(MIRU2010) NTT Graphic Processor Unit GPU graphi
|
|
|
- あきひさ さわなか
- 6 years ago
- Views:
Transcription
1 (MIRU2010) NTT [email protected], [email protected] Graphic Processor Unit GPU graphic processor unit CUDA Fully automatic extraction of salient objects in near real-time Kazuma AKAMINE, Ken FUKUCHI, Akisato KIMURA, and Shigeru TAKAGI Department of Computer Science and System Engineering, Faculty of Engineering, Miyazaki University 1-1 Gakuen Kibanadai-Nishi, Miyazaki, Japan. Department of Information and Communication Systems Engineering, Okinawa National College of Technology Henoko 905, Nago, Okinawa, Japan. NTT Communication Science Laboratories, NTT Corporation Morinosato Wakamiya 3-1, Atsugi, Kanagawa, Japan. [email protected], [email protected] 1. (MRF) (MAP) MRF Greig [1] Boykov Interactive Graph Cuts [2] Kohli Dynamic Graph Cuts [3] MRF MAP [4] [5] Fu [6] [7]
2 Graphic Processor Unit GPU SIMD Single Instruction Multiple Data GPU CPU [8] [9] [10] GPU general-purpose GPU(GPGPU) [11] GPU C++ CUDA [12] OpenCL [13] GPU GPU CUDA GPU CUDA 2 GPU CUDA 3 [7] 4 GPU Graphic Processor Unit GPU GPU CUDA 2. 1 GPU(Graphics Processing Unit) GPU GPU SIMD GPU GPGPU GPU GPU NVIDIA CUDA [12] AMD ATi Stream [14] CPU GPU OpenCL [13] Microsoft API Direct Compute [15] 2. 2 CUDA GPU HLSL [15] GLSL [16] NVIDIA GPU CUDA GPU CUDA C GPU C GPU 1 ID ID CPU GPU GPU CPU GPU CPU GPU 2. 3 CUDA CUDA CPU GPU
3 2 CPU GPU 4 CUDA 1 host device int add(int a, int b) { 2 return a + b; 3 } 4 global void addall(int length, int a, int b, int result) { 5 int px = blockidx.x blockdim.x + threadidx; 6 if(px < length) { 7 result[px] = add(a[px], b[px]); 8 } 9 } 10 void main() { Dim3 blocks = {10, 0, 0}; 13 Dim3 threads = {32, 0, 0}; 14 int sm cap = 0; 15 addeach<<<blocks, threads, sm cap>>>(length, a, b, result); } 3 CUDA CPU GPU 1 1 CUDA host CPU CPU global CPU GPU device GPU GPU GPU device global void host device 3 3 GPU a b addall GPU add CPU GPU GPU addall <<<>>> 3 blocks 5 2 GPU CPU threads 1 sm cap 2. 4 CUDA CUDA GPU CUDA GPU KB syncthreads()
4 6 Saliency Graph Cuts 7 CPU GPU GPU 64KB GPU CPU GPU GPU CPU GPU CPU GPU CPU GPU 3. SGC [7] SGC 6 SGC ( 6(a)) [17] ( 6(b)) (Lucas-Kanade [18]) [19] / ( 6(c1))P r (O) P r (B) p P r (O; p) P r (O; p) 0 P r (B; p) = 1 P r (O; p) Boykov [20] 7 S T t-link n-link t-link (1)(2) n-link (5) C p p P r (C p O) P r (C p B) P r (O C p ) P r (B C p ) I p I q p q dist(p, q) p q R p ( obj ) = ln P r (O C p ) (1) R p ( bkg ) = ln P r (B C p ) (2) P r (O C p ) = P r(c p O)P r (O; p) P r (C p ) P r (B C p ) = P r(c p B)P r (B; p) P r (C p ) B {p,q} exp { (I p I q ) 2 } 1 2σ dist(p, q) (3) (4) (5) ( 6(c2)) (6)(8) (GMM) GMM d RGB 3 a k S k π k EM P r (C p O)
5 F (x, y) P (x, y) n m F k (i, j) (9) F (x, y) = n m F k (i, j) i=0 j=0 P (x + i n 2, y + j m 2 ) (9) 8 GPU n P r (O) RGB P r (C p B) P r (O) RGB p(x; a k, S k, π k ) = π k > = 0, M π k p k (x) (6) k=1 M π k = 1 (7) k=1 1 p k (x) = (2π) d/2 S k 1/2 { exp 1 } 2 (x a k) T S 1 k (x a k) (8) ( 6(d)) 1 4. GPU 3 GPU 8 GPU t-link n-link GPU GPU 1 1 P (x, y) F k (i, j) F (x, y) F k (i, j) P (x, y) (filter) (src1) height width fheight fwidth result minsrc maxsrc syncthreads 0 1 P r (O) GPU t-link EM CUDA ZONE [12] Harp [21] EM k-means CPU GMM (6) 9 P k (x) (8) {(2π) d/2 S k 1/2 } 1 1 CPU GPU
