(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+

Size: px
Start display at page:

Download "(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+"

Transcription

1 (Kohji Matsumoto) 1 [18] 1999 $- \mathrm{b}^{\backslash }$ $\zeta(s \alpha)$ Hurwitz $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+n)^{-S}$ $\zeta_{1}(s \alpha)=\zeta(s \alpha)-\alpha^{-}s$ $\alpha$ $\alpha$ $\int_{0}^{1} \zeta_{1}(s \alpha) ^{2}d\alpha$ (1) [16] 1994 Barnes (1) $\zeta(u \alpha)\zeta(v \alpha)$ $=$ $( \sum_{m=n}+\sum_{m<n}+\sum_{>mn}\mathrm{i}(\alpha+m)^{-}u(\alpha+n)^{-v}$ $=$ $\zeta(u+v \alpha)+f(u v;\alpha)+f(v u;\alpha)$ (2) (Atkinson ) $f(u v; \alpha)=\sum_{m=0}^{\infty}(\alpha+m)^{-}u\sum_{n=1}\infty(\alpha+m+n)-v$ (3) $f(u v;\alpha)$ [4]

2 260 Barnes $\zeta_{2}(v;\alpha w)=\sum m\infty=0\sum_{n=0}(\alpha+m+nw)^{-v}\infty$ (4) ( $\alpha>0$ $w>0$ ; notation ) (3) $f(u v;\alpha)$ $\tilde{\zeta}_{2}(u v;\alpha w)=\sum^{\infty}(m=0\alpha+m)^{-}u\sum_{n=0}(\alpha+m+nw)^{-v}\infty$ (5) (3) (4) $f(u v;\alpha)$ $\tilde{\zeta}_{2}(u v;\alpha w)$ $u=0$ Barnes Barnes Barnes $\zeta_{2}(v;\alpha w)$ $w$ ( $warrow\infty$ ) Corollary 7 check : (E1) $\zeta_{2}(v\cdot\alpha w)$ -? (E2) - $\tilde{\zeta}_{2}(u v;\alpha w)$ $\sum_{m}\sum_{n}(\alpha+m+nw1)-u(\beta+m+nw_{2})-v$ (6) $u=v$ (5) Shintani degenerate Shintani (6)? contour integral $\tilde{\zeta}_{2}(u v;\alpha w)$ $u=0$ $u$ $0$ (6) contour integral Eisenstein $G_{v}(w)= \sum_{m}\sum_{n}(m+nw)^{-v}$ (7)

3 $\alpha$ 261 $\mathrm{h}$ $w$ $m=n=0$ (7) Barnes (4) (7) $w$ ( ) [17] $w$ $\Re w>0$ $w$ $G_{v}(w)$ $\Re w>0$ (7) $m$ $n$ Riemann $0$ $\zeta(s)$ $\sum_{m=1n}^{\infty}\sum_{=1}\infty(m+nw)^{-v}+\sum_{m=1n}\sum_{=1}\infty\infty(m-nw)^{-v}$ $+ \sum_{m=1}^{\infty}\sum_{n=1}\infty(-(m-nw))-v+\sum_{=m1}^{\infty}\sum_{1n=}\infty(-(m+nw))^{-v}$ (8) $\Re w>0$ [17] $\Re(-w)<0$ contour integral Barnes 1994 Mellin-Barnes (1) Dirichlet $\Sigma_{\chi} L(s \chi) 2$ contour integral $\langle$ contour integral Mellin-Barnes ([12] [17]). [17] [19] Hurwitz (1) Mellin-Barnes Journ\ ees Arithm\ etiques $([11])_{0}$ [17] Barnes $\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}(\alpha+m)^{-}u(\alpha+\beta+m+n)^{-v}$ (9) ( ) 1996 Lerch $\Re u>1$ $\Re v>1$ (9) $\beta$

4 262 Mellin-Barnes Mellin-Barnes [13] [17] 1995 $*^{\backslash }$ (Universality Rankin-Selberg series ) o Hurwitz Mellin-Barnes [17] Mellin-Barnes [11] [17] [17] Barnes Shintani $p$ Zagier Dedekind $\mathrm{h}\mathrm{p}$ [7] Barnes (4) 20 Barnes (4) $\sum_{m_{1}=0\gamma}^{\infty}\cdots\sum_{m}\infty=0(\alpha+m1w1+m_{2}w2+\cdots+m_{rr}w)-v$ (10) ( $r$ ) $\alpha>0$ $w_{j}$ $w_{j}>0(1\leq i\leq r)$ Barnes $v$ Barnes Hardy Littlewood Dirichlet \epsilon - $*$ 70 Hecke (Shintani ) Barnes

