2010 : M DCG 3 (3DCG) 3DCG 3DCG 3DCG S

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "2010 : M0107189 3DCG 3 (3DCG) 3DCG 3DCG 3DCG S"

Transcription

1 2010 M

2 2010 : M DCG 3 (3DCG) 3DCG 3DCG 3DCG S

3 I

4 1.1 (Wikipedia ) II

5 ( 3DCG) 3DCG [1][2][3][4] 3DCG [5][6][7] 1

6 : (Wikipedia ) 2 [8] 2003 Baranoski [9] ( ) [10] ( ) 2

7 2005 Baranoski [11] Baranoski S ( ) [12] 1/f [13] 3 1/f 1/f 1/f [14] 3DCG 3

8 Baranosoki Bèzier [15] sin Baranosoki

9 2 2 [5] ( ) 80km 500km 5

10 : 3 U J

11 % ( 7

12 ) ( ) ( ) : 2.2 1km km 8

13 S km km 2km 10km 20km 1500km S km km/s ( )

14 50km 100km m/s 50km/s 100km/s : 10

15 2.4: 2.5: 2.6: 11

16 nm 630.0nm 391.4nm 427.8nm 670.5nm 630.0nm nm a b c d e f 6 a 120km 140km b 80km 100km c 100km 200km d 220km 250km e b 12

17 f

18 : 14

19 DCG y xz xz Bèzier [15] sin n Bèzier m sin R(t) (3.1) R(t) = n Bi n (t)q i + i=0 { m 1 j=0 A j sin(2πf j t) } N b (t) (0 t 1) (3.1) 15

20 N b (t) Bèzier t Q i Bèzier {Q 0, Q 1, Q 2,..., Q n } Bi n (t) Bernstein A j sin f j sin Bernstein (3.2) B n i (t) = n C i t i (1 t) n i (3.2) t k {W 0, W 1, W 2,..., W k 1 } (3.3) w W 0 (k = 1) 2 W (t, w) = w W tk (1 (tk tk ))+W tk +1 (tk tk ) (k 1, 0 t < 1) 2 w W k 2 (k 1, t = 1) (3.3) 1 w 1 tk tk (3.1) (3.3) A(t, w) (3.4) A(t, w) = R(t) + W (t, w)n a (t) (0 t 1, 1 w 1) (3.4) N a (t) t 3.2 [16] F P 0 v 0 t P 16

21 (3.5) P = ( ) t m F + v 0 t + P 0 (3.5) q 0 B E F (3.6) v B F = q 0 (E + v B) (3.6) B q 0 1 E φ E (3.7) E = φ (3.7) S N ρ (3.8) ρ = q 0N S (3.8) ε 0 ε 0 φ ρ [17][18] (3.9) 2 2 φ = 2 φ 2 x + 2 φ 2 z = ρ ε 0 (3.9) φ xz Drichlet [18] φ = 0 Gauss-Seidel [19] φ xz 17

22 4 4 4 d (i, j) 2 [18] (i, j) 2 (3.10) (3.11) ( ) 2 φ x 2 φ(i + 1, j) 2φ(i, j) + φ(i 1, j) ( d) 2 (3.10) ( ) 2 φ z 2 φ(i, j + 1) 2φ(i, j) + φ(i, j 1) ( d) 2 (3.11) (3.9) (3.10) (3.11) (i, j) φ(i, j) (3.12) φ(i, j) = 1 4 { ( d) 2 ρ ε 0 } + φ(i + d, j) + φ(i d, j) + φ(i, j + l) + φ(i, j d) (3.12) [18] (i, j) E(i, j) E(i, j) = ( φ(i + 1, j) φ(i 1, j), 2 d ) φ(i, j + 1) φ(i, j 1) 2 d (3.13) 3.3 [20] 18

23 B v t t t t t P (3.14) P = v B B t (3.14) r l n l [21] P 1 (3.15) P 1 = nπr 2 l (3.15) n 3.4 [22] [5] r n v m t t [21] P 2 (3.16) ( P 2 = 1 exp ) 2nπr 2 v m t (3.16) v m [23] 19

24 3.5 [24] σ (3.17) G(x, y) = 1 ) ( 2πσ exp x2 + y 2 2 2σ 2 (3.17) σ RGB CIE-XYZ X, Y, Z [25] λ L(λ) X, Y, Z (3.18) 780 X = k Y = k Z = k x(λ)l(λ)δλ ȳ(λ)l(λ)δλ z(λ)l(λ)δλ (3.18) x, ȳ, z k L(λ) 20

25 X, Y, Z R, G, B (3.19) ( X Y Z R = ( X Y Z G = ( X Y Z B = ) ) ) (3.19) 21

26 4 3 3D FK ToolKit System[26] 512px 360px : OS Windows 7 Enterprise CPU AMD Phenom(tm) IIX6 1090T Processor 3.20 GHz GPU GeForce GTX GB