6 1 texture<float, 1, cudareadmodeelementtype> filter; 2 texture<float, 1, cudareadmodeelementtype> src1; 3 device float Filter2DCore(texture<float, 1, cudareadmodeelementtype> fsource, int x, int y, int height, int width, int filtersizex, int filtersizey) { 4 float sum = 0; 5 x = filtersizex/2; 6 y = filtersizey/2; 7 for(int fy = 0; fy < filtersizey; fy++) { 8 int by = y + fy; 9 if(by > 0 && by < height) { 10 by = width; 11 for(int fx = 0; fx < filtersizex; fx++) { 12 int bx = x + fx; 13 if(bx > 0 && bx < width) { 14 sum += tex1dfetch(filter, fy filtersizex + fx) tex1dfetch(fsource, by + bx); 15 } 16 } 17 } 18 } 19 return sum; 20 } 21 global void Filter2DKernel(int height, int width, int fheight, int fwidth, float result) { 22 int px = blockdim.x blockidx.x + threadidx.x; 23 if(px < height width) { 24 int x = px%width; 25 int y = px/width; 26 result[px] = Filter2DCore(src1, x, y, height, width, fwidth, fheight); 27 } 28 } 1 texture<float, 1, cudareadmodeelementtype> minsrc; 2 texture<float, 1, cudareadmodeelementtype> maxsrc; 3 global void SMRangeNormalizeKernel1(int length, float localmin, float localmax) { 4 int px = blockdim.x blockidx.x + threadidx.x; 5 6 shared float mini[32], maxi[32]; 7 if(px < length) { 8 mini[threadidx.x] = tex1dfetch(minsrc, px); 9 maxi[threadidx.x] = tex1dfetch(maxsrc, px); 10 } else { 11 mini[threadidx.x] = FLT MAX; 12 maxi[threadidx.x] = FLT MIN; 13 } 14 syncthreads(); 15 if(threadidx.x == 0) { 16 for(int i = 1; i < blockdim.x; i++) { 17 mini[0] = min(mini[0], mini[i]); 18 maxi[0] = max(maxi[0], maxi[i]); 19 } 20 localmin[blockidx.x] = mini[0]; 21 localmax[blockidx.x] = maxi[0]; 22 } 23 } 10 9 CUDA (8) exp { 1 2 (x a k) T S 1 k (x a k) } a k S 1 k n-link 2 1 GPU CUDA ZONE Vineet CUDA Cuts [22] CPU GPU x512 GPU GPU CPU Intel Core2Quad Q9550 4GB GPU NVIDIA Geforce 9800GT 512MB OS Windows XP Professional NVIDIA CUDA 2.1 OpenCV x t-link 4.2 n-link
7 352x x CUDA ZONE EM OpenCL!"! [ms] t- - link link 352 CPU GPU CPU GPU CPU GPU [us] CPU GPU CPU GPU GPU CPU GPU 2 GPU GPU SGC 11 4 GPU t-link t-link EM 2 CUDAZONE 6. GPU [1] D.Greig B.Porteous and A.Seheuit Exact maximum a posteriori estimation for binary images Royalstat Vol.B:51 No.2 pp [2] Y.Boykov and M-P.Jolly Interactive Graph Cuts for Optical Boundary & Region Segmentation of Objects in N-D Images Proc.ICCV Vol.I pp [3] P.Kohli and P.Torr Dynamic graph cuts for efficient inference in Markov random fields IEEE Trans.PAMI Vol.29 No.12 pp [4] AdaBoost Saliency Map Graph Cuts (MIRU2008) IS3-33 pp [5] PRMU pp [6] Y.Fu J.Cheng Z.Li and H.Lu Saliency cuts: Anautomatic approach to object segmentation Proc.ICPR [7] (MIRU2009) [8] TSUBAME ccwww/ tebiki/tesla/tesla.html [9] TMPGEnc 4.0 XPress html [10] MediaShow Espresso company/press-news-content.do?pid=2115 [11] GPU GPGPU [12] home new.html [13] [14] stream-technology/pages/stream-technology.aspx [15] ee663301(vs.85).aspx [16] [17] MCMC-based particle filter (MIRU2009) [18] B.D.Lucas and T.Kanade An Iterative Image Registration Technique with an Application to Stereo Vision Proceedings of the 7th International Joint Conference on Artificial Intelligence(IJCAI 81) pp August [19] L.Itti C.Koch and E.Niebur A model of saliencybased visual attention for rapid scene analysis IEEE Trans.PAMI Vol.20 No.11 pp November [20] Y.Boykov and G.F.Lea Graph cuts and efficient N- D image segmentation Proc.ICCV Vol.70 No.2 pp
8 [21] A.Harp Computational Statistics via GPU [22] V.Vineet and P.J.Narayanan Cuda Cuts: Fast Graph Cuts on the GPU CVPR Workshop on Visual Computer Vision on GPUs 2008.
07-二村幸孝・出口大輔.indd
GPU Graphics Processing Units HPC High Performance Computing GPU GPGPU General-Purpose computation on GPU CPU GPU GPU *1 Intel Quad-Core Xeon E5472 3.0 GHz 2 6 MB L2 cache 1600 MHz FSB 80 GFlops 1 nvidia
GPGPU
GPGPU 2013 1008 2015 1 23 Abstract In recent years, with the advance of microscope technology, the alive cells have been able to observe. On the other hand, from the standpoint of image processing, the
1 GPU GPGPU GPU CPU 2 GPU 2007 NVIDIA GPGPU CUDA[3] GPGPU CUDA GPGPU CUDA GPGPU GPU GPU GPU Graphics Processing Unit LSI LSI CPU ( ) DRAM GPU LSI GPU
GPGPU (I) GPU GPGPU 1 GPU(Graphics Processing Unit) GPU GPGPU(General-Purpose computing on GPUs) GPU GPGPU GPU ( PC ) PC PC GPU PC PC GPU GPU 2008 TSUBAME NVIDIA GPU(Tesla S1070) TOP500 29 [1] 2009 AMD
258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System
Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.
1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU.....
CPU GPU N Q07-065 2011 2 17 1 1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU...........................................
23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h
23 FPGA CUDA Performance Comparison of FPGA Array with CUDA on Poisson Equation ([email protected]), ([email protected]), ([email protected]), ([email protected]),
IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa
3,a) 3 3 ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransac. DB [] [2] 3 DB Web Web DB Web NTT NTT Media Intelligence Laboratories, - Hikarinooka Yokosuka-Shi, Kanagawa 239-0847 Japan a) [email protected]
main.dvi
PC 1 1 [1][2] [3][4] ( ) GPU(Graphics Processing Unit) GPU PC GPU PC ( 2 GPU ) GPU Harris Corner Detector[5] CPU ( ) ( ) CPU GPU 2 3 GPU 4 5 6 7 1 [email protected] 45 2 ( ) CPU ( ) ( ) () 2.1
( CUDA CUDA CUDA CUDA ( NVIDIA CUDA I
GPGPU (II) GPGPU CUDA 1 GPGPU CUDA(CUDA Unified Device Architecture) CUDA NVIDIA GPU *1 C/C++ (nvcc) CUDA NVIDIA GPU GPU CUDA CUDA 1 CUDA CUDA 2 CUDA NVIDIA GPU PC Windows Linux MaxOSX CUDA GPU CUDA NVIDIA
顔認識の為のリアルタイム特徴抽出
... 3... 4... 5... 5.... 5.... 6..... 6..... 8.... 8.... 8... 9.... 9..... 9..... 10.....11..... 12.... 17..... 17.... 19..... 19..... 21..... 23..... 24..... 25.... 26..... 26..... 26... 29.... 29....
