DO 時間積分 START 反変速度の計算 contravariant_velocity 移流項の計算 advection_adams_bashforth_2nd DO implicit loop( 陰解法 ) 速度勾配, 温度勾配の計算 gradient_cell_center_surface 速
|
|
|
- きゅうた かに
- 7 years ago
- Views:
Transcription
1 1 1, 2 1, 2 3 2, 3 4 GP LES ASUCA LES NVIDIA CUDA LES 1. Graphics Processing Unit GP General-Purpose SIMT Single Instruction Multiple Threads ),2) LES Large Eddy Simulation 3) ASUCA 4) LES LES 2. LES LES LES 5),6) 3. LES LES Raasch and Schroter 2001 Chow et al 2006 LES T2k-Tsukuba CFD LES 7) LES LES SMAC Adams-Bashforth Crank-Nicolson Bi-CGStab LES 1 1 c 2011 Information Processing Society of Japan
2 DO 時間積分 START 反変速度の計算 contravariant_velocity 移流項の計算 advection_adams_bashforth_2nd DO implicit loop( 陰解法 ) 速度勾配, 温度勾配の計算 gradient_cell_center_surface 速度勾配スケールの計算 gradient_scale 圧力勾配の計算 gradient_press 圧力勾配の計算 ( 格子界面 ) gradient_cell_surface Smagorinsky 定数 Csの計算 sgs_smagrinsky 温位 (E) の修正物理速度の修正反変速度速度, 反変速度の境界条件 smac 修正圧力の計算 ( ポアソン方程式を解く ) END DO implicit loop ( 陰解放 ) 平均圧力を求める cgstab Each sample counts as 0.01 seconds. % cumulative self self total time seconds seconds calls Ks/call Ks/call name module_bicgstab_mod_cgstab module_dynamics_mod_gradient_cell_center_surface module_run_mod_run module_dynamics_mod_gradient_cell_surface module_sgs_mod_sgs_stress_vec module_smac_mod_smac module_addition_inst_value_mod_addition_inst_value module_sgs_mod_sgs_stress_sca module_dynamics_mod_tke_flux module_dynamics_mod_diffusion_crank_nicolson module_dynamics_mod_gradient_pres module_dynamics_mod_advection_adams_bashforth_2nd module_dynamics_mod_contravariant_velocity module_dynamics_mod_gradient_scale 地表面摩擦応力の計算 tau_u 拡散項の計算 diffusion_crank_nicolson 平均が0になるように圧力を修正 END DO 時間積分 2 LES module... MOD 1 LES GP NVIDIA CUDA SM Streaming Multiprocessor 8) SM SP Streaming Processor 8 CUDA Fermi SM SP 32 L1 L2 9),10) LES N=imax jmax kmax imax jmax kmax Intel Xeon E5630 Westmere-EP 2.53GHz 4-core 2 24Gbyte LES max time step cgstab Bi-CGStab addition inst value 70% cgstab gradient cell center surface cgstab gradient cell center surface gradient cell center surface 2 c 2011 Information Processing Society of Japan
3 gradient cell surface gradient cell surface bicgstab gradient cell center surface gradient cell surface 3(a) 4(a) gradient cell center surface gradient cell surface sec N 3(a) 4(a) 3(b) 4(b) gradient cell center surface gradient cell surface ) c e s ( 間時行実 (a) (b) 4 gradient cell surface 6. LES % 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% -> 間データ転送時間 -> 間データ転送時間 計算時間 NVIDIA Tesla M2050 Fermi CUDA LES run run 5 // gpu_run.cu double *d_f1,*d_xix, *d_xiy, *d_xiz, ; ) c e s 1 ( 間 0.8 時行実 % 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% -> 間データ転送時間 -> 間データ転送時間 計算時間 call gpu_initialize(size) call gpu_memdata(f,,size) subroutine run() Call gradient_cell_surface(f, ) end subroutine call gpu_finalize() extern C void gpu_initialize_(int *size) cudamalloc((void**)&d_f,sizeof(double)*(*size)); cudamalloc((void**)&d_xix,sizeof(double)*(*size)); extern C void gpu_memdata_(double *f,, int *size) cudamemcpu((d_f, f, sizeof(double)*(*size), cudamemcpydevicetohost); extern C void gradient_cell_surface_(double *f, ) gpu_gradient_cell_surface<<<dg,db>>>(d_f, ); extern C void gpu_finalize_() cudafree(d_f); cudafree(d_xix); (a) (b) 3 gradient cell center surface 5 cudafree(d_zez); 3 c 2011 Information Processing Society of Japan