27 4.1: : 1 4.3:

28 4.4: 3 4.5: 4 4.6: 5 4.7: 1 24

29 4.8: 2 4.9: : : S 25

30 26

31 5 27

32 28

33 [1] Yoshinobu Takahiro and Kaneda Kazufumi. Rendering rainbows based on wave optics and compositing the rainbow and photographs.. ITS, Vol. 104, No. 647, pp , [2] Yoshinori Dobashi, Tsuyoshi Yamamoto, and Tomoyuki Nishita. Efficient rendering of lightning taking into account scattering effects due to cloud and atmospheric particles. In Proceedings of the 9th Pacific Conference on Computer Graphics and Applications, PG 01, pp. 390, [3] TOKOI KOHE and MORIKI HIRONORI. Real-time modeling of snowcovered shape(computer graphics). Transactions of Information Processing Society of Japan, Vol. 47, No. 5, pp , [4] Ye Zhao, Yiping Han, Zhe Fan, Feng Qiu, Yu-Chuan Kuo, Arie E. Kaufman, and Klaus Mueller. Visual simulation of heat shimmering and mirage. IEEE Transactions on Visualization and Computer Graphics, Vol. 13, pp , [5]. 2., [6]. THE AURORA WATCHER S HANDBOOK.,

34 [7].., [8]. CG. NICOGRAPH 95, pp , [9] G. V. G. Baranoski, Jon Rokne, Peter Shirley, Trond Trondsen, Rui Bastos. Simulating the aurora. Visual. Comput. Animat, pp , [10] , pp , [11] G. V. G. Baranoski J. Wan. Simulating the dynamics of auroral phenomena. ACM Transactions on Graphics, Vol. 24, pp , [12]. CG. 20, p. 137, [13]. CG. 21, p. 281, [14]... CAD, [15]. 3 CAD., [16]. [ 2]., [17]. 14., [18]..,

35 [19]. UNIX & Informatioin Science-5 C., [20]. 23., [21]. 2.., Vol. 47, No. 1, pp. 2 6, [22] NASA, Robert McGuire. MSIS-E-90 Atmosphere Model. gsfc.nasa.gov/vitmo/msis vitmo.html. [23]. 1.., Vol. 46, No. 4, pp , [24] Gabriele Lohmann. 3 Volumetric Image Analysis., [25].., [26]. Fine Kernel Tool Kit System. jp/. 31

1 3 (3DCG) [1] [2] [3] [4] [5] 3DCG [6] [7] [8] [9] ( ) 3DCG 27 NICOGRAPH [10] [6] ( ) [7] 80km 500km 1 1: 25

1 3 (3DCG) [1] [2] [3] [4] [5] 3DCG [6] [7] [8] [9] ( ) 3DCG 27 NICOGRAPH [10] [6] ( ) [7] 80km 500km 1 1: 25 Visual Simulation of Aurora based on Feature Motion Takafumi Kojima Ryota Takeuchi Taichi Watanabe Koji Mikami Graduate School of Bionics, Computer and Media Sciences, Tokyo University of Technology School

More information

2009 3DCG : M0106423 3DCG,,,, 3DCG 2D 3DCG 2D 3DCG 3DCG

2009 3DCG : M0106423 3DCG,,,, 3DCG 2D 3DCG 2D 3DCG 3DCG 2009 3DCG M0106423 2009 3DCG : M0106423 3DCG,,,, 3DCG 2D 3DCG 2D 3DCG 3DCG 1 1 1.1................................. 1 1.2................................. 1 1.3............................... 3 1.4.................................

More information

floating horizon algorithm 1 DEM [ 01] [Luebke01] LDI Layered Depth Image [Shade98] DEM Digital Elevation Model Height field 1 10 9

floating horizon algorithm 1 DEM [ 01] [Luebke01] LDI Layered Depth Image [Shade98] DEM Digital Elevation Model Height field 1 10 9 Introduction to Point-based Graphics Tadahiro FUJIMOTO Kouichi KONNO Norishige CHIBA Faculty of Engineering, Iwate University Point-based Graphics Eurographics 2002 2003 [ 01 02 02 03] LOD Level of Detail

More information

Lyra 2 2 2 X Y X Y ivis Designer Lyra ivisdesigner Lyra ivisdesigner 2 ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) (1) (2) (3) (4) (5) Iv Studio [8] 3 (5) (4) (1) (

Lyra 2 2 2 X Y X Y ivis Designer Lyra ivisdesigner Lyra ivisdesigner 2 ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) (1) (2) (3) (4) (5) Iv Studio [8] 3 (5) (4) (1) ( 1,a) 2,b) 2,c) 1. Web [1][2][3][4] [5] 1 2 a) ito@iplab.cs.tsukuba.ac.jp b) misue@cs.tsukuba.ac.jp c) jiro@cs.tsukuba.ac.jp [6] Lyra[5] ivisdesigner[6] [7] 2 Lyra ivisdesigner c 2012 Information Processing

