07-二村幸孝・出口大輔.indd
|
|
|
- さみ とりこし
- 6 years ago
- Views:
Transcription
1 GPU Graphics Processing Units HPC High Performance Computing GPU GPGPU General-Purpose computation on GPU CPU GPU GPU *1 Intel Quad-Core Xeon E GHz 2 6 MB L2 cache 1600 MHz FSB 80 GFlops 1 nvidia Geforce 8800GTX 300 GFlops CPU GPU GPU GPU 1 TFlops *2 TOP TFLOPS GPU 3 4 *3 GPU GPU GPGPU GPGPU 1978 Ikonas System GPU 2000 GPGPU GPGPU 4,5 GPGPU HLSL GLSL Cg GPU CUDA Compute unified device architecturenvidia GPU C/CHLSL GLSL *1 nvidia Geforce 8800GTX * nvidia GeForce GTX 280 AMD AMD FireStream TFlops *3 BlueGene/L 478 TFLOPS 2007
2 DirectX OpenGL API CUDA GPU C/C CUDA GPGPU GPGPU II. CUDA III. CUDA IV. CUDA V. VI. CUDA CUDA GPU CUDA 6 GeForce 8 CUDA 1 GPU CUDA nvidia GPU 3 GeForce Quadro GeForce Tesla HPC CUDA Windows XP Windows Vista Linux CUDA Windows Visual Studio Series GeForce Quadro Tesla Products 9800 GX2, 9800 GTX, 9800 GT, 8800 Ultra, 8800 GTX, 8800 GTS, 8800 GT, 8800 GS, 8600 GTS, 8600 GT, 8500 GT, 8400 GS, 8800M GTX, 8800M GTS, 8700M GT, 8600M GT, 8600M GS, 8400M GT, 8400M GS, 8400MG FX5600, FX4600, FX3700, FX1700, FX570, FX370, NVS290, FX3600M, FX1600M, FX570M, FX360M, Quadro Plex 1000Model IV, Quadro Plex 1000Model S4, NVS320M, NVS140M, NVS135M, NVS130M C870, D870, S870
3 Linux gcc g CUDA Windows CUDA HPC CUDA 2.0 Beta CUDA SDK 3 OS OS NVIDIA Driver for Microsoft Windows XP with CUDA Support (174.55) CUDA Toolkit version 2.0 for Windows XP CUDA SDK version 2.0 for Windows XP CUDA CUDA Toolkit C:\CUDA CUDA SDK CUDA SDK C:\Program Files\NVIDIA Corporation\NVIDIA CUDA SDK CUDA CUDA SDK CUDA 1 main.cu.cu CUDA nvcc Visual Studio 2005 CUDA main.cu C:\Your\Source\Path> nvcc main.cu a.exe CUDA 1 kernel <<< nblocks, nthreads >>> ( ddata ); GPU CPU nvidia C/C CUDA GPU CPU <<<... >>><<<... >>> GPU global void kernel int *data
4 1 #i n c l u d e <stdio.h> 2 3 global void kernel( int data ) 4 { 5 data [ threadidx.x ] = threadidx.x; 6 } 7 8 int main( int argc, char argv [ ] ) 9 { 10 int ddata, hdata [ 5 ] ; 11 cudamalloc( ( void )&ddata, sizeof( int ) 5 ); dim3 nthreads( 5, 1 ); 14 dim3 nblocks( 1, 1 ); 15 k e r n e l <<< nblocks, nthreads >>>( ddata ) ; cudamemcpy( hdata, ddata, sizeof( int ) 5, cudamemcpydevicetohost ) ; for( int i = 0 ; i < 5 ; i++ ) 20 { 21 p r i n t f ( %d, hdata [ i ] ) ; 22 } 23 p r i n t f ( \n ); return( 0 ); 26 } III. GPGPU CUDA CUDA CUDA GPU GPU GPU CUDA GPU 1 CUDA CUDA CUDA CPU ( ) CUDA 2
5 CUDA CUDA C/C 2 2 CPU GPU
6 device global host device constant shared GPU GPU CPU GPU CPU CPU GPU GPU GPU 2 global void kernel ( int *parameter ) 2 global CPU GPU global void kernel ( int *parameter ) kernel<<< nblocks, nthreads, nbytes >>>( parameter ); nblocks nthreads nbytes nbytes syncthreads 3 4 CUDA CUDA Occupancy Calculator GPU 1 global void kernel( int parameter ) 2 { 3 // 4 } 5 6 int main( int argc, char argv [ ] ) 7 { 8 // // 11 k e r n e l <<< nblocks, nthreads, nbytes >>>( parameter ); // }
7 griddim blockidx blockdim threadidx CUDA GPGPU C A B CUDA 16 A r c a rc CUDA CPU GPU CPU GPU global GPU GPU device CUDA CPU GPU *4 CUDA GPU CUDA GPU shared GPU 3 3 C c rc c rc = ca k=1 a rk b kc 1 GPU ra A ca A 3 GPU A *4 GPU CPU CPU GPU