5 Zagier [22] $\tilde{\zeta}_{r}(v_{1\ldotsr}v)=1\leq m1<m_{2}<\cdot<r\sum_{m}..m_{1}-v_{1}m_{2}-v2\ldots m_{r}-v_{r}$ (11) Euler Euler- Zagier sum Zagier $v_{j}$ $(\geq 2)$ ( ) ( [10] ) Euler-Zagier sum (11) $v_{r}$ [5] $r=2$ 1949 Atkinson [6] (11) (3) $\alpha=1$ Atkinson Riemann Poisson $\tilde{\zeta}_{r}(v_{1} \ldots v_{r})$ $r$ Euler-Maclaurin ([1]) Zhao [23] [5] $r$ $\tilde{\zeta}_{r}(v_{1} \ldots v_{r})$ [3] $(_{r}(v_{1} \ldots v_{r})\sim$ (11) $r$ Dirichlet ([2]) Hurwitz $\sum_{m_{1}=1}^{\infty}\cdots\sum_{r}(\alpha 1+m1)-v_{1}(\alpha 2+mm=\infty 11+m2)^{-v2}$ $\cross\cdots\cross(\alpha_{r}+m_{1}+m_{2}+\cdots+m_{r})-v_{r}$ (12) ( $1\leq i\leq r$ $0\leq\alpha_{j}<1$ ) [1] (12) [91 (12) $r=2$ Hurwitz [15] contour integral [17] Mellin-Barnes

6 264 Mellin-Blnes Mellin-Barnes $\Gamma(z)(1+\eta)^{-z}=\frac{1}{2\pi i}\int_{(c)}\mathrm{r}(\mathcal{z}+s)\gamma(-s)\eta sds$ (13) $z$ $\eta$ $\Re z>0$ $ \arg\eta <\pi$ $\eta\neq 0$ $c-i\infty$ $c+i\infty$ (13) $z=v$ $\eta=nw/(\alpha+m)$ $\Gamma(v)(\alpha+m)^{-u-v}$ $( \alpha+m)^{-}u(\alpha+m+nw)^{-v}=\frac{1}{2\pi i}\int_{c)}(\frac{\gamma(v+s)\gamma(-s)}{\gamma(v)}(\alpha+m)-u-v-s(nw)^{s_{d_{s}}}$ (14) $\Re u>1$ $\Re v>1$ $-\Re v<c<-1$ $m$ $n$ $\tilde{\zeta}_{2}(u v;\alpha w)=\zeta(u+v \alpha)$ $+ \frac{1}{2\pi i}\int_{()}c\frac{\gamma(v+s)\gamma(-s)}{\gamma(v)}\zeta(u+v+s \alpha)\zeta(-s)w^{s}ds$ (15) $s=1-u-v$ $s=-v-n$ ( $n=012$ $\ldots$ ) shift $w$ shift Mellin-Barnes [17]. (15) $s=-1012$ $\ldots$ shift? Mellin-Barnes shift (15) shift $warrow \mathrm{o}$ contour integral shift $warrow \mathrm{o}$ state $N$ $warrow\infty$ $\tilde{\zeta}_{2}(u v;\alpha w)=\zeta(u+v \alpha)+\frac{\gamma(1-u)\mathrm{r}(u+v-1)}{\gamma(v)}\zeta(u+v-1)w^{1}-u-v$ $+ \sum_{n=0}^{n-}1\zeta(u-n \alpha)\zeta(v+n)w-v-n+o( w ^{-\Re N}v-)$ (16)

7 265 $\Re u<n+1$ $\Re v>-n+1$ ( ) $u$ $warrow \mathrm{o}$ $\tilde{\zeta}_{2}(u v;\alpha w)=\zeta(u+v \alpha)-\frac{1}{1-v}\zeta(u+v-1 \alpha)w^{-1}$ $+ \sum_{n=0}^{n-}1\zeta(u+v+n \alpha)\zeta(-n)w+no( w N)$ (17) $\Re v>-n$ $\Re(u+v)>1-N$ $u=0$ Barnes (16) [17] (17) $warrow \mathrm{o}$ $\eta$ (13) $ \arg\eta <\pi$ (15) $ \arg w <\pi$ $w\neq 0$ (16) (17) $\theta_{0}(0<\theta_{0}<\pi)$ $ \arg w \leq\theta_{0}$ Eisenstein (16) (17) Eisenstein (7) $w$ (16) (17) [21] Dedekind Dedekind 5 discussion Mellin-Barnes contour integral 7 (E2) $*^{\backslash }$ Mellin-Barnes Shintani (6) $\sum_{m=0}\sum_{n=0}(a+m+(b+n)w1)^{-}u(a+m+(b+n)w_{2})-v$ (18) Mellin-Barnes ([20]) $a>0$ $b>0$ $w_{1}$ $w_{2}$ ( $u=v$ $*^{\backslash }-F$ $[8]_{\text{ }})$ Shintani cf. Hida $w_{1}\leq w_{2}$ $w_{1}=w_{2}$ (18) Barnes $w_{1}<w_{2}$ (13) (15) $\eta=\frac{(b+n)(w2-w_{1})}{a+m+(b+n)w_{1}}$ (18) $\tilde{\zeta}_{2}(-s u+v+s;b b+aw_{1 1}^{-1-1}w)$ Mellin-Barnes $\tilde{\zeta}_{2}(u v;\alpha \beta w)=m\sum_{=0}^{\infty}(\alpha+m)^{-u}\sum_{n=0}^{\infty}(\beta+m+nw)^{-v}$ (19)