More information

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s 1 1 1, Extraction of Transmitted Light using Parallel High-frequency Illumination Kenichiro Tanaka 1 Yasuhiro Mukaigawa 1 Yasushi Yagi 1 Abstract: We propose a new sharpening method of transmitted scene

More information

( )

( ) NAIST-IS-MT9951117 2001 2 9 ( ) 3 CG, VR.,,,.,,,,,.,, 2, 3 3,.,, 2, 3.,,,,,.,,,.,,.,,, 3, NAIST-IS- MT9951117, 2001 2 9. i Intaractive terrain generation within Immersive Modeling System 3 Ryutarou Morimoto

More information

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L 1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives

More information

第6章_田辺.PDF

第6章_田辺.PDF ( ) ( ) ( ) Tube . MGLAB 1.5 mm ( ) NS u u x u u u u = u + u ( ) ( u + u ) u u u u = u + u x x x + NS u ( ρ s ρ ) g a F R = αv 0 FR V a a a k0 k /0 MGLAB - ( ) NS CPU khz 1 10 5 NS 1 ga ARFAcoustic Radiation

More information

2003 : 00P249,,, CG

2003 : 00P249,,, CG 2003 Web3D 00P249 2003 : 00P249,,, CG 1 1 1.1................................. 1 1.2................................. 3 1.3.............................. 3 2 4 2.1............................... 4 2.2.....................

More information

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.

More information

10 10 10095 95 100 108

10 10 10095 95 100 108 25491231 21 21 114 10 10 10095 95 100 108 10 10 2510 079685 10 100 109 20 2015 110 134 e [ 350 350 145 18 111 112 16 18 16 18 1816 18 20 48 25 20315 28 113 114 25 05 03 01 20 100150 Q & A Q A 18 16 Q &

More information

2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5

2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5 1D000425-2 1 2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5 3 29 29 29 30 31 31 32 35 35 35 36 41 41 41 46 48 48 48 52 57 4 700 13 1988 4 5 4 5 21 1 1 3 4 5 6 21 10 1888

More information

経済論集 46‐2(よこ)(P)☆/2.三崎

経済論集 46‐2(よこ)(P)☆/2.三崎 1 2 1869 11 17 5 10 1 3 1914 5 15 5 1872 9 12 3 1870 1 26 14 1881 11 11 12 6 11 1878 5 9 13 1880 6 17 1 15 1882 1 2 3 11 1828 2 26 24 1891 4 22 2 1849 12 1 3 1856 pp 20 21. 1971 p.429. 1973 1, pp.440 444.

More information

P2P P2P peer peer P2P peer P2P peer P2P i

P2P P2P peer peer P2P peer P2P peer P2P i 26 P2P Proposed a system for the purpose of idle resource utilization of the computer using the P2P 1150373 2015 2 27 P2P P2P peer peer P2P peer P2P peer P2P i Abstract Proposed a system for the purpose

More information

-1-1 1 1 1 1 12 31 2 2 3 4

-1-1 1 1 1 1 12 31 2 2 3 4 2007 -1-1 1 1 1 1 12 31 2 2 3 4 -2-5 6 CPU 3 Windows98 1 -3-2. 3. -4-4 2 5 1 1 1 -5- 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000-6- -7-1 Windows 2 -8-1 2 3 4 - - 100,000 200,000 500,000

More information

3 Adobe Photoshop CS6 Photoshop CS6 CS6 CS6 Photoshop CS6 24 Photoshop CS6 13 Adobe Mercury Graphics Engine CS6 Photoshop 3D CS6 Photoshop CS6 2

3 Adobe Photoshop CS6 Photoshop CS6 CS6 CS6 Photoshop CS6 24 Photoshop CS6 13 Adobe Mercury Graphics Engine CS6 Photoshop 3D CS6 Photoshop CS6 2 Adobe Photoshop CS6 HANDBOOK COMMERCIAL PHOTO 2012 年 7 月号より抜粋 3 Adobe Photoshop CS6 Photoshop CS6 CS6 CS6 Photoshop CS6 24 Photoshop CS6 13 Adobe Mercury Graphics Engine CS6 Photoshop 3D CS6 Photoshop

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information

2. 研 究 の 目 的 DM Digital Mapping LIDAR Light Detection and Ranging LIDAR Mobile Mapping System MMSMMS 3 CityGML Gröger et al., 2008 LOD2 MMS MMS 2005 M

2. 研 究 の 目 的 DM Digital Mapping LIDAR Light Detection and Ranging LIDAR Mobile Mapping System MMSMMS 3 CityGML Gröger et al., 2008 LOD2 MMS MMS 2005 M GIS Theory and Applications of GIS, 2012, Vol. 20, No.2, pp.23-33 レーザ 計 測 による 地 理 空 間 データを 用 いたディジタルシティの 構 築 天 野 貴 文 * ** 吉 川 眞 Generating Digital City by Using Geo-spatial Data from Laser Measurements