8 1 global void multiply( float A, float B, float C, int ra, int ca ) 2 { 3 int c = threadidx.x + blockidx.x blockdim. x ; 4 int r = threadidx.y + blockidx.y blockdim. y ; 5 6 float sum = 0.0 f ; 7 for( int k = 0 ; k < ca ; k++ ) 8 { 9 sum += A[ r + k ra ] B[k + c ca ] ; 10 } C[ c ra + r ] = sum ; 13 } B C threadidxblockdim blockdimgpu multiply threadidx GPU threadidxblockdim CPU 4 CUDA CPU GPU CPU GPU CPU GPU CPU GPU cudamemcpy CPU GPU GPU CUDA III. CUDA Occupancy Calculator GPU CPU CPU 3 3 CUDA GPU 4 CUDA
9 1 int main( int argc, char argv [ ] ) 2 { 3 int ra = 512; // A 4 int ca = ; // A 5 int rb = ca ; // B 6 int cb = 512; // B 7 float ha, hb, hc ; // C P U 8 float da, db, dc ; // G P U 9 10 // C P U 11 ha = ( float )malloc( ra ca sizeof( float ) ); 12 hb = ( float )malloc( rb cb sizeof( float ) ); 13 hc = ( float )malloc( ra cb sizeof( float ) ); // G P U 16 cudamalloc( ( void )&da, ra ca sizeof( float ) ); 17 cudamalloc( ( void )&db, rb cb sizeof( float ) ); 18 cudamalloc( ( void )&dc, ra cb sizeof( float ) ); / / // CPUGPU 23 cudamemcpy( da, ha, ra ca sizeof( float ), cudamemcpyhosttodevice ) ; 24 cudamemcpy( db, hb, rb cb sizeof( float ), cudamemcpyhosttodevice ) ; // GPU 27 dim3 nthreads( 16, 16 ); 28 dim3 nblocks ( ra / nthreads.x, cb / nthreads. y ); // G P U C = A B dc 31 multiply<<< nblocks, nthreads >>>( da, db, dc, ra, ca ); // GPUCPU 34 cudamemcpy( hc, dc, ra cb sizeof( float ), cudamemcpydevicetohost ) ; / hc / // CPU GPU 39 cudafree( da ); 40 cudafree( db ); 41 cudafree( dc ); 42 f r e e ( ha ) ; 43 f r e e ( hb ) ; 44 f r e e ( hc ) ; return( 0 ); 47 }
10 5 C A B 5 A B A B shared ta tb 15 syncthreads GPU Bank Conflict Bank Conflict CUDA Programming Guide [8] Bank Conflict 1 global void multiply( float A, float B, float C, int ra, int ca ) 2 { 3 int c = threadidx.x + blockidx.x blockdim. x ; 4 int r = threadidx.y + blockidx.y blockdim. y ; 5 6 float sum = 0.0 f ; 7 for( int k = 0 ; k < ca ; k += 16 ) 8 { 9 shared float ta[16][16]; 10 shared float tb[16][16]; ta[ threadidx.y ][ threadidx.x] = A[ r + ( k + threadidx.x ) ra ] ; 13 tb[ threadidx.y ][ threadidx.x] = B[( k + threadidx.y ) + c ca ] ; syncthreads( ); for( int t = 0 ; t < 16 ; t++ ) 18 { 19 sum += ta [ threadidx. y ] [ t ] tb[ t ][ threadidx.x ]; 20 } syncthreads( ); 23 } C[ c ra + r ] = sum ; 26 }
11 C A B A B C Dell Precision Workstation T7400 CPU: Intel Quad Core Xeon 3.20 GHz 2 nvidia Quadro FX GB RAM, Windows XP SP CPU CPU 3 5 A B C CPU ms ms ms. 5 CPU CT MRI CUDA OS: WindowsXP CPU: Intel Quad-Core Xeon 3.20 GHz Memory: 3.0 GB GPU: NVIDIA Quadro FX
12 CPU CUDA CPU 10 CUDA CUDA 6 CUDA CUDA GPGPU 5,7 GPGPU CUDA GPGPU GPU CPU GPGPU PC GPGPU 1 GPU 32 GPU GPU 2008 GPU
13 CUDA Bank Conflict GPU CUDA CUDA Programming Guide [8] CUDA GPGPU [1] [2] TOP 500, [3] J. N. England, A system for interactive modeling of physical curved surface objects, Proceedings of SIGGRAPH 78, pp [4] M. J. Harris, G. Coombe, T. Scheuermann, and A. Lastra, Physically-Based Visual Simulation on Graphics Hardware, Proceedings of SIGGRAPH 2002 / Eurographics Workshop on Graphics Hardware 2002, pp.1 10, 2002 [5] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T. J. Purcell, A Survey of General-Purpose Computation on Graphics Hardware, Computer Graphics Forum, Vol.26, No.1, pp , 2007 [6] CUDA ZONE, [7] GPGPU, [8] CUDA Programming Guide, html
( CUDA CUDA CUDA CUDA ( NVIDIA CUDA I
GPGPU (II) GPGPU CUDA 1 GPGPU CUDA(CUDA Unified Device Architecture) CUDA NVIDIA GPU *1 C/C++ (nvcc) CUDA NVIDIA GPU GPU CUDA CUDA 1 CUDA CUDA 2 CUDA NVIDIA GPU PC Windows Linux MaxOSX CUDA GPU CUDA NVIDIA
1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU.....