4 run global gpu initialize global gpu memdata run run global gpu finalize gpu jmax blockdim.x block(1,0) block(1,1) ijk ijk index 1 do k =2, kmax -1 2 do j = 2, jmax -1 3 do i = 2, imax -1 4 fx1 (i,j,k) = ( xix (i+1,j,k)*f(i+1,j,k) - xix (i,j,k)*f(i,j,k) & 5 + ( etx (i+1,j+1,k)*f(i+1,j+1,k) & 6 - etx (i+1,j -1,k)*f(i+1,j -1,k) & 7 + etx (i,j+1,k)*f(i,j+1,k) & 8 - etx (i,j -1,k)*f(i,j -1,k) )*0.25 d0 & 9 + ( zex (i+1,j,k +1)* f(i+1,j,k +1) & 10 - zex (i+1,j,k -1)* f(i+1,j,k -1) & 11 + zex (i,j,k +1)* f(i,j,k +1) & 12 - zex (i,j,k -1)* f(i,j,k -1) )*0.25 d0 & 13 )* hjac1 (i,j,k) 14 enddo 15 enddo 16 enddo block(0,0) block(0,1) blockdim.y 7 Fortran imax 6 CUDA 6.2 LES i j imax jmax kmax N=imax jmax kmax CUDA i j ID ID i j ID 6 ID ID ID Fortran 7 i j ID ID CUDA 8 CUDA 7. RAM OS Compiler 1 Intel Xeon E GHz 4cores 2 DDR3 SDRAM 1066MHz 4GB 6 GDDR5 SDRAM 1.55GHz 3GB (ECC on) NVIDIA Tesla M GHz CentOS Linux release 6.0 (Final) GNU Fortran GCC nvcc 4.0 (-arch sm 20) for code 1 cgstab addition inst value run 9 Tesla M KB/L1 4 c 2011 Information Processing Society of Japan
5 1 int ijk ; 2 int i= blockdim.x* blockidx.x + threadidx.x + 1; 3 int j= blockdim.y* blockidx.y + threadidx.y + 1; 4 5 for ( int k = 1 ; k < kmax -1; k++ ) 6 ijk = i + j* imax + k* imax * jmax ; 7 8 d_fx1 [ijk ] = ( d_xix [ijk + 1]* d_f [ijk + 1] - d_xix [ijk ]* d_f [ijk ] 9 + ( d_etx [ijk + imax + 1]* d_f [ijk + imax + 1] 10 - d_etx [ijk - imax + 1]* d_f [ijk - imax + 1] 11 + d_etx [ijk + imax ]* d_f [ijk + imax ] 12 - d_etx [ijk - imax ]* d_f [ijk - imax ] )* ( d_zex [ijk + imax *jmax + 1]* d_f [ijk + imax *jmax + 1] 14 - d_zex [ijk - imax *jmax + 1]* d_f [ijk - imax *jmax + 1] 15 + d_zex [ijk + imax *jmax ]* d_f [ijk + imax *jmax ] 16 - d_zex [ijk - imax *jmax ]* d_f [ijk - imax *jmax ] )* )* d_hjac1 [ijk ]; 18 ) c e s ( 間 間時行実 I J 8 7 CUDA 48KB 48KB/L1 16KB N imax jmax kmax kmax=102 imax jmax global memory 3GB imax jmax imax jmax LES 8. LES % global memory LES MPI OpenMP 1) CUDA Vol 20 No.2 pp Jun ) TSUBAME May ) 2010 Dec ) 5 c 2011 Information Processing Society of Japan
6 ASUCA TSUBAME Dec ) LES 2011 May ) Ryosaku Ikeda Hiroyuki Kusaka satoru Iizuka Taisuke Boku Development of Local Meteorological Model based on CFD 5th International symposium on wind effects on buildings and urban enviroment ISWE5 Mar ) Iizuka S, Kondo H Large-eddy simulations of turbulent flow over complex terrain using modified static eddy viscosity models Atmospheric Environment, 40, pp Feb ) NVIDIA Corporation CUDA ZONE home.html 9) Peter Glaskowsky NVIDIA s Fermi : The First Complete Computing Architecture 10) Dave Patterson The Top 10 Innovations in the New NVIDIA Fermi Architecture and the Top 3 Next Challenges 6 c 2011 Information Processing Society of Japan
Slides: TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments
計算機アーキテクチャ第 11 回 マルチプロセッサ 本資料は授業用です 無断で転載することを禁じます 名古屋大学 大学院情報科学研究科 准教授加藤真平 デスクトップ ジョブレベル並列性 スーパーコンピュータ 並列処理プログラム プログラムの並列化 for (i = 0; i < N; i++) { x[i] = a[i] + b[i]; } プログラムの並列化 x[0] = a[0] + b[0];
07-二村幸孝・出口大輔.indd
GPU Graphics Processing Units HPC High Performance Computing GPU GPGPU General-Purpose computation on GPU CPU GPU GPU *1 Intel Quad-Core Xeon E5472 3.0 GHz 2 6 MB L2 cache 1600 MHz FSB 80 GFlops 1 nvidia
untitled
A = QΛQ T A n n Λ Q A = XΛX 1 A n n Λ X GPGPU A 3 T Q T AQ = T (Q: ) T u i = λ i u i T {λ i } {u i } QR MR 3 v i = Q u i A {v i } A n = 9000 Quad Core Xeon 2 LAPACK (4/3) n 3 O(n 2 ) O(n 3 ) A {v i }
GPU GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1
GPU 4 2010 8 28 1 GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1 Register & Shared Memory ( ) CPU CPU(Intel Core i7 965) GPU(Tesla
GPGPU
GPGPU 2013 1008 2015 1 23 Abstract In recent years, with the advance of microscope technology, the alive cells have been able to observe. On the other hand, from the standpoint of image processing, the
23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h
23 FPGA CUDA Performance Comparison of FPGA Array with CUDA on Poisson Equation ([email protected]), ([email protected]), ([email protected]), ([email protected]),
IPSJ SIG Technical Report Vol.2013-ARC-203 No /2/1 SMYLE OpenCL (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 1
SMYLE OpenCL 128 1 1 1 1 1 2 2 3 3 3 (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 128 SMYLEref SMYLE OpenCL SMYLE OpenCL Implementation and Evaluations on 128 Cores Takuji Hieda 1 Noriko Etani
1 GPU GPGPU GPU CPU 2 GPU 2007 NVIDIA GPGPU CUDA[3] GPGPU CUDA GPGPU CUDA GPGPU GPU GPU GPU Graphics Processing Unit LSI LSI CPU ( ) DRAM GPU LSI GPU
GPGPU (I) GPU GPGPU 1 GPU(Graphics Processing Unit) GPU GPGPU(General-Purpose computing on GPUs) GPU GPGPU GPU ( PC ) PC PC GPU PC PC GPU GPU 2008 TSUBAME NVIDIA GPU(Tesla S1070) TOP500 29 [1] 2009 AMD
Microsoft PowerPoint - GPU_computing_2013_01.pptx
GPU コンピューティン No.1 導入 東京工業大学 学術国際情報センター 青木尊之 1 GPU とは 2 GPGPU (General-purpose computing on graphics processing units) GPU を画像処理以外の一般的計算に使う GPU の魅力 高性能 : ハイエンド GPU はピーク 4 TFLOPS 超 手軽さ : 普通の PC にも装着できる 低価格
: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs
15 C11-4 Numerical analysis of flame propagation in a combustor of an aircraft gas turbine, 4-6-1 E-mail: [email protected], 2-11-16 E-mail: [email protected], 4-6-1 E-mail: [email protected],
1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境 Lin
Windows で始める CUDA 入門 GTC 2013 チュートリアル エヌビディアジャパン CUDA エンジニア森野慎也 1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境
1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU.....
CPU GPU N Q07-065 2011 2 17 1 1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU...........................................
CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン
CUDA 画像処理入門 エヌビディアジャパン CUDA エンジニア森野慎也 GTC Japan 2014 CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン RGB Y( 輝度 ) 変換 カラー画像から グレイスケールへの変換 Y = 0.299 R + 0.587
main.dvi
PC 1 1 [1][2] [3][4] ( ) GPU(Graphics Processing Unit) GPU PC GPU PC ( 2 GPU ) GPU Harris Corner Detector[5] CPU ( ) ( ) CPU GPU 2 3 GPU 4 5 6 7 1 [email protected] 45 2 ( ) CPU ( ) ( ) () 2.1
IPSJ SIG Technical Report Vol.2013-ARC-206 No /8/1 Android Dominic Hillenbrand ODROID-X2 GPIO Android OSCAR WFI 500[us] GPIO GP
Android 1 1 1 1 1 Dominic Hillenbrand 1 1 1 ODROID-X2 GPIO Android OSCAR WFI 500[us] GPIO GPIO API GPIO API GPIO MPEG2 Optical Flow MPEG2 1PE 0.97[W] 0.63[W] 2PE 1.88[w] 0.46[W] 3PE 2.79[W] 0.37[W] Optical
EGunGPU
Super Computing in Accelerator simulations - Electron Gun simulation using GPGPU - K. Ohmi, KEK-Accel Accelerator Physics seminar 2009.11.19 Super computers in KEK HITACHI SR11000 POWER5 16 24GB 16 134GFlops,
( CUDA CUDA CUDA CUDA ( NVIDIA CUDA I
GPGPU (II) GPGPU CUDA 1 GPGPU CUDA(CUDA Unified Device Architecture) CUDA NVIDIA GPU *1 C/C++ (nvcc) CUDA NVIDIA GPU GPU CUDA CUDA 1 CUDA CUDA 2 CUDA NVIDIA GPU PC Windows Linux MaxOSX CUDA GPU CUDA NVIDIA
MATLAB® における並列・分散コンピューティング ~ Parallel Computing Toolbox™ & MATLAB Distributed Computing Server™ ~
MATLAB における並列 分散コンピューティング ~ Parallel Computing Toolbox & MATLAB Distributed Computing Server ~ MathWorks Japan Application Engineering Group Takashi Yoshida 2016 The MathWorks, Inc. 1 System Configuration
CUDA 連携とライブラリの活用 2
1 09:30-10:00 受付 10:00-12:00 Reedbush-H ログイン GPU 入門 13:30-15:00 OpenACC 入門 15:15-16:45 OpenACC 最適化入門と演習 17:00-18:00 OpenACC の活用 (CUDA 連携とライブラリの活用 ) CUDA 連携とライブラリの活用 2 3 OpenACC 簡単にGPUプログラムが作成できる それなりの性能が得られる
rank ”«‘‚“™z‡Ì GPU ‡É‡æ‡éŁÀŠñ›»
rank GPU ERATO 2011 11 1 1 / 26 GPU rank/select wavelet tree balanced parenthesis GPU rank 2 / 26 GPU rank/select wavelet tree balanced parenthesis GPU rank 2 / 26 GPU rank/select wavelet tree balanced
GPU n Graphics Processing Unit CG CAD
GPU 2016/06/27 第 20 回 GPU コンピューティング講習会 ( 東京工業大学 ) 1 GPU n Graphics Processing Unit CG CAD www.nvidia.co.jp www.autodesk.co.jp www.pixar.com GPU n GPU ü n NVIDIA CUDA ü NVIDIA GPU ü OS Linux, Windows, Mac
IPSJ SIG Technical Report Vol.2013-HPC-138 No /2/21 GPU CRS 1,a) 2,b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla
GPU CRS 1,a),b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla K0 CUDA5.0 cusparse CRS SpMV 00 1.86 177 1. SpMV SpMV CRS Compressed Row Storage *1 SpMV GPU GPU NVIDIA Kepler
01_OpenMP_osx.indd
OpenMP* / 1 1... 2 2... 3 3... 5 4... 7 5... 9 5.1... 9 5.2 OpenMP* API... 13 6... 17 7... 19 / 4 1 2 C/C++ OpenMP* 3 Fortran OpenMP* 4 PC 1 1 9.0 Linux* Windows* Xeon Itanium OS 1 2 2 WEB OS OS OS 1 OS
211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS /1/18 a a 1 a 2 a 3 a a GPU Graphics Processing Unit GPU CPU GPU GPGPU G
211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS211 211/1/18 GPU 4 8 BLAS 4 8 BLAS Basic Linear Algebra Subprograms GPU Graphics Processing Unit 4 8 double 2 4 double-double DD 4 4 8 quad-double
概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran
CUDA Fortran チュートリアル 2010 年 9 月 29 日 NEC 概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran を用いた Linux
iphone GPGPU GPU OpenCL Mac OS X Snow LeopardOpenCL iphone OpenCL OpenCL NVIDIA GPU CUDA GPU GPU GPU 15 GPU GPU CPU GPU iii OpenMP MPI CPU OpenCL CUDA OpenCL CPU OpenCL GPU NVIDIA Fermi GPU Fermi GPU GPU
! 行行 CPUDSP PPESPECell/B.E. CPUGPU 行行 SIMD [SSE, AltiVec] 用 HPC CPUDSP PPESPE (Cell/B.E.) SPE CPUGPU GPU CPU DSP DSP PPE SPE SPE CPU DSP SPE 2
! OpenCL [Open Computing Language] 言 [OpenCL C 言 ] CPU, GPU, Cell/B.E.,DSP 言 行行 [OpenCL Runtime] OpenCL C 言 API Khronos OpenCL Working Group AMD Broadcom Blizzard Apple ARM Codeplay Electronic Arts Freescale
TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日
TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日 目次 1. TSUBAMEのGPU 環境 2. プログラム作成 3. プログラム実行 4. 性能解析 デバッグ サンプルコードは /work0/gsic/seminars/gpu- 2011-09- 28 からコピー可能です 1.
Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx
GPU のプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU プログラミング環境 (CUDA) GPU プログラムの実行の流れ CUDA によるプログラムの記述 カーネル (GPU で処理する関数 ) の構造 記述方法とその理由 GPU 固有のパラメータの確認 405 GPU(Graphics Processing Unit) とは 画像処理専用のハードウェア 具体的には画像処理用のチップ
IPSJ SIG Technical Report Vol.2011-IOT-12 No /3/ , 6 Construction and Operation of Large Scale Web Contents Distribution Platfo
1 1 2 3 4 5 1 1, 6 Construction and Operation of Large Scale Web Contents Distribution Platform using Cloud Computing 1. ( ) 1 IT Web Yoshihiro Okamoto, 1 Naomi Terada and Tomohisa Akafuji, 1, 2 Yuko Okamoto,
熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date Type URL Presentation
熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date 2011-03-17 Type URL Presentation http://hdl.handle.net/2298/23539 Right GPGPU による高速演算について 榎本昌一 東京大学大学院工学系研究科システム創成学専攻
1 M32R Single-Chip Multiprocessor [2] [3] [4] [5] Linux/M32R UP(Uni-processor) SMP(Symmetric Multi-processor) MMU CPU nommu Linux/M32R Linux/M32R 2. M
M32R Linux SMP a) Implementation of Linux SMP kernel for M32R multiprocessor Hayato FUJIWARA a), Hitoshi YAMAMOTO, Hirokazu TAKATA, Kei SAKAMOTO, Mamoru SAKUGAWA, and Hiroyuki KONDO CPU OS 32 RISC M32R
Emacs ML let start ::= exp (1) exp ::= (2) fn id exp (3) ::= (4) (5) ::= id (6) const (7) (exp) (8) let val id = exp in
Emacs, {l06050,sasano}@sic.shibaura-it.ac.jp Eclipse Visual Studio Standard ML Haskell Emacs 1 Eclipse Visual Studio variable not found LR(1) let Emacs Emacs Emacs Java Emacs JDEE [3] JDEE Emacs Java 2
AMD/ATI Radeon HD 5870 GPU DEGIMA LINPACK HD 5870 GPU DEGIMA LINPACK GFlops/Watt GFlops/Watt Abstract GPU Computing has lately attracted
DEGIMA LINPACK Energy Performance for LINPACK Benchmark on DEGIMA 1 AMD/ATI Radeon HD 5870 GPU DEGIMA LINPACK HD 5870 GPU DEGIMA LINPACK 1.4698 GFlops/Watt 1.9658 GFlops/Watt Abstract GPU Computing has
SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [
SQUFOF SQUFOF NTT 2003 2 17 16 60 Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) 60 1 1.1 N 62 16 24 UBASIC 50 / 200 [ 01] 4 large prime 943 2 1 (%) 57 146 146 15
スライド 1
GPU クラスタによる格子 QCD 計算 広大理尾崎裕介 石川健一 1.1 Introduction Graphic Processing Units 1 チップに数百個の演算器 多数の演算器による並列計算 ~TFLOPS ( 単精度 ) CPU 数十 GFLOPS バンド幅 ~100GB/s コストパフォーマンス ~$400 GPU の開発環境 NVIDIA CUDA http://www.nvidia.co.jp/object/cuda_home_new_jp.html
26102 (1/2) LSISoC: (1) (*) (*) GPU SIMD MIMD FPGA DES, AES (2/2) (2) FPGA(8bit) (ISS: Instruction Set Simulator) (3) (4) LSI ECU110100ECU1 ECU ECU ECU ECU FPGA ECU main() { int i, j, k for { } 1 GP-GPU
6 2. AUTOSAR 2.1 AUTOSAR AUTOSAR ECU OSEK/VDX 3) OSEK/VDX OS AUTOSAR AUTOSAR ECU AUTOSAR 1 AUTOSAR BSW (Basic Software) (Runtime Environment) Applicat
AUTOSAR 1 1, 2 2 2 AUTOSAR AUTOSAR 3 2 2 41% 29% An Extension of AUTOSAR Communication Layers for Multicore Systems Toshiyuki Ichiba, 1 Hiroaki Takada, 1, 2 Shinya Honda 2 and Ryo Kurachi 2 AUTOSAR, a
Microsoft Word - 0_0_表紙.doc
2km Local Forecast Model; LFM Local Analysis; LA 2010 11 2.1.1 2010a LFM 2.1.1 2011 3 11 2.1.1 2011 5 2010 6 1 8 3 1 LFM LFM MSM LFM FT=2 2009; 2010 MSM RMSE RMSE MSM RMSE 2010 1 8 3 2010 6 2010 6 8 2010
26 FPGA 11 05340 1 FPGA (Field Programmable Gate Array) ASIC (Application Specific Integrated Circuit) FPGA FPGA FPGA FPGA Linux FreeDOS skewed way L1
FPGA 272 11 05340 26 FPGA 11 05340 1 FPGA (Field Programmable Gate Array) ASIC (Application Specific Integrated Circuit) FPGA FPGA FPGA FPGA Linux FreeDOS skewed way L1 FPGA skewed L2 FPGA skewed Linux
7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )
71 特集 オープンソースの大きな流れ Nonlinear Sloshing Analysis in a Three-dimensional Rectangular Pool Ken UZAWA, The Center for Computational Sciences and E-systems, Japan Atomic Energy Agency 1 1.1 ( ) (RIST) (ORNL/RSICC)
GPGPUクラスタの性能評価
2008 年度理研 HPC シンポジウム第 3 世代 PC クラスタ GPGPU クラスタの性能評価 2009 年 3 月 12 日 富士通研究所成瀬彰 発表の概要 背景 GPGPU による高速化 CUDA の概要 GPU のメモリアクセス特性調査 姫野 BMT の高速化 GPGPU クラスタによる高速化 GPU Host 間のデータ転送 GPU-to-GPU の通信性能 GPGPU クラスタ上での姫野
[email protected] No1 No2 OS Wintel Intel x86 CPU No3 No4 8bit=2 8 =256(Byte) 16bit=2 16 =65,536(Byte)=64KB= 6 5 32bit=2 32 =4,294,967,296(Byte)=4GB= 43 64bit=2 64 =18,446,744,073,709,551,615(Byte)=16EB
HP Workstation 総合カタログ
HP Workstation Z HP 6 Z HP HP Z840 Workstation P.9 HP Z640 Workstation & CPU P.10 HP Z440 Workstation P.11 17.3in WIDE HP ZBook 17 G2 Mobile Workstation P.15 15.6in WIDE HP ZBook 15 G2 Mobile Workstation
programmingII2019-v01
II 2019 2Q A 6/11 6/18 6/25 7/2 7/9 7/16 7/23 B 6/12 6/19 6/24 7/3 7/10 7/17 7/24 x = 0 dv(t) dt = g Z t2 t 1 dv(t) dt dt = Z t2 t 1 gdt g v(t 2 ) = v(t 1 ) + g(t 2 t 1 ) v v(t) x g(t 2 t 1 ) t 1 t 2
Vol.214-HPC-145 No /7/3 C #pragma acc directive-name [clause [[,] clause] ] new-line structured block Fortran!$acc directive-name [clause [[,] c
Vol.214-HPC-145 No.45 214/7/3 OpenACC 1 3,1,2 1,2 GPU CUDA OpenCL OpenACC OpenACC High-level OpenACC CPU Intex Xeon Phi K2X GPU Intel Xeon Phi 27% K2X GPU 24% 1. TSUBAME2.5 CPU GPU CUDA OpenCL CPU OpenMP
HPE Moonshot System ~ビッグデータ分析&モバイルワークプレイスを新たなステージへ~
Brochure HPE Moonshot System HPE Moonshot System 4.3U 45 HPE Moonshot System Xeon & HPE Moonshot System HPE Moonshot System HPE HPE Moonshot System &IoT & SoC Xeon D-1500 Broadwell-DE HPE ProLiant m510
I I / 47
1 2013.07.18 1 I 2013 3 I 2013.07.18 1 / 47 A Flat MPI B 1 2 C: 2 I 2013.07.18 2 / 47 I 2013.07.18 3 / 47 #PJM -L "rscgrp=small" π-computer small: 12 large: 84 school: 24 84 16 = 1344 small school small
PRIMERGY 性能情報 SPECint2006 / SPECfp2006 測定結果一覧
SPECint / SPECfp 測定結果一覧 しおり より 測定結果を確認したいモデル名を選択してください 07 年 6 月 8 日更新 分類 モデル名 更新日 前版からの変更 ラックサーバ RX00 S7 (0 年 5 月以降発表モデル ) 0 年 0 月 3 日 RX00 S7 (0 年 6 月発表モデル ) RX00
2ndD3.eps
CUDA GPGPU 2012 UDX 12/5/24 p. 1 FDTD GPU FDTD GPU FDTD FDTD FDTD PGI Acceralator CUDA OpenMP Fermi GPU (Tesla C2075/C2070, GTX 580) GT200 GPU (Tesla C1060, GTX 285) PC GPGPU 2012 UDX 12/5/24 p. 2 FDTD
FIT2013( 第 12 回情報科学技術フォーラム ) I-032 Acceleration of Adaptive Bilateral Filter base on Spatial Decomposition and Symmetry of Weights 1. Taiki Makishi Ch
I-032 Acceleration of Adaptive Bilateral Filter base on Spatial Decomposition and Symmetry of Weights 1. Taiki Makishi Chikatoshi Yamada Shuichi Ichikawa Gaussian Filter GF GF Bilateral Filter BF CG [1]
Run-Based Trieから構成される 決定木の枝刈り法
Run-Based Trie 2 2 25 6 Run-Based Trie Simple Search Run-Based Trie Network A Network B Packet Router Packet Filtering Policy Rule Network A, K Network B Network C, D Action Permit Deny Permit Network
MPI usage
MPI (Version 0.99 2006 11 8 ) 1 1 MPI ( Message Passing Interface ) 1 1.1 MPI................................. 1 1.2............................... 2 1.2.1 MPI GATHER.......................... 2 1.2.2
hotspot の特定と最適化
1 1? 1 1 2 1. hotspot : hotspot hotspot Parallel Amplifier 1? 2. hotspot : (1 ) Parallel Composer 1 Microsoft* Ticker Tape Smoke 1.0 PiSolver 66 / 64 / 2.76 ** 84 / 27% ** 75 / 17% ** 1.46 89% Microsoft*
Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L
1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives
OpenMP (1) 1, 12 1 UNIX (FUJITSU GP7000F model 900), 13 1 (COMPAQ GS320) FUJITSU VPP5000/64 1 (a) (b) 1: ( 1(a))
OpenMP (1) 1, 12 1 UNIX (FUJITSU GP7000F model 900), 13 1 (COMPAQ GS320) FUJITSU VPP5000/64 1 (a) (b) 1: ( 1(a)) E-mail: {nanri,amano}@cc.kyushu-u.ac.jp 1 ( ) 1. VPP Fortran[6] HPF[3] VPP Fortran 2. MPI[5]
(Basic Theory of Information Processing) 1
(Basic Theory of Information Processing) 1 10 (p.178) Java a[0] = 1; 1 a[4] = 7; i = 2; j = 8; a[i] = j; b[0][0] = 1; 2 b[2][3] = 10; b[i][j] = a[2] * 3; x = a[2]; a[2] = b[i][3] * x; 2 public class Array0
strtok-count.eps
IoT FPGA 2016/12/1 IoT FPGA 200MHz 32 ASCII PCI Express FPGA OpenCL (Volvox) Volvox CPU 10 1 IoT (Internet of Things) 2020 208 [1] IoT IoT HTTP JSON ( Python Ruby) IoT IoT IoT (Hadoop [2] ) AI (Artificial
HP High Performance Computing(HPC)
ACCELERATE HP High Performance Computing HPC HPC HPC HPC HPC 1000 HPHPC HPC HP HPC HPC HPC HP HPCHP HP HPC 1 HPC HP 2 HPC HPC HP ITIDC HP HPC 1HPC HPC No.1 HPC TOP500 2010 11 HP 159 32% HP HPCHP 2010 Q1-Q4
HP xw9400 Workstation
HP xw9400 Workstation HP xw9400 Workstation AMD Opteron TM PCI Express x16 64 PCI Express x16 2 USB2.0 8 IEEE1394 2 8DIMM HP HP xw9400 Workstation HP CPU HP CPU 240W CPU HP xw9400 HP CPU CPU CPU CPU Sound
2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055
1 1 1 2 DCRA 1. 1.1 1) 1 Tactile Interface with Air Jets for Floating Images Aya Higuchi, 1 Nomin, 1 Sandor Markon 1 and Satoshi Maekawa 2 The new optical device DCRA can display floating images in free
PRIMERGY 性能情報 SPECint2006 / SPECfp2006 測定結果一覧
SPECint / SPECfp 測定結果一覧 しおり より 測定結果を確認したいモデル名を選択してください 07 年 8 月 30 日更新 分類 モデル名 更新日 前版からの変更 ラックサーバ RX00 S7 (0 年 5 月以降発表モデル ) 0 年 0 月 3 日 RX00 S7 (0 年 6 月発表モデル ) RX00
2012年度HPCサマーセミナー_多田野.pptx
! CCS HPC! I " [email protected]" " 1 " " " " " " " 2 3 " " Ax = b" " " 4 Ax = b" A = a 11 a 12... a 1n a 21 a 22... a 2n...... a n1 a n2... a nn, x = x 1 x 2. x n, b = b 1 b 2. b n " " 5 Gauss LU
スパコンに通じる並列プログラミングの基礎
2018.06.04 2018.06.04 1 / 62 2018.06.04 2 / 62 Windows, Mac Unix 0444-J 2018.06.04 3 / 62 Part I Unix GUI CUI: Unix, Windows, Mac OS Part II 2018.06.04 4 / 62 0444-J ( : ) 6 4 ( ) 6 5 * 6 19 SX-ACE * 6
XcalableMP入門
XcalableMP 1 HPC-Phys@, 2018 8 22 XcalableMP XMP XMP Lattice QCD!2 XMP MPI MPI!3 XMP 1/2 PCXMP MPI Fortran CCoarray C++ MPIMPI XMP OpenMP http://xcalablemp.org!4 XMP 2/2 SPMD (Single Program Multiple Data)
スパコンに通じる並列プログラミングの基礎
2016.06.06 2016.06.06 1 / 60 2016.06.06 2 / 60 Windows, Mac Unix 0444-J 2016.06.06 3 / 60 Part I Unix GUI CUI: Unix, Windows, Mac OS Part II 0444-J 2016.06.06 4 / 60 ( : ) 6 6 ( ) 6 10 6 16 SX-ACE 6 17
インテル(R) Visual Fortran Composer XE 2013 Windows版 入門ガイド
Visual Fortran Composer XE 2013 Windows* エクセルソフト株式会社 www.xlsoft.com Rev. 1.1 (2012/12/10) Copyright 1998-2013 XLsoft Corporation. All Rights Reserved. 1 / 53 ... 3... 4... 4... 5 Visual Studio... 9...
HP Workstation Xeon 5600
HP Workstation Xeon 5600 HP 2 No.1 HP 5 3 Z 2No.1 HP :IDC's Worldwide Quarterly Workstation Tracker, 2009 Q4 14.0in Wide HP EliteBook 8440w/CT Mobile Workstation 15.6in Wide HP EliteBook 8540w Mobile Workstation