More information

Microsoft Word - 21年仕様書案0905011600.doc

Microsoft Word - 21年仕様書案0905011600.doc Computer System in General Information Processing Ce nter 21 4 April,2009 ShinshuUniversity 1 ( ) ( ) ( 2 3 - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - 1-4 1-4-1 1-4-1-1 Thin 1-4-1-2 1-4-2 1-4-2-1

More information

Izard 10 [1]Plutchik 8 [2] [3] Izard Neviarouskaya [4][5] 2.2 Hao [6] 1 Twitter[a] a) Shook Wikipedia

Izard 10 [1]Plutchik 8 [2] [3] Izard Neviarouskaya [4][5] 2.2 Hao [6] 1 Twitter[a] a)  Shook Wikipedia 1 2 2 2 Visualization for Spatiotemporal Distribution of People's Rich Emotions KIYOHISA TAGUCHI 1 KAZUO MISUE 2 JIRO TANAKA 2 To grasp spatiotemporal changes of rich emotions for a large number of people,

More information

Dynamics and Design Conference 2004

Dynamics and Design Conference 2004 Dynamics & Design Conference 2004 2004 9 27 30 Dynamics & Design Conference 23 2 3 Dynamics & Design Conference 2004 Dynamics & Design Conference 2004 D&D2004 15,000 9,000 23,000 3,000 5,000 D&D2004 CD-ROM

More information

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h 23 FPGA CUDA Performance Comparison of FPGA Array with CUDA on Poisson Equation (lijiang@sekine-lab.ei.tuat.ac.jp), (kazuki@sekine-lab.ei.tuat.ac.jp), (takahashi@sekine-lab.ei.tuat.ac.jp), (tamukoh@cc.tuat.ac.jp),

More information

Run-Based Trieから構成される 決定木の枝刈り法

Run-Based Trieから構成される  決定木の枝刈り法 Run-Based Trie 2 2 25 6 Run-Based Trie Simple Search Run-Based Trie Network A Network B Packet Router Packet Filtering Policy Rule Network A, K Network B Network C, D Action Permit Deny Permit Network

More information

[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So

[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So 1,a) 2 2 1 2,b) 3,c) A choreographic authoring system reflecting a user s preference Ryo Kakitsuka 1,a) Kosetsu Tsukuda 2 Satoru Fukayama 2 Naoya Iwamoto 1 Masataka Goto 2,b) Shigeo Morishima 3,c) Abstract:

More information

2 3, 4, 5 6 2. [1] [2] [3]., [4], () [3], [5]. Mel Frequency Cepstral Coefficients (MFCC) [9] Logan [4] MFCC MFCC Flexer [10] Bogdanov2010 [3] [14],,,

2 3, 4, 5 6 2. [1] [2] [3]., [4], () [3], [5]. Mel Frequency Cepstral Coefficients (MFCC) [9] Logan [4] MFCC MFCC Flexer [10] Bogdanov2010 [3] [14],,, DEIM Forum 2016 E1-4 525-8577 1 1-1 E-mail: is0111rs@ed.ritsumei.ac.jp, oku@fc.ritsumei.ac.jp, kawagoe@is.ritsumei.ac.jp 373 1.,, itunes Store 1, Web,., 4,300., [1], [2] [3],,, [4], ( ) [3], [5].,,.,,,,

More information

GPU n Graphics Processing Unit CG CAD

GPU n Graphics Processing Unit CG CAD GPU 2016/06/27 第 20 回 GPU コンピューティング講習会 ( 東京工業大学 ) 1 GPU n Graphics Processing Unit CG CAD www.nvidia.co.jp www.autodesk.co.jp www.pixar.com GPU n GPU ü n NVIDIA CUDA ü NVIDIA GPU ü OS Linux, Windows, Mac

More information

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C) (MIRU2011) 2011 7 890 0065 1 21 40 105-6691 1 1 1 731 3194 3 4 1 338 8570 255 346 8524 1836 1 E-mail: {fukumoto,kawasaki}@ibe.kagoshima-u.ac.jp, ryo-f@hiroshima-cu.ac.jp, fukuda@cv.ics.saitama-u.ac.jp,

More information

[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis

[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis 1,a) 2 2 2 1 2 3 24 Motion Frame Omission for Cartoon-like Effects Abstract: Limited animation is a hand-drawn animation style that holds each drawing for two or three successive frames to make up 24 frames

More information

- (20 ) 400 () 3DCG No.51 No.61 No.62 No.11 P 2 16

- (20 ) 400 () 3DCG No.51 No.61 No.62 No.11 P 2 16 - (20 ) 226-8503 1974 6 10 29 4259 Tel:045-924-5050 Fax:045-924-5016 E-mail:hase@hi.pi.titech.ac.jp Tel: Fax: E-mail: Tel:03-3786-5650 Tel:090-6036-8520 P 1 16 - (20 ) 400 () 3DCG No.51 No.61 No.62 No.11