CPU GPU N Q07-065 2011 2 17 1 1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU...........................................
1 GPU GPGPU GPU CPU 2 GPU 2007 NVIDIA GPGPU CUDA[3] GPGPU CUDA GPGPU CUDA GPGPU GPU GPU GPU Graphics Processing Unit LSI LSI CPU ( ) DRAM GPU LSI GPU
GPGPU (I) GPU GPGPU 1 GPU(Graphics Processing Unit) GPU GPGPU(General-Purpose computing on GPUs) GPU GPGPU GPU ( PC ) PC PC GPU PC PC GPU GPU 2008 TSUBAME NVIDIA GPU(Tesla S1070) TOP500 29 [1] 2009 AMD
iphone GPGPU GPU OpenCL Mac OS X Snow LeopardOpenCL iphone OpenCL OpenCL NVIDIA GPU CUDA GPU GPU GPU 15 GPU GPU CPU GPU iii OpenMP MPI CPU OpenCL CUDA OpenCL CPU OpenCL GPU NVIDIA Fermi GPU Fermi GPU GPU
Microsoft Word - paper.docx
による高速画像処理 名古屋大学大学院情報科学研究科出口大輔, 井手一郎, 村瀬洋 概要 : 本発表では, 近年注目を集めている GP(General Purpose computing on s) の技術に着目し,GP を利用するための開発環境の使い方やプログラミングのノウハウを分かりやすく解説する. GP は を汎用計算に利用しようという試みであり, 現在では物理シミュレーション, 数値計算, 信号解析,
Microsoft PowerPoint - GPU_computing_2013_01.pptx
GPU コンピューティン No.1 導入 東京工業大学 学術国際情報センター 青木尊之 1 GPU とは 2 GPGPU (General-purpose computing on graphics processing units) GPU を画像処理以外の一般的計算に使う GPU の魅力 高性能 : ハイエンド GPU はピーク 4 TFLOPS 超 手軽さ : 普通の PC にも装着できる 低価格
1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境 Lin
Windows で始める CUDA 入門 GTC 2013 チュートリアル エヌビディアジャパン CUDA エンジニア森野慎也 1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境
IPSJ SIG Technical Report Vol.2013-ARC-203 No /2/1 SMYLE OpenCL (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 1
SMYLE OpenCL 128 1 1 1 1 1 2 2 3 3 3 (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 128 SMYLEref SMYLE OpenCL SMYLE OpenCL Implementation and Evaluations on 128 Cores Takuji Hieda 1 Noriko Etani
GPGPU
GPGPU 2013 1008 2015 1 23 Abstract In recent years, with the advance of microscope technology, the alive cells have been able to observe. On the other hand, from the standpoint of image processing, the
main.dvi
PC 1 1 [1][2] [3][4] ( ) GPU(Graphics Processing Unit) GPU PC GPU PC ( 2 GPU ) GPU Harris Corner Detector[5] CPU ( ) ( ) CPU GPU 2 3 GPU 4 5 6 7 1 [email protected] 45 2 ( ) CPU ( ) ( ) () 2.1
GPU GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1
GPU 4 2010 8 28 1 GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1 Register & Shared Memory ( ) CPU CPU(Intel Core i7 965) GPU(Tesla
23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h
23 FPGA CUDA Performance Comparison of FPGA Array with CUDA on Poisson Equation ([email protected]), ([email protected]), ([email protected]), ([email protected]),