Slides: TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments
計算機アーキテクチャ第 11 回 マルチプロセッサ 本資料は授業用です 無断で転載することを禁じます 名古屋大学 大学院情報科学研究科 准教授加藤真平 デスクトップ ジョブレベル並列性 スーパーコンピュータ 並列処理プログラム プログラムの並列化 for (i = 0; i < N; i++) { x[i] = a[i] + b[i]; } プログラムの並列化 x[0] = a[0] + b[0];
1 3DCG [2] 3DCG CG 3DCG [3] 3DCG 3 3 API 2 3DCG 3 (1) Saito [4] (a) 1920x1080 (b) 1280x720 (c) 640x360 (d) 320x G-Buffer Decaudin[5] G-Buffer D
3DCG 1) ( ) 2) 2) 1) 2) Real-Time Line Drawing Using Image Processing and Deforming Process Together in 3DCG Takeshi Okuya 1) Katsuaki Tanaka 2) Shigekazu Sakai 2) 1) Department of Intermedia Art and Science,
(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)
(MIRU2011) 2011 7 890 0065 1 21 40 105-6691 1 1 1 731 3194 3 4 1 338 8570 255 346 8524 1836 1 E-mail: {fukumoto,kawasaki}@ibe.kagoshima-u.ac.jp, [email protected], [email protected],
Gaze Head Eye (a) deg (b) 45 deg (c) 9 deg 1: - 1(b) - [5], [6] [7] Stahl [8], [9] Fang [1], [11] Itti [12] Itti [13] [7] Fang [1],
1 1 1 Structure from Motion - 1 Ville [1] NAC EMR-9 [2] 1 Osaka University [3], [4] 1 1(a) 1(c) 9 9 9 c 216 Information Processing Society of Japan 1 Gaze Head Eye (a) deg (b) 45 deg (c) 9 deg 1: - 1(b)
iphone GPGPU GPU OpenCL Mac OS X Snow LeopardOpenCL iphone OpenCL OpenCL NVIDIA GPU CUDA GPU GPU GPU 15 GPU GPU CPU GPU iii OpenMP MPI CPU OpenCL CUDA OpenCL CPU OpenCL GPU NVIDIA Fermi GPU Fermi GPU GPU
(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s
1 1 1, Extraction of Transmitted Light using Parallel High-frequency Illumination Kenichiro Tanaka 1 Yasuhiro Mukaigawa 1 Yasushi Yagi 1 Abstract: We propose a new sharpening method of transmitted scene
(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc
1,a) 1,b) Obstacle Detection from Monocular On-Vehicle Camera in units of Delaunay Triangles Abstract: An algorithm to detect obstacles by using a monocular on-vehicle video camera is developed. Since
xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL
PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP
DEIM Forum 2012 E Web Extracting Modification of Objec
DEIM Forum 2012 E4-2 670 0092 1 1 12 E-mail: [email protected], {dkitayama,sumiya}@shse.u-hyogo.ac.jp Web Extracting Modification of Objects for Supporting Map Browsing Junki MATSUO, Daisuke
! 行行 CPUDSP PPESPECell/B.E. CPUGPU 行行 SIMD [SSE, AltiVec] 用 HPC CPUDSP PPESPE (Cell/B.E.) SPE CPUGPU GPU CPU DSP DSP PPE SPE SPE CPU DSP SPE 2
! OpenCL [Open Computing Language] 言 [OpenCL C 言 ] CPU, GPU, Cell/B.E.,DSP 言 行行 [OpenCL Runtime] OpenCL C 言 API Khronos OpenCL Working Group AMD Broadcom Blizzard Apple ARM Codeplay Electronic Arts Freescale
1(a) (b),(c) - [5], [6] Itti [12] [13] gaze eyeball head 2: [time] [7] Stahl [8], [9] Fang [1], [11] 3 -
Vol216-CVIM-22 No18 216/5/12 1 1 1 Structure from Motion - 1 8% Tobii Pro TX3 NAC EMR ACTUS Eye Tribe Tobii Pro Glass NAC EMR-9 Pupil Headset Ville [1] EMR-9 [2] 1 Osaka University Gaze Head Eye (a) deg