More information

Vol1-CVIM-172 No.7 21/5/ Shan 1) 2 2)3) Yuan 4) Ancuti 5) Agrawal 6) 2.4 Ben-Ezra 7)8) Raskar 9) Image domain Blur image l PSF b / = F(

Vol1-CVIM-172 No.7 21/5/ Shan 1) 2 2)3) Yuan 4) Ancuti 5) Agrawal 6) 2.4 Ben-Ezra 7)8) Raskar 9) Image domain Blur image l PSF b / = F( Vol1-CVIM-172 No.7 21/5/27 1 Proposal on Ringing Detector for Image Restoration Chika Inoshita, Yasuhiro Mukaigawa and Yasushi Yagi 1 A lot of methods have been proposed for restoring blurred images due

More information

main.dvi

main.dvi PC 1 1 [1][2] [3][4] ( ) GPU(Graphics Processing Unit) GPU PC GPU PC ( 2 GPU ) GPU Harris Corner Detector[5] CPU ( ) ( ) CPU GPU 2 3 GPU 4 5 6 7 1 toyohiro@isc.kyutech.ac.jp 45 2 ( ) CPU ( ) ( ) () 2.1

More information

( 1) 3. Hilliges 1 Fig. 1 Overview image of the system 3) PhotoTOC 5) 1993 DigitalDesk 7) DigitalDesk Koike 2) Microsoft J.Kim 4). 2 c 2010

( 1) 3. Hilliges 1 Fig. 1 Overview image of the system 3) PhotoTOC 5) 1993 DigitalDesk 7) DigitalDesk Koike 2) Microsoft J.Kim 4). 2 c 2010 1 2 2 Automatic Tagging System through Discussing Photos Kazuma Mishimagi, 1 Masashi Toda 2 and Toshio Kawashima 2 Many media forms can be stored easily at present. Photographs, for example, can be easily

More information

aisatu.pdf

aisatu.pdf 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

More information

27 YouTube YouTube UGC User Generated Content CDN Content Delivery Networks LRU Least Recently Used UGC YouTube CGM Consumer Generated Media CGM CGM U

27 YouTube YouTube UGC User Generated Content CDN Content Delivery Networks LRU Least Recently Used UGC YouTube CGM Consumer Generated Media CGM CGM U YouTube 2016 2 16 27 YouTube YouTube UGC User Generated Content CDN Content Delivery Networks LRU Least Recently Used UGC YouTube CGM Consumer Generated Media CGM CGM UGC UGC YouTube k-means YouTube YouTube

More information

Wikipedia YahooQA MAD 4)5) MAD Web 6) 3. YAMAHA 7) 8) 2 3 4 5 6 2. Vocaloid2 2006 1 PV 2009 1 1100 200 YouTube 1 minato minato ussy 3D MAD F EDis ussy

Wikipedia YahooQA MAD 4)5) MAD Web 6) 3. YAMAHA 7) 8) 2 3 4 5 6 2. Vocaloid2 2006 1 PV 2009 1 1100 200 YouTube 1 minato minato ussy 3D MAD F EDis ussy 1, 2 3 1, 2 Web Fischer Social Creativity 1) Social Creativity CG Network Analysis of an Emergent Massively Collaborative Creation Community Masahiro Hamasaki, 1, 2 Hideaki Takeda 3 and Takuichi Nishimura

More information

Taro13-第6章(まとめ).PDF

Taro13-第6章(まとめ).PDF % % % % % % % % 31 NO 1 52,422 10,431 19.9 10,431 19.9 1,380 2.6 1,039 2.0 33,859 64.6 5,713 10.9 2 8,292 1,591 19.2 1,591 19.2 1,827 22.0 1,782 21.5 1,431 17.3 1,661 20.0 3 1,948 1,541 79.1 1,541 79.1

More information

2003/3 Vol. J86 D II No.3 2.3. 4. 5. 6. 2. 1 1 Fig. 1 An exterior view of eye scanner. CCD [7] 640 480 1 CCD PC USB PC 2 334 PC USB RS-232C PC 3 2.1 2

2003/3 Vol. J86 D II No.3 2.3. 4. 5. 6. 2. 1 1 Fig. 1 An exterior view of eye scanner. CCD [7] 640 480 1 CCD PC USB PC 2 334 PC USB RS-232C PC 3 2.1 2 Curved Document Imaging with Eye Scanner Toshiyuki AMANO, Tsutomu ABE, Osamu NISHIKAWA, Tetsuo IYODA, and Yukio SATO 1. Shape From Shading SFS [1] [2] 3 2 Department of Electrical and Computer Engineering,

More information

/27 (13 8/24) (9/27) (9/27) / / / /16 12

/27 (13 8/24) (9/27) (9/27) / / / /16 12 79 7 79 6 14 7/8 710 10 () 9 13 9/17 610 13 9/27 49 7 14 7/8 810 1 15 8/16 11 811 1 13 9/27 (13 8/24) (9/27) (9/27) 49 15 7/12 78 15 7/27 57 1 13 8/24 15 8/16 12 810 10 40 1 Wikipedia 13 8/18, 8/28 79

More information

1: ( 1) 3 : 1 2 4

1: ( 1) 3 : 1 2 4 RippleDesk Using Ripples to Represent Conversational Noise on Internet Shigaku Iwabuchi Takaomi Hisamatsu Shin Takahashi Buntarou Shizuki Kazuo Misue Jiro Tanaka Department of Comupter Science, University

More information

有機性産業廃棄物の連続炭化装置の開発

有機性産業廃棄物の連続炭化装置の開発 ( ) Development of the apparatus conveyer type which carbonizes continuously organic industrial waste (About the form of blade in conveyer) 1055047 1 1-1 1 1-2 1-3 2 2 2-1 2-2 2-3 2-4 7 3 3-1 20 3-2 3-3

More information

理工ジャーナル 23‐1☆/1.外村

理工ジャーナル 23‐1☆/1.外村 Yoshinobu TONOMURA Professor, Department of Media Informatics 1 10 YouTube 2 1900 100 1 3 2 3 3 3 1 2 3 4 90 1 90 MIT Project Athena 1983 1991 2 3 4 5 6 7 8 9 10 2 90 11 12 7 13 14 15 16 17 18 19 390 5

More information

2. 2.1 Lytro [11] The Franken Camera [12] 2.2 Creative Coding Community Creative Coding Community [13]-[19] Sketch Fork 2.3 [20]-[23] 3. ourcam 3.1 ou

2. 2.1 Lytro [11] The Franken Camera [12] 2.2 Creative Coding Community Creative Coding Community [13]-[19] Sketch Fork 2.3 [20]-[23] 3. ourcam 3.1 ou 情 報 処 理 学 会 インタラクション 2013 IPSJ Interaction 2013 2013-Interaction (3EXB-06) 2013/3/2 ourcam: 1 2 ourcam ourcam: On-Site Programming Environment for Digital Photography RYO OSHIMA 1 YASUAKI KAKEHI 2 In these

More information

2 350 1610

2 350 1610 2 350 1610 1 2 3 1 1 2 2 3 3 4 5 1 11 20 34 47 49 50 52 53 62 70 75 89 100 116 119 121 126 147 148 163 167 qqqqqqqq qqqqqqqq 1 9 2 24 3 33 4 36 5 40 6 47 7 54 8 56 9 64 10 78 11 86 12 94 13 129 14 151

More information

形状変形による古文書画像のシームレス合成

形状変形による古文書画像のシームレス合成 Use of Shape Deformation to Seamlessly Stitch Historical Document Images Wei Liu Wei Fan Li Chen Sun Jun あらまし 1 2 Abstract In China, efforts are being made to preserve historical documents in the form

More information

EndoPaper.pdf

EndoPaper.pdf Research on Nonlinear Oscillation in the Field of Electrical, Electronics, and Communication Engineering Tetsuro ENDO.,.,, (NLP), 1. 3. (1973 ),. (, ),..., 191, 1970,. 191 1967,,, 196 1967,,. 1967 1. 1988

More information

ICT a) Caption Presentation Method with Speech Expression Utilizing Speech Bubble Shapes for Video Content Yuko KONYA a) and Itiro SIIO 1. Graduate Sc

ICT a) Caption Presentation Method with Speech Expression Utilizing Speech Bubble Shapes for Video Content Yuko KONYA a) and Itiro SIIO 1. Graduate Sc VOL. J98-A NO. 1 JANUARY 2015 本 PDFの 扱 いは 電 子 情 報 通 信 学 会 著 作 権 規 定 に 従 うこと なお 本 PDFは 研 究 教 育 目 的 ( 非 営 利 )に 限 り 著 者 が 第 三 者 に 直 接 配 布 すること ができる 著 者 以 外 からの 配 布 は 禁 じられている ICT a) Caption Presentation Method

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 1 Agenda Aspera GB ( ) IP FTP IP Aspera FASP Aspera Aspera Aspera FASP FTP Aspera Solution FASP WAN FTP 1. 2. 3. Aspera WAN 1. 2. 3. FASP FASP Aspera FASP UDP FASP UDP TCP Figure 1 FASP Adaptive Rate

More information

GREE GREE SNS ) SNS 2.1 SNS SNS Facebook Facebook Facebook.Inc SNS ) Facebook Facebook GREE GREE SNS ) Twitter

GREE GREE SNS ) SNS 2.1 SNS SNS Facebook Facebook Facebook.Inc SNS ) Facebook Facebook GREE GREE SNS ) Twitter 1 1 1 1 Twitter 30000 1. 2009 PUI 20 1) 1 mixi SNS SNS SNS 2) 9) 1 2. 1986 NPC 10 5 300 3) 1 Twitter RPG 1 c 2011 Information Processing Society of Japan GREE GREE SNS 2004 4) SNS 2.1 SNS SNS Facebook

More information

,, WIX. 3. Web Index 3. 1 WIX WIX XML URL, 1., keyword, URL target., WIX, header,, WIX. 1 entry keyword 1 target 1 keyword target., entry, 1 1. WIX [2

,, WIX. 3. Web Index 3. 1 WIX WIX XML URL, 1., keyword, URL target., WIX, header,, WIX. 1 entry keyword 1 target 1 keyword target., entry, 1 1. WIX [2 DEIM Forum 2013 B10-4 Web Index 223-8522 3-14-1 E-mail: haseshun@db.ics.keio.ac.jp, toyama@ics.keio.ac.jp, URL WIX, Web Web Index(WIX). WIX, WIX.,,. Web Index, Web, Web,, Related Contents Recommendation

More information

1 LAN SSID SSID SSID SSID SSID: SSID SSID IP SSID, VLAN IP SSID, eduroam SSID: SSID eduroam , ,,,, 3 LAN Mac (215 4 ) 17, (

1 LAN SSID SSID SSID SSID SSID: SSID SSID IP SSID, VLAN IP SSID, eduroam SSID: SSID eduroam , ,,,, 3 LAN Mac (215 4 ) 17, ( Vol.215-IOT-31 No.1 Vol.215-SPT-15 No.1 215/9/26 LAN 1,a), 29 1 (KHAN29) LAN LAN,, LC(Learning Commons) 1. 29 1 (KHAN29)[1] LAN, 2 215 8 376 LAN IP LAN, LAN, LC(Learning Commons) 2. LAN 2.1 LAN AP [2]

More information

「hoge」

「hoge」 ICS-06M-404 255 1 7 1.1................................... 7 1.1.1........................... 7 1.1.2........................ 8 1.1.3............................ 9 1.2..................................

More information

HPC可視化_小野2.pptx

HPC可視化_小野2.pptx 大 小 二 生 高 方 目 大 方 方 方 Rank Site Processors RMax Processor System Model 1 DOE/NNSA/LANL 122400 1026000 PowerXCell 8i BladeCenter QS22 Cluster 2 DOE/NNSA/LLNL 212992 478200 PowerPC 440 BlueGene/L 3 Argonne

More information

proc.dvi

proc.dvi M. D. Wheler Cyra Technologies, Inc. 3 3 CAD albedo Mapping textures on 3D geometric model using reflectance image Ryo Kurazume M. D. Wheler Katsushi Ikeuchi The University oftokyo Cyra Technologies, Inc.

More information

520

520 1319121211 1419 1910121918 19151712171412 11191712 1011 1119191911 191519181711 1912191714 1019 191214 10101915191911 13141917 121419191014 1912101011 191019191014126 1 19191912101911 19191217 1215161416

More information

2 2. 13 2 1 1 PBS: Post-Boost Stage 1.2 2 30 JAXA 49 2 108 4 205

2 2. 13 2 1 1 PBS: Post-Boost Stage 1.2 2 30 JAXA 49 2 108 4 205 252 5210 3 1 1 e-mail: morita.yasuhiro@jaxa.jp 9 1. 1 F1 1 204 2015 4 2 2. 13 2 1 1 PBS: Post-Boost Stage 1.2 2 30 JAXA 49 2 108 4 205 IT IT 3 2 JAXA 2 3 1 2 2 2 3 2 206 2015 4 C/C 2 3. 3.1 1 SRB-A H2A

More information

2007 3DCG : M DCG 3DCG 3DCG 3D (huristic method) C++

2007 3DCG : M DCG 3DCG 3DCG 3D (huristic method) C++ 2007 3DCG M0104402 2007 3DCG : M0104402 3DCG 3DCG 3DCG 3D (huristic method) C++ 1 1 1.1............................ 1 1.2.............................. 3 2 4 2.1......................... 4 2.2....................

More information

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2.

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2. 213 12 1 21 5 524 3-5465-74 nkiyono@mail.ecc.u-tokyo.ac.jp http://lecture.ecc.u-tokyo.ac.jp/~nkiyono/index.html 3 2 1 3.1 ρp, t EP, t BP, t JP, t 35 P t xyz xyz t 4 ε µ D D S S 35 D H D = ε E B = µ H E

More information

Vol. 23 No. 4 Oct. 2006 37 2 Kitchen of the Future 1 Kitchen of the Future 1 1 Kitchen of the Future LCD [7], [8] (Kitchen of the Future ) WWW [7], [3

Vol. 23 No. 4 Oct. 2006 37 2 Kitchen of the Future 1 Kitchen of the Future 1 1 Kitchen of the Future LCD [7], [8] (Kitchen of the Future ) WWW [7], [3 36 Kitchen of the Future: Kitchen of the Future Kitchen of the Future A kitchen is a place of food production, education, and communication. As it is more active place than other parts of a house, there

More information

1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU.....