GPGPUによる高速画像処理
GPGPU による高速画像処理 ~ リアルタイム画像処理への挑戦 ~ 名古屋大学大学院情報科学研究科 出口大輔 リアルタイム画像処理 2 3 発表の流れ GPGPU を始める前に GPGPU の基礎知識 CUDA の使い方 CUDA を使う前に プログラミングの予備知識 CUDA を使って Hello World GPGPU にチャレンジ 行列積の計算 テンプレートマッチング ガウシアンフィルタ SIFT
Slides: TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments
計算機アーキテクチャ第 11 回 マルチプロセッサ 本資料は授業用です 無断で転載することを禁じます 名古屋大学 大学院情報科学研究科 准教授加藤真平 デスクトップ ジョブレベル並列性 スーパーコンピュータ 並列処理プログラム プログラムの並列化 for (i = 0; i < N; i++) { x[i] = a[i] + b[i]; } プログラムの並列化 x[0] = a[0] + b[0];
untitled
A = QΛQ T A n n Λ Q A = XΛX 1 A n n Λ X GPGPU A 3 T Q T AQ = T (Q: ) T u i = λ i u i T {λ i } {u i } QR MR 3 v i = Q u i A {v i } A n = 9000 Quad Core Xeon 2 LAPACK (4/3) n 3 O(n 2 ) O(n 3 ) A {v i }
! 行行 CPUDSP PPESPECell/B.E. CPUGPU 行行 SIMD [SSE, AltiVec] 用 HPC CPUDSP PPESPE (Cell/B.E.) SPE CPUGPU GPU CPU DSP DSP PPE SPE SPE CPU DSP SPE 2
! OpenCL [Open Computing Language] 言 [OpenCL C 言 ] CPU, GPU, Cell/B.E.,DSP 言 行行 [OpenCL Runtime] OpenCL C 言 API Khronos OpenCL Working Group AMD Broadcom Blizzard Apple ARM Codeplay Electronic Arts Freescale
Slide 1
CUDA プログラミングの基本 パート II - カーネル CUDA の基本の概要 パート I CUDAのソフトウェアスタックとコンパイル GPUのメモリ管理 パート II カーネルの起動 GPUコードの具体像 注 : 取り上げているのは基本事項のみです そのほか多数の API 関数についてはプログラミングガイドを ご覧ください GPU 上でのコードの実行 カーネルは C 関数 + 多少の制約 ホストメモリはアクセスできない戻り値型は
Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx
GPU のプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU プログラミング環境 (CUDA) GPU プログラムの実行の流れ CUDA によるプログラムの記述 カーネル (GPU で処理する関数 ) の構造 記述方法とその理由 GPU 固有のパラメータの確認 405 GPU(Graphics Processing Unit) とは 画像処理専用のハードウェア 具体的には画像処理用のチップ
1 3DCG [2] 3DCG CG 3DCG [3] 3DCG 3 3 API 2 3DCG 3 (1) Saito [4] (a) 1920x1080 (b) 1280x720 (c) 640x360 (d) 320x G-Buffer Decaudin[5] G-Buffer D
3DCG 1) ( ) 2) 2) 1) 2) Real-Time Line Drawing Using Image Processing and Deforming Process Together in 3DCG Takeshi Okuya 1) Katsuaki Tanaka 2) Shigekazu Sakai 2) 1) Department of Intermedia Art and Science,
HP xw9400 Workstation
HP xw9400 Workstation HP xw9400 Workstation AMD Opteron TM PCI Express x16 64 PCI Express x16 2 USB2.0 8 IEEE1394 2 8DIMM HP HP xw9400 Workstation HP CPU HP CPU 240W CPU HP xw9400 HP CPU CPU CPU CPU Sound
TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日
TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日 目次 1. TSUBAMEのGPU 環境 2. プログラム作成 3. プログラム実行 4. 性能解析 デバッグ サンプルコードは /work0/gsic/seminars/gpu- 2011-09- 28 からコピー可能です 1.
