ! "α!! "!! ! "α!! !! " " ! "! β ! ! "β " "! " " ! α λ !!!! ! """ ""! ! "!β"!!" ! ! "" ""! "!! !!!! ! " !! ! ! !"! "!! " ! ! α"!

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

$\mathrm{n}$ Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Tec

$\mathrm{n}$ Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Tec $\mathrm{n}$ 1381 2004 168-181 190 Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Technology Kobe University 1 Introduction 2 (i) (ii) (i)

More information

教科専門科目の内容を活用する教材研究の指導方法 III : TitleTeam 2 プロジェクト ( 数学教師に必要な数学能力に関連する諸問題 ) Author(s) 青山, 陽一 ; 神, 直人 ; 曽布川, 拓也 ; 中馬, 悟朗 Citation 数理解析研究所講究録 (2013), 1828

教科専門科目の内容を活用する教材研究の指導方法 III : TitleTeam 2 プロジェクト ( 数学教師に必要な数学能力に関連する諸問題 ) Author(s) 青山, 陽一 ; 神, 直人 ; 曽布川, 拓也 ; 中馬, 悟朗 Citation 数理解析研究所講究録 (2013), 1828 教科専門科目の内容を活用する教材研究の指導方法 III : TitleTeam 2 プロジェクト ( 数学教師に必要な数学能力に関連する諸問題 Author(s 青山, 陽一 ; 神, 直人 ; 曽布川, 拓也 ; 中馬, 悟朗 Citation 数理解析研究所講究録 (2013, 1828: 61-85 Issue Date 2013-03 URL http://hdl.handle.net/2433/194795

More information

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$ 1051 1998 59-69 59 Reynolds (SUSUMU GOTO) (SHIGEO KIDA) Navier-Stokes $\langle$ Reynolds 2 1 (direct-interaction approximation DIA) Kraichnan [1] (\S 31 ) Navier-Stokes Navier-Stokes [2] 2 Navier-Stokes

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information