1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU..... CPU GPU N Q07-065 2011 2 17 1 1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU...........................................

More information

H1-4

H1-4 High End Style AcerWindows Vista Home Premium Aspire M5621 ASM5621-A21 ASM5621-A22 ASM5621-A23 High End Style Aspire M5621 MAIN SPEC CPU ASM5621-A21ASM5621-A22ASM5621-A23 MEMORY HDD DRIVE OS GRAPHICS LAN

More information

3! 3 =! 1)!!! 3! 2)!!! 3

3! 3 =! 1)!!! 3! 2)!!! 3 3 ( ) 21 2015 11 7 3! 3 =! 1)!!! 3! 2)!!! 3 3 3 1) 3 ( 2) 3!!! 3 1.7 ! 3 ( ) ( ) ( ) 3 (3 10 8 ) 3 (3 10 8 ) 9 (9 108) 3D point data!! 3D see-through view !! "! n log n (n: )!! 2! ! "! ---- ----- S.!Tanaka,!K.!Hasegawa,!Y.!Shimokubo,!T.!Kaneko,!T.!Kawamura,!S.!

More information

3D, 3DCG., 3D. 3DCG 3D,,,,., 3D,, 3D., 2. 3D,,.,,.,,.,,,.,, 3D., 500 3D. 3D,, i

3D, 3DCG., 3D. 3DCG 3D,,,,., 3D,, 3D., 2. 3D,,.,,.,,.,,,.,, 3D., 500 3D. 3D,, i 27 3D Semi-automatic 3D modeling system of a character s face from color illustrations 1160309 2016 2 26 3D, 3DCG., 3D. 3DCG 3D,,,,., 3D,, 3D., 2. 3D,,.,,.,,.,,,.,, 3D., 500 3D. 3D,, i Abstract Semi-automatic

More information

2

2 GPU 2008/11/30 GPU GPU UniformGrid GPU CPU GeForce6 9 kd-tree GPU GPU UG kd-tree GPU CPU GPU GPU GPU I/O PCI-Express DMA DirectX9 DirectX 3D OpenGL CUDA Larrabee Mac 2008/11/28 Mac(Carbon) Carbon.framework/QuickTime.framework

More information

01-04

01-04 国 立 大 学 法 人 京 都 工 芸 繊 維 大 学 広 報 誌 Kyoto Institute of Technology Vol. 37 2014.11 02 KIT NEWS 01 04 KIT NEWS 04 KIT NEWS 03 05 KIT NEWS 06 08 KIT NEWS 07 09 KIT NEWS 10 12 KIT NEWS 11 14 KIT NEWS 13 15 KIT

More information

122011pp.139174 18501933

122011pp.139174 18501933 122011pp.139174 18501933 122011 1850 3 187912 3 1850 8 1933 84 4 1871 12 1879 5 2 1 9 15 1 1 5 3 3 3 6 19 9 9 6 28 7 7 4 1140 9 4 3 5750 58 4 3 1 57 2 122011 3 4 134,500,000 4,020,000 11,600,000 5 2 678.00m

More information

Microsoft Word - 映画『東京裁判』を観て.doc

Microsoft Word - 映画『東京裁判』を観て.doc 1 2 3 4 5 6 7 1 2008. 2 2010, 3 2010. p.1 4 2008 p.202 5 2008. p.228 6 2011. 7 / 2008. pp.3-4 1 8 1 9 10 11 8 2008, p.7 9 2011. p.41 10.51 11 2009. p. 2 12 13 14 12 2008. p.4 13 2008, p.7-8 14 2008. p.126

More information

日経テレコン料金表(2016年4月)

日経テレコン料金表(2016年4月) 1 2 3 4 8,000 15,000 22,000 29,000 5 6 7 8 36,000 42,000 48,000 54,000 9 10 20 30 60,000 66,000 126,000 166,000 50 100 246,000 396,000 1 25 8,000 7,000 620 2150 6,000 4,000 51100 101200 3,000 1,000 201

More information

73 p.1 22 16 2004p.152

73 p.1 22 16 2004p.152 1987 p.80 72 73 p.1 22 16 2004p.152 281895 1930 1931 12 28 1930 10 27 12 134 74 75 10 27 47.6 1910 1925 10 10 76 10 11 12 139 p.287 p.10 11 pp.3-4 1917 p.284 77 78 10 13 10 p.6 1936 79 15 15 30 80 pp.499-501

More information