GPUコンピューティング講習会パート1
GPU コンピューティング (CUDA) 講習会 GPU と GPU を用いた計算の概要 丸山直也 スケジュール 13:20-13:50 GPU を用いた計算の概要 担当丸山 13:50-14:30 GPU コンピューティングによる HPC アプリケーションの高速化の事例紹介 担当青木 14:30-14:40 休憩 14:40-17:00 CUDA プログラミングの基礎 担当丸山 TSUBAME の
DO 時間積分 START 反変速度の計算 contravariant_velocity 移流項の計算 advection_adams_bashforth_2nd DO implicit loop( 陰解法 ) 速度勾配, 温度勾配の計算 gradient_cell_center_surface 速
1 1, 2 1, 2 3 2, 3 4 GP LES ASUCA LES NVIDIA CUDA LES 1. Graphics Processing Unit GP General-Purpose SIMT Single Instruction Multiple Threads 1 2 3 4 1),2) LES Large Eddy Simulation 3) ASUCA 4) LES LES
熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date Type URL Presentation
熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date 2011-03-17 Type URL Presentation http://hdl.handle.net/2298/23539 Right GPGPU による高速演算について 榎本昌一 東京大学大学院工学系研究科システム創成学専攻
CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン
CUDA 画像処理入門 エヌビディアジャパン CUDA エンジニア森野慎也 GTC Japan 2014 CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン RGB Y( 輝度 ) 変換 カラー画像から グレイスケールへの変換 Y = 0.299 R + 0.587
FIT2013( 第 12 回情報科学技術フォーラム ) I-032 Acceleration of Adaptive Bilateral Filter base on Spatial Decomposition and Symmetry of Weights 1. Taiki Makishi Ch
I-032 Acceleration of Adaptive Bilateral Filter base on Spatial Decomposition and Symmetry of Weights 1. Taiki Makishi Chikatoshi Yamada Shuichi Ichikawa Gaussian Filter GF GF Bilateral Filter BF CG [1]
GPU n Graphics Processing Unit CG CAD
GPU 2016/06/27 第 20 回 GPU コンピューティング講習会 ( 東京工業大学 ) 1 GPU n Graphics Processing Unit CG CAD www.nvidia.co.jp www.autodesk.co.jp www.pixar.com GPU n GPU ü n NVIDIA CUDA ü NVIDIA GPU ü OS Linux, Windows, Mac
CUDA 連携とライブラリの活用 2
1 09:30-10:00 受付 10:00-12:00 Reedbush-H ログイン GPU 入門 13:30-15:00 OpenACC 入門 15:15-16:45 OpenACC 最適化入門と演習 17:00-18:00 OpenACC の活用 (CUDA 連携とライブラリの活用 ) CUDA 連携とライブラリの活用 2 3 OpenACC 簡単にGPUプログラムが作成できる それなりの性能が得られる
GPUを用いたN体計算
単精度 190Tflops GPU クラスタ ( 長崎大 ) の紹介 長崎大学工学部超高速メニーコアコンピューティングセンターテニュアトラック助教濱田剛 1 概要 GPU (Graphics Processing Unit) について簡単に説明します. GPU クラスタが得意とする応用問題を議論し 長崎大学での GPU クラスタによる 取組方針 N 体計算の高速化に関する研究内容 を紹介します. まとめ
HP Workstation Xeon 5600
HP Workstation Xeon 5600 HP 2 No.1 HP 5 3 Z 2No.1 HP :IDC's Worldwide Quarterly Workstation Tracker, 2009 Q4 14.0in Wide HP EliteBook 8440w/CT Mobile Workstation 15.6in Wide HP EliteBook 8540w Mobile Workstation
HP High Performance Computing(HPC)
ACCELERATE HP High Performance Computing HPC HPC HPC HPC HPC 1000 HPHPC HPC HP HPC HPC HPC HP HPCHP HP HPC 1 HPC HP 2 HPC HPC HP ITIDC HP HPC 1HPC HPC No.1 HPC TOP500 2010 11 HP 159 32% HP HPCHP 2010 Q1-Q4
AMD/ATI Radeon HD 5870 GPU DEGIMA LINPACK HD 5870 GPU DEGIMA LINPACK GFlops/Watt GFlops/Watt Abstract GPU Computing has lately attracted
DEGIMA LINPACK Energy Performance for LINPACK Benchmark on DEGIMA 1 AMD/ATI Radeon HD 5870 GPU DEGIMA LINPACK HD 5870 GPU DEGIMA LINPACK 1.4698 GFlops/Watt 1.9658 GFlops/Watt Abstract GPU Computing has
HPEハイパフォーマンスコンピューティング ソリューション
HPE HPC / AI Page 2 No.1 * 24.8% No.1 * HPE HPC / AI HPC AI SGIHPE HPC / AI GPU TOP500 50th edition Nov. 2017 HPE No.1 124 www.top500.org HPE HPC / AI TSUBAME 3.0 2017 7 AI TSUBAME 3.0 HPE SGI 8600 System
System Requirements for Geomagic
GEOMAGIC 動作環境 32-bit 版 64-bit 版 OS CPU RAM ハードディスクディスプレイ GPU - Windows XP (32-bitまたは64-bit SP2 以上 ) - Windows XP (64-bit SP2 以上 ) - Windows Vista (32-bitまたは64-bit SP1 - Windows Vista (64-bit SP1 以上 ) 以上
WebGL OpenGL GLSL Kageyama (Kobe Univ.) Visualization / 57
WebGL 2014.04.15 X021 2014 3 1F Kageyama (Kobe Univ.) Visualization 2014.04.15 1 / 57 WebGL OpenGL GLSL Kageyama (Kobe Univ.) Visualization 2014.04.15 2 / 57 WebGL Kageyama (Kobe Univ.) Visualization 2014.04.15
(MIRU2010) NTT Graphic Processor Unit GPU graphi
(MIRU2010) 2010 7 889 2192 1-1 905 2171 905 NTT 243 0124 3-1 E-mail: [email protected], [email protected] Graphic Processor Unit GPU graphic processor unit CUDA Fully automatic extraction of
IPSJ SIG Technical Report Vol.2013-HPC-138 No /2/21 GPU CRS 1,a) 2,b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla
GPU CRS 1,a),b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla K0 CUDA5.0 cusparse CRS SpMV 00 1.86 177 1. SpMV SpMV CRS Compressed Row Storage *1 SpMV GPU GPU NVIDIA Kepler
H1-4
High End Style AcerWindows Vista Home Premium Aspire M5621 ASM5621-A21 ASM5621-A22 ASM5621-A23 High End Style Aspire M5621 MAIN SPEC CPU ASM5621-A21ASM5621-A22ASM5621-A23 MEMORY HDD DRIVE OS GRAPHICS LAN
ストリームを用いたコンカレントカーネルプログラミングと最適化 エヌビディアジャパン CUDAエンジニア森野慎也 GTC Japan 2014
ストリームを用いたコンカレントカーネルプログラミングと最適化 エヌビディアジャパン CUDAエンジニア森野慎也 GTC Japan 2014 コンカレントな処理の実行 システム内部の複数の処理を 平行に実行する CPU GPU メモリ転送 カーネル実行 複数のカーネル間 ストリーム GPU 上の処理キュー カーネル実行 メモリ転送の並列性 実行順序 DEFAULT STREAM Stream : GPU
SmartLMSユーザーズガイド<講師編>
SmartLearning Management System SmartLMS (1) (2) (3) (4) (3) (5) Microsoft MS PowerPoint DirectX Windows Windows NT Windows Media Microsoft Corporation Intel Pentium Intel Corporation NEC 2003-2004 NEC
indd
Windows Vista 2 Service pack 1 SP1 Windows Vista Windows Xp Windows Vista Windows Vista CPU Windows OS Windows Xp Windows Vista Windows 7 15 20 Windows Vista Windows Vista Windows Xp Windows Vista Windows
Ver. 3.8 Ver NOTE E v3 2.4GHz, 20M cache, 8.00GT/s QPI,, HT, 8C/16T 85W E v3 1.6GHz, 15M cache, 6.40GT/s QPI,
PowerEdge T630 Contents RAID /RAID & PCIe GPU OS v3.8 Apr. 2017 P3-5 P6 P7 P8-9 P10-11 P12-16 P17-79 P80-85 P86-87 P88-90 P90 P91-92 P93-96 P97-100 P101-107 P107-108 P109-110 2017 4 28 2016 4 22 Ver. 3.8
GPU のアーキテクチャとプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓
GPU のアーキテクチャとプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU のアーキテクチャ CUDA CUDA によるプログラミング 58 GPU(Graphics Processing Unit) とは 画像処理専用のハードウェア 具体的には画像処理用のチップ チップ単体では販売されていない PCI Ex カードで販売 ( チップ単体と区別せずに GPU と呼ぶことも多い
211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS /1/18 a a 1 a 2 a 3 a a GPU Graphics Processing Unit GPU CPU GPU GPGPU G
211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS211 211/1/18 GPU 4 8 BLAS 4 8 BLAS Basic Linear Algebra Subprograms GPU Graphics Processing Unit 4 8 double 2 4 double-double DD 4 4 8 quad-double
Ver. 3.8 Ver NOTE E v3 2.4GHz, 20M cache, 8.00GT/s QPI,, HT, 8C/16T 85W E v3 1.6GHz, 15M cache, 6.40GT/s QPI,,
PowerEdge R730 Contents RAID /RAID & PCIe GPU OS P3-5 P6 P7 P8 P9-10 P11-16 P17-55 P56 P57-66 P67-69 P70-72 P72 P73 P74-77 P78-81 P82-88 P88-89 P90-91 V3.8 Apr. 2017 2017 4 28 2016 4 22 Ver. 3.8 Ver. 1.0
GPUコンピューティング講習会パート1
GPU コンピューティング (CUDA) 講習会 GPU と GPU を用いた計算の概要 丸山直也 スケジュール 13:20-13:50 GPU を用いた計算の概要 担当丸山 13:50-14:30 GPU コンピューティングによる HPC アプリケーションの高速化の事例紹介 担当青木 14:30-14:40 休憩 14:40-17:00 CUDA プログラミングの基礎 担当丸山 TSUBAME の
HP Workstation 総合カタログ
HP Workstation Z HP 6 Z HP HP Z840 Workstation P.9 HP Z640 Workstation & CPU P.10 HP Z440 Workstation P.11 17.3in WIDE HP ZBook 17 G2 Mobile Workstation P.15 15.6in WIDE HP ZBook 15 G2 Mobile Workstation
インテル® VTune™ パフォーマンス・アナライザー 9.1 Windows* 版
VTune 9.1 Windows* ................................. 3...................... 3.................................................. 3............................................ 4 :.........................4................................................
rank ”«‘‚“™z‡Ì GPU ‡É‡æ‡éŁÀŠñ›»
rank GPU ERATO 2011 11 1 1 / 26 GPU rank/select wavelet tree balanced parenthesis GPU rank 2 / 26 GPU rank/select wavelet tree balanced parenthesis GPU rank 2 / 26 GPU rank/select wavelet tree balanced
i
14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7
Ver. 3.9 Ver E v3 2.4GHz, 20M cache, 8.00GT/s QPI,, HT, 8C/16T 85W E v3 1.6GHz, 15M cache, 6.40GT/s QPI,, HT,
PowerEdge R630 Contents RAID /RAID & PCIe OS P3-6 P7 P8 P9 P10-11 P12-16 P17-61 P62 P63-72 P73-75 P75 P76-79 P80-83 P84-90 P90-91 P92-93 V3.9 Apr. 2017 2017 4 28 2016 4 22 Ver. 3.9 Ver. 1.0 +- E5-2630
Ver Ver NOTE E v3 2.4GHz, 20M cache, 8.00GT/s QPI,, HT, 8C/16T 85W E v3 1.6GHz, 15M cache, 6.40GT/s QPI
PowerEdge T630 Contents RAID /RAID & PCIe GPU OS V4.10 Mar.2018 P3-5 P6 P7 P8-9 P10-11 P12-16 P17-84 P85-90 P91-92 P93-95 P95 P96-97 P98-101 P102-105 P106-110 P110-111 P112-113 2018 3 30 2016 4 22 Ver.
on PS3 Linux Core 2 Quad (GHz) SMs 7 SPEs 1 OS 4 1 Hz 1 (GFLOPS) SM PPE SPE bit
vs. 1 1 1 GPU TFLOPS GPU GPU GPGPU GPGPU 1 SIMD MFLOPS HPC GPU FFTZIP HPC Challenge RandomAccess Levenshtein 6 vs. Ryōhei NISHIMURA, 1 Hidetsugu IRIE 1 and Kei HIRAKI 1 Recently, on the one hand, performance
HPE Moonshot System ~ビッグデータ分析&モバイルワークプレイスを新たなステージへ~
Brochure HPE Moonshot System HPE Moonshot System 4.3U 45 HPE Moonshot System Xeon & HPE Moonshot System HPE Moonshot System HPE HPE Moonshot System &IoT & SoC Xeon D-1500 Broadwell-DE HPE ProLiant m510
HP Workstation 総合カタログ
HP Workstation E5 v2 Z Z SFF E5 v2 2 HP Windows Z 3 Performance Innovation Reliability 3 HPZ HP HP Z820 Workstation P.11 HP Z620 Workstation & CPU P.12 HP Z420 Workstation P.13 17.3in WIDE HP ZBook 17
,., ping - RTT,., [2],RTT TCP [3] [4] Android.Android,.,,. LAN ACK. [5].. 3., 1.,. 3 AI.,,Amazon, (NN),, 1..NN,, (RNN) RNN
DEIM Forum 2018 F1-1 LAN LSTM 112 8610 2-1-1 163-8677 1-24-2 E-mail: [email protected], [email protected], [email protected],,.,,., LAN,. Android LAN,. LSTM LAN., LSTM, Analysis of Packet of
HP Personal Workstations
HP Personal Workstations HP Personal Workstations Engineered for innovators HPPersonal Workstations HP Personal Workstations HPWindows Vista TM Business HP Personal Workstation HP xw900 Workstation HP
倍々精度RgemmのnVidia C2050上への実装と応用
.. [email protected] http://accc.riken.jp/maho/,,, 2011/2/16 1 - : GPU : SDPA-DD 10 1 - Rgemm : 4 (32 ) nvidia C2050, GPU CPU 150, 24GFlops 25 20 GFLOPS 15 10 QuadAdd Cray, QuadMul Sloppy Kernel QuadAdd Cray,
2010 : M0107189 3DCG 3 (3DCG) 3DCG 3DCG 3DCG S
2010 M0107189 2010 : M0107189 3DCG 3 (3DCG) 3DCG 3DCG 3DCG S 1 1 1.1............................ 1 1.2.............................. 4 2 5 2.1............................ 5 2.2.............................
2ndD3.eps
CUDA GPGPU 2012 UDX 12/5/24 p. 1 FDTD GPU FDTD GPU FDTD FDTD FDTD PGI Acceralator CUDA OpenMP Fermi GPU (Tesla C2075/C2070, GTX 580) GT200 GPU (Tesla C1060, GTX 285) PC GPGPU 2012 UDX 12/5/24 p. 2 FDTD
26102 (1/2) LSISoC: (1) (*) (*) GPU SIMD MIMD FPGA DES, AES (2/2) (2) FPGA(8bit) (ISS: Instruction Set Simulator) (3) (4) LSI ECU110100ECU1 ECU ECU ECU ECU FPGA ECU main() { int i, j, k for { } 1 GP-GPU
[1] [2] [3] (RTT) 2. Android OS Android OS Google OS 69.7% [4] 1 Android Linux [5] Linux OS Android Runtime Dalvik Dalvik UI Application(Home,T
LAN Android Transmission-Control Middleware on multiple Android Terminals in a WLAN Environment with consideration of Round Trip Time Ai HAYAKAWA, Saneyasu YAMAGUCHI, and Masato OGUCHI Ochanomizu University
ACDSee-Press-Release_0524
ACDSee Pro Windows ACDSee Pro 4 Mac ACDSee Pro (Mac) 5 26 ACDSee 6 30 ACDSee 5,000 URL: http://www.acdsee.jp ACDSee Pro ACDSee Pro 4 16,800 / 21,800 ACDSee Pro (Mac) 9,800 / 14,800 ACDSee Pro 4 RAW ACDSee
EGunGPU
Super Computing in Accelerator simulations - Electron Gun simulation using GPGPU - K. Ohmi, KEK-Accel Accelerator Physics seminar 2009.11.19 Super computers in KEK HITACHI SR11000 POWER5 16 24GB 16 134GFlops,
OptiPlex OptiPlex 4 OptiPlex vpro Energy STAR5.0 EPEAT GOLD 90 Energy Smart Energy Smart
Dell OptiPlex PC OptiPlex 980 780 380 FX160 / FX100 www.dell.com/jp December / 2010 Core i5 vpro OptiPlex OptiPlex 4 OptiPlex vpro Energy STAR5.0 EPEAT GOLD 90 Energy Smart Energy Smart 2007 7 2 OptiPlex
05秋案内.indd
1 2 3 4 5 6 7 R01a U01a Q01a L01a M01b - M03b Y01a R02a U02a Q02a L02a M04b - M06b Y02a R03a U03a Q03a L03a M08a Y03a R04a U04a Q04a L04a M09a Y04a A01a L05b, L07b, R05a U05a Q05a M10a Y05b - Y07b L08b
電気通信大学 I 類 情報系 情報 ネットワーク工学専攻 CED 2018 システム利用ガイド ver1.2 CED 管理者 学術技師 島崎俊介 教育研究技師部 実験実習支援センター 2018 年 3 月 29 日 1 ログイン ログアウト手順について 1.1 ログイン手順 CentOS 1. モニ
電気通信大学 I 類 情報系 情報 ネットワーク工学専攻 CED 2018 システム利用ガイド ver1.2 CED 管理者 学術技師 島崎俊介 教育研究技師部 実験実習支援センター 2018 年 3 月 29 日 1 ログイン ログアウト手順について 1.1 ログイン手順 CentOS 1. モニタと端末の電源を入れる 2. GNU GRUB version 2.02 Beta2-36ubuntu3
HP Z800 Workstation 製品構成ガイド
HP Z800 Workstation システム構成図 0 年 3 月 3日版 HP Z800 Workstation 0 3 3 HP Z800 Workstation (/) HP Z800 / CT Workstation (0 3 3) HP Z800 / CT Workstation E5507 E560 E5640 X5650 X5660 X5667 X5670 X5677 X5680
FFTSS Library Version 3.0 User's Guide
: 19 10 31 FFTSS 3.0 Copyright (C) 2002-2007 The Scalable Software Infrastructure Project, (CREST),,. http://www.ssisc.org/ Contents 1 4 2 (DFT) 4 3 4 3.1 UNIX............................................
2nd-1.dvi
7 ZEAL : OptiPlex GX 7 ZEAL ZEAL-Z ZEAL-C ZEAL-C CPU Memory OS Intel Pentium (3GHz) GB Windows Vista Business (-bit) ZEAL Microsoft Windows Mobile 5. ZEAL Bluetooth 3 ZEAL 5 Microsoft Visual C# 5 66 OS