IPSJ SIG Technical Report Vol.2013-ARC-203 No /2/1 SMYLE OpenCL (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 1
SMYLE OpenCL 128 1 1 1 1 1 2 2 3 3 3 (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 128 SMYLEref SMYLE OpenCL SMYLE OpenCL Implementation and Evaluations on 128 Cores Takuji Hieda 1 Noriko Etani
rank ”«‘‚“™z‡Ì GPU ‡É‡æ‡éŁÀŠñ›»
rank GPU ERATO 2011 11 1 1 / 26 GPU rank/select wavelet tree balanced parenthesis GPU rank 2 / 26 GPU rank/select wavelet tree balanced parenthesis GPU rank 2 / 26 GPU rank/select wavelet tree balanced
IPSJ SIG Technical Report Vol.2013-CE-122 No.16 Vol.2013-CLE-11 No /12/14 Android 1,a) 1 1 GPS LAN 2 LAN Android,,, Android, HTML5 LAN 1. ICT(I
Android 1,a) 1 1 GPS LAN 2 LAN Android,,, Android, HTML5 LAN 1. ICT(Information and Communication Technology) (Google [2] [5] ) 2. Google 2.1 Google Google [2]( 1) Google Web, Google Web Google Chrome
IPSJ SIG Technical Report Vol.2013-HPC-138 No /2/21 GPU CRS 1,a) 2,b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla
GPU CRS 1,a),b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla K0 CUDA5.0 cusparse CRS SpMV 00 1.86 177 1. SpMV SpMV CRS Compressed Row Storage *1 SpMV GPU GPU NVIDIA Kepler
3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)
(MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost
Microsoft PowerPoint - SSII_harada pptx
The state of the world The gathered data The processed data w d r I( W; D) I( W; R) The data processing theorem states that data processing can only destroy information. David J.C. MacKay. Information
Fuzzy Multiple Discrimminant Analysis (FMDA) 5) (SOM) 6) SOM 3 6) SOM SOM SOM SOM SOM SOM 7) 8) SOM SOM SOM GPU 2. n k f(x) m g(x) (1) 12) { min(max)
SOM 1 2 2 3 1 (SOM: Self-Organizing Maps) 3 SOM SOM SOM SOM GPU A Study on Visualization of Pareto Solutions by Spherical Self-Organizing Maps MASATO YOSHIMI, 1 KANAME NISHIMOTO, 2 LUYI WANG, 2 TOMOYUKI
& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro
TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato
1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2
CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for
EGunGPU
Super Computing in Accelerator simulations - Electron Gun simulation using GPGPU - K. Ohmi, KEK-Accel Accelerator Physics seminar 2009.11.19 Super computers in KEK HITACHI SR11000 POWER5 16 24GB 16 134GFlops,
1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +
3 3D 1,a) 1 1 Kinect (X, Y) 3D 3D 1. 2010 Microsoft Kinect for Windows SDK( (Kinect) SDK ) 3D [1], [2] [3] [4] [5] [10] 30fps [10] 3 Kinect 3 Kinect Kinect for Windows SDK 3 Microsoft 3 Kinect for Windows
2010 : M0107189 3DCG 3 (3DCG) 3DCG 3DCG 3DCG S
2010 M0107189 2010 : M0107189 3DCG 3 (3DCG) 3DCG 3DCG 3DCG S 1 1 1.1............................ 1 1.2.............................. 4 2 5 2.1............................ 5 2.2.............................