8 266 (19) (5) (5) shift (19) Shintani (18) (16) (17) (19) (E2) Mellin-Barnes (E1) $u=0$ (14) (15) $u=0$ Barnes (5) Mellin-Barnes (5) (19) Shintani contour integral Shintani * - Shintani $warrow\infty$ $warrow \mathrm{o}$ (16) (17) 10 TeX le ( ) 11 TeX le Euler-Zagier sum 7 19 $r=2$ $*^{\backslash }-$ Hurwitz ((12) $r=2$ ) (19) $w=1$ $r$ $-$ contour integral $r=2$ $\lceil_{r=2}$ $r=2$ $r$ $r=2$ ( ) $r\geq 3$ Barnes

9 267 Shintani - Mellin-Barnes (12) $r$ $r-1$ Mellin-Barnes $r=1$ Hurwitz $r$!( Vo11091 ) $\alpha_{j}>0$ $v_{j}$ $w_{j}$ $(1 \leq i\leq r)$ $\Re v_{j}>1$ $\tilde{\zeta}_{r}(v_{1} \ldots v_{r}; \alpha_{1} \ldots \alpha_{r};w1 \ldots w_{r})$ $= \sum_{=m_{1}0m}^{\infty}\cdots\sum_{r}^{\infty}=0(\alpha_{1}+m_{1}w1)-v1(\alpha_{2}+m_{1}w1+m_{2}w_{2})^{-v_{2}}$ $\cross\cdots\cross(\alpha_{r}+m1w1+m_{2}w2+\cdots+mrwr)-v_{r}$ (20) Barnes (10) Euler-Zagier (11)(12) (20) $w_{j}$ $w_{j}$ $w_{j}>0$ (20) $v_{1}=v_{2}=\cdots=vr-1=0$ Barnes $*^{\backslash }-p(10)$ ( ) Barnes (20) Mellin-Barnes $w_{1}=w_{2}=\cdots=wr=1$ $\tilde{\zeta}_{r}(v_{1} \ldots v_{r}; \alpha_{1} \ldots \alpha_{r})$ $= \sum_{=m_{1}0m}^{\infty}\cdots\sum_{r}^{\infty}(\alpha 1+m1)^{-}v1(\alpha 2+m_{1}+m_{2})^{-v2}=0$ $\mathrm{x}\cdots\cross(\alpha_{r}+m_{1}+m_{2}+\cdots+mr)^{-}v_{r}$ (21) $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{r}$ (22) (21) (12) ((21) $m_{j}=0$ ) (22) $\mathrm{c}^{r}$ $\ldots$ $v_{r}$ (21) $v_{1}$

10 268 (13) $z=v_{r}$ $\eta=\frac{\alpha_{r}-\alpha_{r-1}+.m_{r}}{\alpha_{r-1}+m_{1}+m2++mr-1}.$. Mellin-Barnes $\tilde{\zeta}_{r}(v_{1} \ldots v_{r};\alpha_{1} \ldots \alpha r)$ $= \frac{1}{2\pi i}\int_{(c})\frac{\gamma(v_{r}+s)\mathrm{r}(-\mathit{8})}{\gamma(v_{r})}\zeta(-s \alpha_{r}-\alpha_{r-1})$ $\cross\tilde{\zeta}_{r-1}(v_{1\ldotsr}v-2 vr-1+v_{r}+s;\alpha_{1} \ldots \alpha_{r-1})ds$ (23) shift shift $r-1$ order [18] TeX le (16) (17) Eisenstein Shintani $r$ * $=ff$ Mellin-Barnes shift explicit Hurwitz Mellin-Barnes $k$ $q$ $\sum_{a=1}^{q} \zeta(s$ $\frac{a}{q}) ^{2k}$ (24) $\sum_{a=1}^{q}\tilde{\zeta}r(v_{1}$ $v_{2}$ $.$. $v_{r}; \frac{a}{q}$ $\frac{a}{q}+1$ $\frac{a}{q}+(r-1))$ $$ $\ldots$ (25) (25) $q$ Mellin-Barnes ( ) $k$ (24) $q$ $k=1$ ([14]) $k$ Mellin-Barnes (20) $w_{j}$ [2]

11 269 Mellin-Barnes [13] (1) - Shintani Mellin-Barnes Hecke [19] [1] S.Akiyama S.Egami and Y.Tanigawa An analytic continuation of multiple zeta functions and their values at non-positive integers preprint. [2] S.Akiyama and H.Ishikawa On analytic continuation of multiple -functions and related zeta-functions preprint. [3] S.Akiyama and Y.Tanigawa Multiple zeta values at non-positive integers preprint. $\sum_{n=1}^{\infty}\frac{\cot\pi n\alpha}{n^{s}}$ [4] T.Arakawa Dirichlet series Dedekind sums and Hecke -functions for real quadratic fields Comment. Math. Univ. St. Pauli 37 (1988) [5] T.Arakawa and M.Kaneko Multiple zeta values poly-bernoulli numbers and related zeta functions Nagoya Math. J. 153 (1999) [6] $\mathrm{f}.\mathrm{v}$.atkinson The mean-value of the Riemann zeta function Acta Math. 81 (1949) [7] 1998 (http: $//\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{l}\mathrm{g}.\mathrm{g}\mathrm{e}$.niigata-u. $\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}/\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{k}.\mathrm{h}\mathrm{t}\mathrm{m}$ ). [8] H.Hida Elementary Theory of -Functions and Eisenstein Series London Math. Soc. Student Texts 26 Cambridge Univ. Press [9] ) On asum related to amultiple -function $*^{\backslash }-$ [10] 1097 (1999) [11] M.Katsurada An application of Mellin-Barnes type integrals to the mean square of Lerch zeta-functions Collect. Math. 48 (1997)

12 270 [12] M.Katsurada An application of Mellin-Barnes type integrals to the mean square of -functions Liet. Mat. Rink. 38 (1998) [13] M.Katsurada Power series and asymptotic series associated with the Lerch zetafunction Proc. Japan Acad. (1998) $74\mathrm{A}$ [14] M.Katsurada and K.Matsumoto Discrete mean values of Hurwitz zeta-functions $69\mathrm{A}$ Proc. Japan Acad. (1993) [15] M.Katsurada and K.Matsumoto Explicit formulas and asymptotic expansions for certain mean square of Hurwitz zeta-functions I Math. Scand. 78 (1996) [16] Hurwitz 1060 (1998) [17] K.Matsumoto Asymptotic series for double zeta double gamma and Hecke L- functions Math. Proc. Cambridge Phil. Soc. 123 (1998) [18] K.Matsumoto Asymptotic expansions of double zeta-functions of Barnes of Shintani and Eisenstein series preprint. [19] K.Matsumoto Asymptotic series for double zeta double gamma and Hecke L- functions II preprint. [20] T.Shintani On a Kronecker limit formula for real quadratic fields J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977) [21] T.Shintani A proof of the classical Kronecker limit formula Tokyo J. Math. 3 (1980) [22] D.Zagier Values of zeta functions and their applications in First European Congress of Mathematics Vol.II Invited Lectures (Part 2) A.Joseph et al.(eds.) Progress in Math. 120 Birkh\"auser 1994 pp [23] J.Zhao Analytic continuation of multiple zeta functions Proc. Amer. Math. Soc. to appear.

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1 1040 1998 143-153 143 (Masatake MORI) 1 $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}$ (11) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1+x)3/4}$ 1974 [31 8 10 11] $I= \int_{a}^{b}f(\mathcal{i})d_{x}$

More information

untitled

untitled Lie L ( Introduction L Rankin-Selberg, Hecke L (,,, Rankin, Selberg L (GL( GL( L, L. Rankin-Selberg, Fourier, (=Fourier (= Basic identity.,,.,, L.,,,,., ( Lie G (=G, G.., 5, Sp(, R,. L., GL(n, R Whittaker

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 1398 2004 137-148 137 cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 W. Kohnen } $SL_{2}(\mathbb{Z})$ 1 1 2 1 1 1 \sigma

More information

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,. 1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty $6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p 1233 2001 111-121 111 (Kazuhiro Sakuma) Dept of Math and Phys Kinki Univ ( ) \S 0 $M^{n}$ $N^{p}$ $n$ $p$ $f$ $M^{n}arrow N^{p}$ $n

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

have is The explicit upper bound of the multiple integral of $S(t)$ on the Riemann Hypothesis Takahiro Wakasa Graduate School of Ma

have is The explicit upper bound of the multiple integral of $S(t)$ on the Riemann Hypothesis Takahiro Wakasa Graduate School of Ma The explicit upper bound of the mul Titlethe Riemann Hypothesis (Analytic Nu Theory through Approximation As Author(s) Wakasa, Takahiro Citation 数理解析研究所講究録 (2014), 1874: 12-21 Issue Date 2014-01 URL http://hdlhlenet/2433/195548

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原 正顯 Citation 数理解析研究所講究録 (1997) 990 125-134 Issue Date 1997-04 URL http//hdlhandlenet/2433/61094 Right Type Departmental Bulletin Paper

More information

162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om

162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om 1256 2002 161-171 161 $L$ (Hirofumi Nagoshi) Research Institute for Mathematical Sciences, Kyoto Univ. 1. $L$ ( ) 2. ( 0 1 ) $X_{1},$ $X_{2},$ $X_{3},$ $\cdots$ $n^{-1/2}(x_{1}+$ $X_{2}+\cdots+X_{n})$

More information

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2 1155 2000 104-119 104 (Masatake Mori) 1 $=\mathrm{l}$ 1970 [2, 4, 7], $=-$, $=-$,,,, $\mathrm{a}^{\mathrm{a}}$,,, $a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (11), $z=\alpha$ $c_{0}+c_{1}(z-\alpha)+c2(z-\alpha)^{2}+\cdots$

More information

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3 Title 異常磁気能率を伴うディラック方程式 ( 量子情報理論と開放系 ) Author(s) 小栗栖, 修 Citation 数理解析研究所講究録 (1997), 982: 41-51 Issue Date 1997-03 URL http://hdl.handle.net/2433/60922 Right Type Departmental Bulletin Paper Textversion

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m} 1209 2001 223-232 223 (Kazuo Iida) (Youichi Murakami) 1 ( ) ( ) ( ) (Taylor $)$ [1] $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}\mathrm{m}$ $02\mathrm{m}\mathrm{m}$ Whitehead and Luther[3] $\mathrm{a}1[2]$

More information

Title SIEGEL CUSP FORMS の LIFTING の実例 ( 代数群上の形式 保型表現と保型的 $L$ 関数 ) Author(s) 池田, 保 Citation 数理解析研究所講究録 (2000), 1173: Issue Date URL http:

Title SIEGEL CUSP FORMS の LIFTING の実例 ( 代数群上の形式 保型表現と保型的 $L$ 関数 ) Author(s) 池田, 保 Citation 数理解析研究所講究録 (2000), 1173: Issue Date URL http: Title SIEGEL CUSP FORMS の LIFTING の実例 ( 代数群上の形式 保型表現と保型的 $L$ 関数 ) Author(s) 池田, 保 Citation 数理解析研究所講究録 (2000), 1173: 82-97 Issue Date 2000-10 URL http://hdlhandlenet/2433/64447 Right Type Departmental Bulletin

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

数論的量子カオスと量子エルゴード性

数論的量子カオスと量子エルゴード性 $\lambda$ 1891 2014 1-18 1 (Shin-ya Koyama) ( (Toyo University))* 1. 1992 $\lambdaarrow\infty$ $u_{\lambda}$ 2 ( ) $($ 1900, $)$ $*$ $350-8585$ 2100 2 (1915 ) (1956 ) ( $)$ (1980 ) 3 $\lambda$ (1) : $GOE$

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌 2016 9 27 RIMS 1 2 3 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin Y N Moschovakis, Descriptive Set Theory North

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

= = 2

= = 2 2006 4 2 2 4 3 2 4 3 5 4 6 8 7 9 8 26 9 27 0 32 http://www.hyui.com/girl/harmonic.html Hiroshi Yui c 2006, All rights reserved. http://www.hyui.com/ = = 2 3 2 = = + 2 + 3 + = = = n = = = lim n! = = n =

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

Title 素数の3 乗の和で表せない自然数の密度について ( 解析的整数論とその周辺 ) Author(s) 川田, 浩一 Citation 数理解析研究所講究録 (2009), 1665: Issue Date URL

Title 素数の3 乗の和で表せない自然数の密度について ( 解析的整数論とその周辺 ) Author(s) 川田, 浩一 Citation 数理解析研究所講究録 (2009), 1665: Issue Date URL Title 素数の3 乗の和で表せない自然数の密度について ( 解析的整数論とその周辺 ) Author(s) 川田 浩一 Citation 数理解析研究所講究録 (2009) 1665: 175-184 Issue Date 2009-10 URL http://hdlhandlenet/2433/141041 Right Type Departmental Bulletin Paper Textversion

More information

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N $\mathbb{q}$ 1097 1999 69-81 69 $\mathrm{m}$ 2 $\mathrm{o}\mathrm{d}\mathfrak{p}$ ray class field 2 (Fuminori Kawamoto) 1 INTRODUCTION $F$ $F$ $K/F$ Galois $G:=Ga\iota(K/F)$ Galois $\alpha\in \mathit{0}_{k}$

More information

untitled

untitled Y = Y () x i c C = i + c = ( x ) x π (x) π ( x ) = Y ( ){1 + ( x )}( 1 x ) Y ( )(1 + C ) ( 1 x) x π ( x) = 0 = ( x ) R R R R Y = (Y ) CS () CS ( ) = Y ( ) 0 ( Y ) dy Y ( ) A() * S( π ), S( CS) S( π ) =

More information

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 9 π 046 Vol.69-1 January 2016 204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 β γ α / α / 048 Vol.69-1 January 2016 π π π / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 049 β 050 Vol.69-1

More information

1 P2 P P3P4 P5P8 P9P10 P11 P12

1 P2 P P3P4 P5P8 P9P10 P11 P12 1 P2 P14 2 3 4 5 1 P3P4 P5P8 P9P10 P11 P12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 & 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1! 3 2 3! 4 4 3 5 6 I 7 8 P7 P7I P5 9 P5! 10 4!! 11 5 03-5220-8520

More information

76 20 ( ) (Matteo Ricci ) Clavius 34 (1606) 1607 Clavius (1720) ( ) 4 ( ) \sim... ( 2 (1855) $-$ 6 (1917)) 2 (1866) $-4$ (1868)

76 20 ( ) (Matteo Ricci ) Clavius 34 (1606) 1607 Clavius (1720) ( ) 4 ( ) \sim... ( 2 (1855) $-$ 6 (1917)) 2 (1866) $-4$ (1868) $\mathrm{p}_{\mathrm{r}\mathrm{o}\mathrm{g}\mathrm{r}\mathrm{a}}\mathrm{m}\dagger 1$ 1064 1998 75-91 75 $-$ $\text{ }$ (Osamu Kota) ( ) (1) (2) (3) 1. 5 (1872) 5 $ \mathrm{e}t\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{r}$

More information

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat 1134 2000 70-80 70 Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{b}\mathrm{e}$ (Hiroshi

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Progress in Qualitative Theory of Fun

Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Progress in Qualitative Theory of Fun 1786 2012 128-142 128 Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Masakazu Onitsuka) Department of General Education Miyakonojo National

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 ro 980 1997 44-55 44 $\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{i}$ $-$ (Ko Ma $\iota_{\mathrm{s}\mathrm{u}\mathrm{n}}0$ ) $-$. $-$ $-$ $-$ $-$ $-$ $-$ 40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 46 $-$. $\backslash

More information

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t ( ) 1 ( ) [6],[7] 1. 1928 J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t 6 7 7 : 1 5t +9t 2 5t 3 + t 4 ( :25400086) 2010 Mathematics Subject Classification: 57M25,

More information

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$ 1051 1998 59-69 59 Reynolds (SUSUMU GOTO) (SHIGEO KIDA) Navier-Stokes $\langle$ Reynolds 2 1 (direct-interaction approximation DIA) Kraichnan [1] (\S 31 ) Navier-Stokes Navier-Stokes [2] 2 Navier-Stokes

More information

kb-HP.dvi

kb-HP.dvi Recent developments in the log minimal model program II II Birkar-Cascini-Hacon-McKernan 1 2 2 3 3 5 4 8 4.1.................. 9 4.2.......................... 10 5 11 464-8602, e-mail: fujino@math.nagoya-u.ac.jp

More information

a a b a b c d e R c d e A a b e a b a b c d a b c d e f a M a b f d a M b a b a M b a M b M M M R M a M b M c a M a R b A a b b a CF a b c a b a M b a b M a M b c a A b a b M b a A b a M b C a M C a M

More information

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu) $\mathrm{s}$ 1265 2002 209-219 209 DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ) (Jinghui Zhu) 1 Iiitroductioii (Xiamen Univ) $c$ (Fig 1) Levi-Civita

More information

日本分子第4巻2号_10ポスター発表.indd

日本分子第4巻2号_10ポスター発表.indd JSMI Report 62 63 JSMI Report γ JSMI Report 64 β α 65 JSMI Report JSMI Report 66 67 JSMI Report JSMI Report 68 69 JSMI Report JSMI Report 70 71 JSMI Report JSMI Report 72 73 JSMI Report JSMI Report 74

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

$\bullet$ A Distributed Sorting Algorithm on a Line Network: Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASA

$\bullet$ A Distributed Sorting Algorithm on a Line Network: Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASA 1120 1999 68-77 68 $\bullet$ A Distributed Sorting Algorithm on a Line Network Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASAKI NTT $=$ 619-0237 2-4 $\mathrm{n}\mathrm{t}\mathrm{t}\mathrm{c}\mathrm{o}$

More information

}$ $q_{-1}=0$ OSTROWSKI (HASHIMOTO RYUTA) $\mathrm{d}\mathrm{c}$ ( ) ABSTRACT Ostrowski $x^{2}-$ $Dy^{2}=N$ $-$ - $Ax^{2}+Bx

}$ $q_{-1}=0$ OSTROWSKI (HASHIMOTO RYUTA) $\mathrm{d}\mathrm{c}$ ( ) ABSTRACT Ostrowski $x^{2}-$ $Dy^{2}=N$ $-$ - $Ax^{2}+Bx Title 2 元 2 次不定方程式の整数解の OSTROWSKI 表現について ( 代数的整数論とその周辺 ) Author(s) 橋本 竜太 Citation 数理解析研究所講究録 (2000) 1154 155-164 Issue Date 2000-05 URL http//hdlhandlenet/2433/64118 Right Type Departmental Bulletin Paper

More information

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$ 1075 1999 127-142 127 (Shintaro Yamashita) 7 (Takashi Watanabe) $\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{m}\mathrm{u}\mathrm{f}\mathrm{a}\rangle$ (Ikuo 1 1 $90^{\mathrm{o}}$ ( 1 ) ( / \rangle (

More information

(Yoshimoto Onishi) 1. Knudsen $Kn$ ) Knudsen 1-4 ( 3,4 ) $O(1)$ $O(1)$ $\epsilon$ BGK Boltzmann $\epsilon^{k}\ll Kn^{N}

(Yoshimoto Onishi) 1. Knudsen $Kn$ ) Knudsen 1-4 ( 3,4 ) $O(1)$ $O(1)$ $\epsilon$ BGK Boltzmann $\epsilon^{k}\ll Kn^{N} 745 1991 220-231 220 - - (Yoshimoto Onishi) 1. Knudsen $Kn$ ) Knudsen 1-4 ( 34 ) $O(1)$ $O(1)$ 5 6 7 $\epsilon$ BGK Boltzmann $\epsilon^{k}\ll Kn^{N}$ ( $N$ ) ( Reynolds $Re$ ) Knudsen (1) ( Stokes ) ;(2)

More information

$\overline{\circ\lambda_{\vec{a},q}^{\lambda}}f$ $\mathrm{o}$ (Gauge Tetsuo Tsuchida 1. $\text{ }..\cdot$ $\Omega\subset \mathrm{r}^

$\overline{\circ\lambda_{\vec{a},q}^{\lambda}}f$ $\mathrm{o}$ (Gauge Tetsuo Tsuchida 1. $\text{ }..\cdot$ $\Omega\subset \mathrm{r}^ $\overle{\circ\lambda_{\vec{a}q}^{\lambda}}f$ $\mathrm{o}$ (Gauge 994 1997 15-31 15 Tetsuo Tsuchida 1 $\text{ }\cdot$ $\Omega\subset \mathrm{r}^{3}$ \Omega Dirac $L_{\vec{a}q}=L_{0}+(-\alpha\vec{a}(X)+q(_{X}))=\alpha

More information

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math $\mathrm{r}\mathrm{m}\mathrm{s}$ 1226 2001 76-85 76 1 (Mamoru Tanahashi) (Shiki Iwase) (Toru Ymagawa) (Toshio Miyauchi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology

More information

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2 1539 2007 109-119 109 DDS (Drug Deltvery System) (Osamu Sano) $\mathrm{r}^{\mathrm{a}_{w^{1}}}$ $\mathrm{i}\mathrm{h}$ 1* ] $\dot{n}$ $\mathrm{a}g\mathrm{i}$ Td (Yisaku Nag$) JST CREST 1 ( ) DDS ($\mathrm{m}_{\mathrm{u}\mathrm{g}}\propto

More information

DataHD:Zip16:blue982:lcs:lcs-for-web.dvi

DataHD:Zip16:blue982:lcs:lcs-for-web.dvi Ver 1.21 10 5 7 0 1 I 3 1 / 3 1.1... 3 1.2... 5 1.3... 5 1.4... 6 1.5... 7 1.6... 7 1.7... 7 2 9 2.1... 9 2.2 ( ). 10 2.3 :... 10 2.4... 11 2.5... 12 2.6... 13 II 16 3.2.1... 17 3.2.2... 19 3.2.3.. 22

More information

Title 井草氏の結果の多変数化 : 局所ゼータ関数がガンマ関数の積で書ける場合について ( 概均質ベクトル空間の研究 ) Author(s) 天野, 勝利 Citation 数理解析研究所講究録 (2001), 1238: 1-11 Issue Date URL

Title 井草氏の結果の多変数化 : 局所ゼータ関数がガンマ関数の積で書ける場合について ( 概均質ベクトル空間の研究 ) Author(s) 天野, 勝利 Citation 数理解析研究所講究録 (2001), 1238: 1-11 Issue Date URL Title 井草氏の結果の多変数化 : 局所ゼータ関数がガンマ関数の積で書ける場合について ( 概均質ベクトル空間の研究 ) Author(s) 天野 勝利 Citation 数理解析研究所講究録 (2001) 1238: 1-11 Issue Date 2001-11 URL http://hdlhandlenet/2433/41569 Right Type Departmental Bulletin

More information

3 p(3) , 3 +, 2 + 2, 2 + +, p(4) , 6, 7, 8 p(5), p(6), p(7), p(8). p(5) 7, p(6), p(7) 5, p(8) , + +

3 p(3) , 3 +, 2 + 2, 2 + +, p(4) , 6, 7, 8 p(5), p(6), p(7), p(8). p(5) 7, p(6), p(7) 5, p(8) , + + k l. n n n pariion n p(n) p(n).. p() 2 2, + 2 2 2, + 2 p(2) 2 3 3, 2 +, + + 2006 2006 4 5:00 7:00. 3 p(3) 3 2 + + 2 4 4, 3 +, 2 + 2, 2 + +, + + + 5 p(4) 5.2. 5, 6, 7, 8 p(5), p(6), p(7), p(8). p(5) 7,

More information

Poly-Cauchy numbers and poly-bernoulli numbers Takao Komatsu 1 Graduate School of Science and Technology Hirosaki University 1 Int

Poly-Cauchy numbers and poly-bernoulli numbers Takao Komatsu 1 Graduate School of Science and Technology Hirosaki University 1 Int Poly-Cauchy numbers and poly-bernou TitleNumber Theory : Number Theory throu Asymptotics) Author(s) Komatsu, Takao Citation 数理解析研究所講究録 (2014), 1874: 98-111 Issue Date 2014-01 URL http://hdl.handle.net/2433/195539

More information

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\ 1081 1999 84-99 84 \mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ) - $\text{ }$ 2 2 ( ) $\mathrm{c}$ 85 $\text{ }$ 3 ( 4 )

More information

第89回日本感染症学会学術講演会後抄録(I)

第89回日本感染症学会学術講演会後抄録(I) ! ! ! β !!!!!!!!!!! !!! !!! μ! μ! !!! β! β !! β! β β μ! μ! μ! μ! β β β β β β μ! μ! μ!! β ! β ! ! β β ! !! ! !!! ! ! ! β! !!!!! !! !!!!!!!!! μ! β !!!! β β! !!!!!!!!! !! β β β β β β β β !!

More information

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]).

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]). 3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S 3 1 1 (CMC 1), 1 ( [AA]) 3 H 3 CMC 1 Bryant ([B, UY1]) H 3 CMC 1, Bryant ([CHR, RUY1, RUY2, UY1, UY2, UY3,

More information

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm 995 1997 11-27 11 3 3 Euclid (Reiko Aiyama) (Kazuo Akutagawa) (CMC) $H$ ( ) $H=0$ ( ) Weierstrass $g$ 1 $H\neq 0$ Kenmotsu $([\mathrm{k}])$ $\mathrm{s}^{2}$ 2 $g$ CMC $P$ $([\mathrm{b}])$ $g$ Gauss Bryant

More information

2.3. p(n)x n = n=0 i= x = i x x 2 x 3 x..,?. p(n)x n = + x + 2 x x 3 + x + 7 x + x + n=0, n p(n) x n, ( ). p(n) (mother function)., x i = + xi +

2.3. p(n)x n = n=0 i= x = i x x 2 x 3 x..,?. p(n)x n = + x + 2 x x 3 + x + 7 x + x + n=0, n p(n) x n, ( ). p(n) (mother function)., x i = + xi + ( ) : ( ) n, n., = 2+2+,, = 2 + 2 + = 2 + + 2 = + 2 + 2,,,. ( composition.), λ = (2, 2, )... n (partition), λ = (λ, λ 2,..., λ r ), λ λ 2 λ r > 0, r λ i = n i=. r λ, l(λ)., r λ i = n i=, λ, λ., n P n,

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1 vertex edge 1(a) 1(b) 1(c) 1(d) 2 (a) (b) (c) (d) 1: (a) (b) (c) (d) 1 2 6 1 2 6 1 2 6 3 5 3 5 3 5 4 4 (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1: Zachary [11] [12] [13] World-Wide

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

Talk/7Akita-cont.tex Dated: 7/Feb/ Fibonacci Quartery L n = i n T n i/).) F n = i n U n i/).6).),.6) n = 7, F 7 = F n = cos π ) cos π 7 7 ) F = 8 [n )

Talk/7Akita-cont.tex Dated: 7/Feb/ Fibonacci Quartery L n = i n T n i/).) F n = i n U n i/).6).),.6) n = 7, F 7 = F n = cos π ) cos π 7 7 ) F = 8 [n ) Talk/7Akita-cont.tex Dated: 7/Feb/ wikipedia Pafnuty Lvovich Chebyshev 8 6-89 8 6 Chebychev Chebyshov Tchebycheff Tschebyscheff https://ja.wikipedia.org/wiki/ wikipediaa) 96 cos π 7 cos π 7 cos π 7 = x

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

Connection problem for Birkhoff-Okubo equations (Yoshishige Haraoka) Department of Mathematics Kumamoto University 50. $\Lambda$ $n\c

Connection problem for Birkhoff-Okubo equations (Yoshishige Haraoka) Department of Mathematics Kumamoto University 50. $\Lambda$ $n\c Title Connection problem for Birkhoff-Oku systems and hypergeometric systems) Author(s) 原岡 喜重 Citation 数理解析研究所講究録 (2001) 1239: 1-10 Issue Date 2001-11 URL http://hdl.handle.net/2433/41585 Right Type Departmental

More information

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M 1445 2005 88-98 88 Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of Mathematics Shimane University 1 2 $(\mathit{4}_{p}(\dot{x}))^{\circ}+\alpha\phi_{p}(\dot{x})+\beta\phi_{p}(x)=0$

More information

$arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ ?,,?,., (1),, (, ).,, $\langle$2),, (3),.., (4),,,., CFD ( ),,., CFD,.,,,

$arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ ?,,?,., (1),, (, ).,, $\langle$2),, (3),.., (4),,,., CFD ( ),,., CFD,.,,, 892 1995 105-116 105 $arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ - 1 7?,,?,, (1),, (, ),, $\langle$2),, (3),, (4),,,, CFD ( ),,, CFD,,,,,,,,, (3), $\overline{uv}$ 106 (a) (b) $=$ 1 - (5), 2,,,,,

More information

(1970) 17) V. Kucera: A Contribution to Matrix Ouadratic Equations, IEEE Trans. on Automatic Control, AC- 17-3, 344/347 (1972) 18) V. Kucera: On Nonnegative Definite Solutions to Matrix Ouadratic Equations,

More information