(MIRU2008) HOG Histograms of Oriented Gradients (HOG)
(MIRU2008) 2008 7 HOG - - E-mail: [email protected], {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human
2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055
1 1 1 2 DCRA 1. 1.1 1) 1 Tactile Interface with Air Jets for Floating Images Aya Higuchi, 1 Nomin, 1 Sandor Markon 1 and Satoshi Maekawa 2 The new optical device DCRA can display floating images in free
GPU n Graphics Processing Unit CG CAD
GPU 2016/06/27 第 20 回 GPU コンピューティング講習会 ( 東京工業大学 ) 1 GPU n Graphics Processing Unit CG CAD www.nvidia.co.jp www.autodesk.co.jp www.pixar.com GPU n GPU ü n NVIDIA CUDA ü NVIDIA GPU ü OS Linux, Windows, Mac
[6] DoN DoN DDoN(Donuts DoN) DoN 4(2) DoN DDoN 3.2 RDoN(Ring DoN) 4(1) DoN 4(3) DoN RDoN 2 DoN 2.2 DoN PCA DoN DoN 2 DoN PCA 0 DoN 3. DoN
3 1,a) 1,b) 3D 3 3 Difference of Normals (DoN)[1] DoN, 1. 2010 Kinect[2] 3D 3 [3] 3 [4] 3 [5] 3 [6] [7] [1] [8] [9] [10] Difference of Normals (DoN) 48 8 [1] [6] DoN DoN 1 National Defense Academy a) [email protected]
熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date Type URL Presentation
熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date 2011-03-17 Type URL Presentation http://hdl.handle.net/2298/23539 Right GPGPU による高速演算について 榎本昌一 東京大学大学院工学系研究科システム創成学専攻
,,.,.,,.,.,.,.,,.,..,,,, i
22 A person recognition using color information 1110372 2011 2 13 ,,.,.,,.,.,.,.,,.,..,,,, i Abstract A person recognition using color information Tatsumo HOJI Recently, for the purpose of collection of
2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server
a) Change Detection Using Joint Intensity Histogram Yasuyo KITA a) 2 (0 255) (I 1 (x),i 2 (x)) I 2 = CI 1 (C>0) (I 1,I 2 ) (I 1,I 2 ) 2 1. [1] 2 [2] [3] [5] [6] [8] Intelligent Systems Research Institute,
IPSJ SIG Technical Report Vol.2010-GN-74 No /1/ , 3 Disaster Training Supporting System Based on Electronic Triage HIROAKI KOJIMA, 1 KU
1 2 2 1, 3 Disaster Training Supporting System Based on Electronic Triage HIROAKI KOJIMA, 1 KUNIAKI SUSEKI, 2 KENTARO NAGAHASHI 2 and KEN-ICHI OKADA 1, 3 When there are a lot of injured people at a large-scale
IPSJ SIG Technical Report Vol.2015-MUS-107 No /5/23 HARK-Binaural Raspberry Pi 2 1,a) ( ) HARK 2 HARK-Binaural A/D Raspberry Pi 2 1.
HARK-Binaural Raspberry Pi 2 1,a) 1 1 1 2 3 () HARK 2 HARK-Binaural A/D Raspberry Pi 2 1. [1,2] [2 5] () HARK (Honda Research Institute Japan audition for robots with Kyoto University) *1 GUI ( 1) Python
fiš„v8.dvi
(2001) 49 2 333 343 Java Jasp 1 2 3 4 2001 4 13 2001 9 17 Java Jasp (JAva based Statistical Processor) Jasp Jasp. Java. 1. Jasp CPU 1 106 8569 4 6 7; [email protected] 2 106 8569 4 6 7; [email protected]
WebGL OpenGL GLSL Kageyama (Kobe Univ.) Visualization / 57
WebGL 2014.04.15 X021 2014 3 1F Kageyama (Kobe Univ.) Visualization 2014.04.15 1 / 57 WebGL OpenGL GLSL Kageyama (Kobe Univ.) Visualization 2014.04.15 2 / 57 WebGL Kageyama (Kobe Univ.) Visualization 2014.04.15
1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境 Lin
Windows で始める CUDA 入門 GTC 2013 チュートリアル エヌビディアジャパン CUDA エンジニア森野慎也 1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境
[1] SBS [2] SBS Random Forests[3] Random Forests ii
Random Forests 2013 3 A Graduation Thesis of College of Engineering, Chubu University Proposal of an efficient feature selection using the contribution rate of Random Forests Katsuya Shimazaki [1] SBS
Slide 1
CUDA プログラミングの基本 パート II - カーネル CUDA の基本の概要 パート I CUDAのソフトウェアスタックとコンパイル GPUのメモリ管理 パート II カーネルの起動 GPUコードの具体像 注 : 取り上げているのは基本事項のみです そのほか多数の API 関数についてはプログラミングガイドを ご覧ください GPU 上でのコードの実行 カーネルは C 関数 + 多少の制約 ホストメモリはアクセスできない戻り値型は
Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L
1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives
Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution
Convolutional Neural Network 2014 3 A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolutional Neural Network Fukui Hiroshi 1940 1980 [1] 90 3
ActionScript Flash Player 8 ActionScript3.0 ActionScript Flash Video ActionScript.swf swf FlashPlayer AVM(Actionscript Virtual Machine) Windows
ActionScript3.0 1 1 YouTube Flash ActionScript3.0 Face detection and hiding using ActionScript3.0 for streaming video on the Internet Ryouta Tanaka 1 and Masanao Koeda 1 Recently, video streaming and video
Vol. 23 No. 4 Oct. 2006 37 2 Kitchen of the Future 1 Kitchen of the Future 1 1 Kitchen of the Future LCD [7], [8] (Kitchen of the Future ) WWW [7], [3
36 Kitchen of the Future: Kitchen of the Future Kitchen of the Future A kitchen is a place of food production, education, and communication. As it is more active place than other parts of a house, there
26102 (1/2) LSISoC: (1) (*) (*) GPU SIMD MIMD FPGA DES, AES (2/2) (2) FPGA(8bit) (ISS: Instruction Set Simulator) (3) (4) LSI ECU110100ECU1 ECU ECU ECU ECU FPGA ECU main() { int i, j, k for { } 1 GP-GPU
Microsoft PowerPoint - GPU_computing_2013_01.pptx
GPU コンピューティン No.1 導入 東京工業大学 学術国際情報センター 青木尊之 1 GPU とは 2 GPGPU (General-purpose computing on graphics processing units) GPU を画像処理以外の一般的計算に使う GPU の魅力 高性能 : ハイエンド GPU はピーク 4 TFLOPS 超 手軽さ : 普通の PC にも装着できる 低価格
GPU GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1
GPU 4 2010 8 28 1 GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1 Register & Shared Memory ( ) CPU CPU(Intel Core i7 965) GPU(Tesla
3D UbiCode (Ubiquitous+Code) RFID ResBe (Remote entertainment space Behavior evaluation) 2 UbiCode Fig. 2 UbiCode 2. UbiCode 2. 1 UbiCode UbiCode 2. 2
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS HCG HUMAN COMMUNICATION GROUP SYMPOSIUM. UbiCode 243 0292 1030 E-mail: {ubicode,koide}@shirai.la, {otsuka,shirai}@ic.kanagawa-it.ac.jp
CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン
CUDA 画像処理入門 エヌビディアジャパン CUDA エンジニア森野慎也 GTC Japan 2014 CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン RGB Y( 輝度 ) 変換 カラー画像から グレイスケールへの変換 Y = 0.299 R + 0.587
: Name, Tel name tel (! ) name : Name! Tel tel ( % ) 3. HTML. : Name % Tel name tel 2. 2,., [ ]!, [ ]!, [ ]!,. [! [, ]! ]!,,. ( [ ], ),. : [Name], nam
DEIM Forum 2010 F6-1 SuperSQL Ajax 223 8522 3 14 1 E-mail: [email protected], [email protected] SuperSQL Ajax, GUI, GUI,, Ajax SuperSQL, HTML, Ajax, RIA Abstract Layout Function Extends for Generating
64bit SSE2 SSE2 FPU Visual C++ 64bit Inline Assembler 4 FPU SSE2 4.1 FPU Control Word FPU 16bit R R R IC RC(2) PC(2) R R PM UM OM ZM DM IM R: reserved
(Version: 2013/5/16) Intel CPU ([email protected]) 1 Intel CPU( AMD CPU) 64bit SIMD Inline Assemler Windows Visual C++ Linux gcc 2 FPU SSE2 Intel CPU double 8087 FPU (floating point number processing unit)
indd
Windows Vista 2 Service pack 1 SP1 Windows Vista Windows Xp Windows Vista Windows Vista CPU Windows OS Windows Xp Windows Vista Windows 7 15 20 Windows Vista Windows Vista Windows Xp Windows Vista Windows
Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).
Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation
& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),
.... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov
