DO 時間積分 START 反変速度の計算 contravariant_velocity 移流項の計算 advection_adams_bashforth_2nd DO implicit loop( 陰解法 ) 速度勾配, 温度勾配の計算 gradient_cell_center_surface 速

Size: px
Start display at page:

Download "DO 時間積分 START 反変速度の計算 contravariant_velocity 移流項の計算 advection_adams_bashforth_2nd DO implicit loop( 陰解法 ) 速度勾配, 温度勾配の計算 gradient_cell_center_surface 速"

Transcription

1 1 1, 2 1, 2 3 2, 3 4 GP LES ASUCA LES NVIDIA CUDA LES 1. Graphics Processing Unit GP General-Purpose SIMT Single Instruction Multiple Threads ),2) LES Large Eddy Simulation 3) ASUCA 4) LES LES 2. LES LES LES 5),6) 3. LES LES Raasch and Schroter 2001 Chow et al 2006 LES T2k-Tsukuba CFD LES 7) LES LES SMAC Adams-Bashforth Crank-Nicolson Bi-CGStab LES 1 1 c 2011 Information Processing Society of Japan

2 DO 時間積分 START 反変速度の計算 contravariant_velocity 移流項の計算 advection_adams_bashforth_2nd DO implicit loop( 陰解法 ) 速度勾配, 温度勾配の計算 gradient_cell_center_surface 速度勾配スケールの計算 gradient_scale 圧力勾配の計算 gradient_press 圧力勾配の計算 ( 格子界面 ) gradient_cell_surface Smagorinsky 定数 Csの計算 sgs_smagrinsky 温位 (E) の修正物理速度の修正反変速度速度, 反変速度の境界条件 smac 修正圧力の計算 ( ポアソン方程式を解く ) END DO implicit loop ( 陰解放 ) 平均圧力を求める cgstab Each sample counts as 0.01 seconds. % cumulative self self total time seconds seconds calls Ks/call Ks/call name module_bicgstab_mod_cgstab module_dynamics_mod_gradient_cell_center_surface module_run_mod_run module_dynamics_mod_gradient_cell_surface module_sgs_mod_sgs_stress_vec module_smac_mod_smac module_addition_inst_value_mod_addition_inst_value module_sgs_mod_sgs_stress_sca module_dynamics_mod_tke_flux module_dynamics_mod_diffusion_crank_nicolson module_dynamics_mod_gradient_pres module_dynamics_mod_advection_adams_bashforth_2nd module_dynamics_mod_contravariant_velocity module_dynamics_mod_gradient_scale 地表面摩擦応力の計算 tau_u 拡散項の計算 diffusion_crank_nicolson 平均が0になるように圧力を修正 END DO 時間積分 2 LES module... MOD 1 LES GP NVIDIA CUDA SM Streaming Multiprocessor 8) SM SP Streaming Processor 8 CUDA Fermi SM SP 32 L1 L2 9),10) LES N=imax jmax kmax imax jmax kmax Intel Xeon E5630 Westmere-EP 2.53GHz 4-core 2 24Gbyte LES max time step cgstab Bi-CGStab addition inst value 70% cgstab gradient cell center surface cgstab gradient cell center surface gradient cell center surface 2 c 2011 Information Processing Society of Japan

3 gradient cell surface gradient cell surface bicgstab gradient cell center surface gradient cell surface 3(a) 4(a) gradient cell center surface gradient cell surface sec N 3(a) 4(a) 3(b) 4(b) gradient cell center surface gradient cell surface ) c e s ( 間時行実 (a) (b) 4 gradient cell surface 6. LES % 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% -> 間データ転送時間 -> 間データ転送時間 計算時間 NVIDIA Tesla M2050 Fermi CUDA LES run run 5 // gpu_run.cu double *d_f1,*d_xix, *d_xiy, *d_xiz, ; ) c e s 1 ( 間 0.8 時行実 % 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% -> 間データ転送時間 -> 間データ転送時間 計算時間 call gpu_initialize(size) call gpu_memdata(f,,size) subroutine run() Call gradient_cell_surface(f, ) end subroutine call gpu_finalize() extern C void gpu_initialize_(int *size) cudamalloc((void**)&d_f,sizeof(double)*(*size)); cudamalloc((void**)&d_xix,sizeof(double)*(*size)); extern C void gpu_memdata_(double *f,, int *size) cudamemcpu((d_f, f, sizeof(double)*(*size), cudamemcpydevicetohost); extern C void gradient_cell_surface_(double *f, ) gpu_gradient_cell_surface<<<dg,db>>>(d_f, ); extern C void gpu_finalize_() cudafree(d_f); cudafree(d_xix); (a) (b) 3 gradient cell center surface 5 cudafree(d_zez); 3 c 2011 Information Processing Society of Japan

4 run global gpu initialize global gpu memdata run run global gpu finalize gpu jmax blockdim.x block(1,0) block(1,1) ijk ijk index 1 do k =2, kmax -1 2 do j = 2, jmax -1 3 do i = 2, imax -1 4 fx1 (i,j,k) = ( xix (i+1,j,k)*f(i+1,j,k) - xix (i,j,k)*f(i,j,k) & 5 + ( etx (i+1,j+1,k)*f(i+1,j+1,k) & 6 - etx (i+1,j -1,k)*f(i+1,j -1,k) & 7 + etx (i,j+1,k)*f(i,j+1,k) & 8 - etx (i,j -1,k)*f(i,j -1,k) )*0.25 d0 & 9 + ( zex (i+1,j,k +1)* f(i+1,j,k +1) & 10 - zex (i+1,j,k -1)* f(i+1,j,k -1) & 11 + zex (i,j,k +1)* f(i,j,k +1) & 12 - zex (i,j,k -1)* f(i,j,k -1) )*0.25 d0 & 13 )* hjac1 (i,j,k) 14 enddo 15 enddo 16 enddo block(0,0) block(0,1) blockdim.y 7 Fortran imax 6 CUDA 6.2 LES i j imax jmax kmax N=imax jmax kmax CUDA i j ID ID i j ID 6 ID ID ID Fortran 7 i j ID ID CUDA 8 CUDA 7. RAM OS Compiler 1 Intel Xeon E GHz 4cores 2 DDR3 SDRAM 1066MHz 4GB 6 GDDR5 SDRAM 1.55GHz 3GB (ECC on) NVIDIA Tesla M GHz CentOS Linux release 6.0 (Final) GNU Fortran GCC nvcc 4.0 (-arch sm 20) for code 1 cgstab addition inst value run 9 Tesla M KB/L1 4 c 2011 Information Processing Society of Japan

5 1 int ijk ; 2 int i= blockdim.x* blockidx.x + threadidx.x + 1; 3 int j= blockdim.y* blockidx.y + threadidx.y + 1; 4 5 for ( int k = 1 ; k < kmax -1; k++ ) 6 ijk = i + j* imax + k* imax * jmax ; 7 8 d_fx1 [ijk ] = ( d_xix [ijk + 1]* d_f [ijk + 1] - d_xix [ijk ]* d_f [ijk ] 9 + ( d_etx [ijk + imax + 1]* d_f [ijk + imax + 1] 10 - d_etx [ijk - imax + 1]* d_f [ijk - imax + 1] 11 + d_etx [ijk + imax ]* d_f [ijk + imax ] 12 - d_etx [ijk - imax ]* d_f [ijk - imax ] )* ( d_zex [ijk + imax *jmax + 1]* d_f [ijk + imax *jmax + 1] 14 - d_zex [ijk - imax *jmax + 1]* d_f [ijk - imax *jmax + 1] 15 + d_zex [ijk + imax *jmax ]* d_f [ijk + imax *jmax ] 16 - d_zex [ijk - imax *jmax ]* d_f [ijk - imax *jmax ] )* )* d_hjac1 [ijk ]; 18 ) c e s ( 間 間時行実 I J 8 7 CUDA 48KB 48KB/L1 16KB N imax jmax kmax kmax=102 imax jmax global memory 3GB imax jmax imax jmax LES 8. LES % global memory LES MPI OpenMP 1) CUDA Vol 20 No.2 pp Jun ) TSUBAME May ) 2010 Dec ) 5 c 2011 Information Processing Society of Japan

6 ASUCA TSUBAME Dec ) LES 2011 May ) Ryosaku Ikeda Hiroyuki Kusaka satoru Iizuka Taisuke Boku Development of Local Meteorological Model based on CFD 5th International symposium on wind effects on buildings and urban enviroment ISWE5 Mar ) Iizuka S, Kondo H Large-eddy simulations of turbulent flow over complex terrain using modified static eddy viscosity models Atmospheric Environment, 40, pp Feb ) NVIDIA Corporation CUDA ZONE home.html 9) Peter Glaskowsky NVIDIA s Fermi : The First Complete Computing Architecture 10) Dave Patterson The Top 10 Innovations in the New NVIDIA Fermi Architecture and the Top 3 Next Challenges 6 c 2011 Information Processing Society of Japan

Slides: TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments

Slides: TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments 計算機アーキテクチャ第 11 回 マルチプロセッサ 本資料は授業用です 無断で転載することを禁じます 名古屋大学 大学院情報科学研究科 准教授加藤真平 デスクトップ ジョブレベル並列性 スーパーコンピュータ 並列処理プログラム プログラムの並列化 for (i = 0; i < N; i++) { x[i] = a[i] + b[i]; } プログラムの並列化 x[0] = a[0] + b[0];

More information

07-二村幸孝・出口大輔.indd

07-二村幸孝・出口大輔.indd GPU Graphics Processing Units HPC High Performance Computing GPU GPGPU General-Purpose computation on GPU CPU GPU GPU *1 Intel Quad-Core Xeon E5472 3.0 GHz 2 6 MB L2 cache 1600 MHz FSB 80 GFlops 1 nvidia

More information

untitled

untitled A = QΛQ T A n n Λ Q A = XΛX 1 A n n Λ X GPGPU A 3 T Q T AQ = T (Q: ) T u i = λ i u i T {λ i } {u i } QR MR 3 v i = Q u i A {v i } A n = 9000 Quad Core Xeon 2 LAPACK (4/3) n 3 O(n 2 ) O(n 3 ) A {v i }

More information

GPU GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1

GPU GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1 GPU 4 2010 8 28 1 GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1 Register & Shared Memory ( ) CPU CPU(Intel Core i7 965) GPU(Tesla

More information

GPGPU

GPGPU GPGPU 2013 1008 2015 1 23 Abstract In recent years, with the advance of microscope technology, the alive cells have been able to observe. On the other hand, from the standpoint of image processing, the

More information

IPSJ SIG Technical Report Vol.2013-ARC-203 No /2/1 SMYLE OpenCL (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 1

IPSJ SIG Technical Report Vol.2013-ARC-203 No /2/1 SMYLE OpenCL (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 1 SMYLE OpenCL 128 1 1 1 1 1 2 2 3 3 3 (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 128 SMYLEref SMYLE OpenCL SMYLE OpenCL Implementation and Evaluations on 128 Cores Takuji Hieda 1 Noriko Etani

More information

1 GPU GPGPU GPU CPU 2 GPU 2007 NVIDIA GPGPU CUDA[3] GPGPU CUDA GPGPU CUDA GPGPU GPU GPU GPU Graphics Processing Unit LSI LSI CPU ( ) DRAM GPU LSI GPU

1 GPU GPGPU GPU CPU 2 GPU 2007 NVIDIA GPGPU CUDA[3] GPGPU CUDA GPGPU CUDA GPGPU GPU GPU GPU Graphics Processing Unit LSI LSI CPU ( ) DRAM GPU LSI GPU GPGPU (I) GPU GPGPU 1 GPU(Graphics Processing Unit) GPU GPGPU(General-Purpose computing on GPUs) GPU GPGPU GPU ( PC ) PC PC GPU PC PC GPU GPU 2008 TSUBAME NVIDIA GPU(Tesla S1070) TOP500 29 [1] 2009 AMD

More information

Microsoft PowerPoint - GPU_computing_2013_01.pptx

Microsoft PowerPoint - GPU_computing_2013_01.pptx GPU コンピューティン No.1 導入 東京工業大学 学術国際情報センター 青木尊之 1 GPU とは 2 GPGPU (General-purpose computing on graphics processing units) GPU を画像処理以外の一般的計算に使う GPU の魅力 高性能 : ハイエンド GPU はピーク 4 TFLOPS 超 手軽さ : 普通の PC にも装着できる 低価格

More information

1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境 Lin

1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境 Lin Windows で始める CUDA 入門 GTC 2013 チュートリアル エヌビディアジャパン CUDA エンジニア森野慎也 1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境

More information

1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU.....

1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU..... CPU GPU N Q07-065 2011 2 17 1 1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU...........................................

More information

CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン

CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン CUDA 画像処理入門 エヌビディアジャパン CUDA エンジニア森野慎也 GTC Japan 2014 CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン RGB Y( 輝度 ) 変換 カラー画像から グレイスケールへの変換 Y = 0.299 R + 0.587

More information

main.dvi

main.dvi PC 1 1 [1][2] [3][4] ( ) GPU(Graphics Processing Unit) GPU PC GPU PC ( 2 GPU ) GPU Harris Corner Detector[5] CPU ( ) ( ) CPU GPU 2 3 GPU 4 5 6 7 1 [email protected] 45 2 ( ) CPU ( ) ( ) () 2.1

More information

IPSJ SIG Technical Report Vol.2013-ARC-206 No /8/1 Android Dominic Hillenbrand ODROID-X2 GPIO Android OSCAR WFI 500[us] GPIO GP

IPSJ SIG Technical Report Vol.2013-ARC-206 No /8/1 Android Dominic Hillenbrand ODROID-X2 GPIO Android OSCAR WFI 500[us] GPIO GP Android 1 1 1 1 1 Dominic Hillenbrand 1 1 1 ODROID-X2 GPIO Android OSCAR WFI 500[us] GPIO GPIO API GPIO API GPIO MPEG2 Optical Flow MPEG2 1PE 0.97[W] 0.63[W] 2PE 1.88[w] 0.46[W] 3PE 2.79[W] 0.37[W] Optical

More information

EGunGPU

EGunGPU Super Computing in Accelerator simulations - Electron Gun simulation using GPGPU - K. Ohmi, KEK-Accel Accelerator Physics seminar 2009.11.19 Super computers in KEK HITACHI SR11000 POWER5 16 24GB 16 134GFlops,

More information

( CUDA CUDA CUDA CUDA ( NVIDIA CUDA I

(    CUDA CUDA CUDA CUDA (  NVIDIA CUDA I GPGPU (II) GPGPU CUDA 1 GPGPU CUDA(CUDA Unified Device Architecture) CUDA NVIDIA GPU *1 C/C++ (nvcc) CUDA NVIDIA GPU GPU CUDA CUDA 1 CUDA CUDA 2 CUDA NVIDIA GPU PC Windows Linux MaxOSX CUDA GPU CUDA NVIDIA

More information

MATLAB® における並列・分散コンピューティング ~ Parallel Computing Toolbox™ & MATLAB Distributed Computing Server™ ~

MATLAB® における並列・分散コンピューティング ~ Parallel Computing Toolbox™ & MATLAB Distributed Computing Server™ ~ MATLAB における並列 分散コンピューティング ~ Parallel Computing Toolbox & MATLAB Distributed Computing Server ~ MathWorks Japan Application Engineering Group Takashi Yoshida 2016 The MathWorks, Inc. 1 System Configuration

More information

CUDA 連携とライブラリの活用 2

CUDA 連携とライブラリの活用 2 1 09:30-10:00 受付 10:00-12:00 Reedbush-H ログイン GPU 入門 13:30-15:00 OpenACC 入門 15:15-16:45 OpenACC 最適化入門と演習 17:00-18:00 OpenACC の活用 (CUDA 連携とライブラリの活用 ) CUDA 連携とライブラリの活用 2 3 OpenACC 簡単にGPUプログラムが作成できる それなりの性能が得られる

More information

rank ”«‘‚“™z‡Ì GPU ‡É‡æ‡éŁÀŠñ›»

rank ”«‘‚“™z‡Ì GPU ‡É‡æ‡éŁÀŠñ›» rank GPU ERATO 2011 11 1 1 / 26 GPU rank/select wavelet tree balanced parenthesis GPU rank 2 / 26 GPU rank/select wavelet tree balanced parenthesis GPU rank 2 / 26 GPU rank/select wavelet tree balanced

More information

GPU n Graphics Processing Unit CG CAD

GPU n Graphics Processing Unit CG CAD GPU 2016/06/27 第 20 回 GPU コンピューティング講習会 ( 東京工業大学 ) 1 GPU n Graphics Processing Unit CG CAD www.nvidia.co.jp www.autodesk.co.jp www.pixar.com GPU n GPU ü n NVIDIA CUDA ü NVIDIA GPU ü OS Linux, Windows, Mac

More information

IPSJ SIG Technical Report Vol.2013-HPC-138 No /2/21 GPU CRS 1,a) 2,b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla

IPSJ SIG Technical Report Vol.2013-HPC-138 No /2/21 GPU CRS 1,a) 2,b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla GPU CRS 1,a),b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla K0 CUDA5.0 cusparse CRS SpMV 00 1.86 177 1. SpMV SpMV CRS Compressed Row Storage *1 SpMV GPU GPU NVIDIA Kepler

More information

01_OpenMP_osx.indd

01_OpenMP_osx.indd OpenMP* / 1 1... 2 2... 3 3... 5 4... 7 5... 9 5.1... 9 5.2 OpenMP* API... 13 6... 17 7... 19 / 4 1 2 C/C++ OpenMP* 3 Fortran OpenMP* 4 PC 1 1 9.0 Linux* Windows* Xeon Itanium OS 1 2 2 WEB OS OS OS 1 OS

More information

211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS /1/18 a a 1 a 2 a 3 a a GPU Graphics Processing Unit GPU CPU GPU GPGPU G

211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS /1/18 a a 1 a 2 a 3 a a GPU Graphics Processing Unit GPU CPU GPU GPGPU G 211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS211 211/1/18 GPU 4 8 BLAS 4 8 BLAS Basic Linear Algebra Subprograms GPU Graphics Processing Unit 4 8 double 2 4 double-double DD 4 4 8 quad-double

More information

概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran

概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran CUDA Fortran チュートリアル 2010 年 9 月 29 日 NEC 概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran を用いた Linux

More information

iphone GPGPU GPU OpenCL Mac OS X Snow LeopardOpenCL iphone OpenCL OpenCL NVIDIA GPU CUDA GPU GPU GPU 15 GPU GPU CPU GPU iii OpenMP MPI CPU OpenCL CUDA OpenCL CPU OpenCL GPU NVIDIA Fermi GPU Fermi GPU GPU

More information

! 行行 CPUDSP PPESPECell/B.E. CPUGPU 行行 SIMD [SSE, AltiVec] 用 HPC CPUDSP PPESPE (Cell/B.E.) SPE CPUGPU GPU CPU DSP DSP PPE SPE SPE CPU DSP SPE 2

! 行行 CPUDSP PPESPECell/B.E. CPUGPU 行行 SIMD [SSE, AltiVec] 用 HPC CPUDSP PPESPE (Cell/B.E.) SPE CPUGPU GPU CPU DSP DSP PPE SPE SPE CPU DSP SPE 2 ! OpenCL [Open Computing Language] 言 [OpenCL C 言 ] CPU, GPU, Cell/B.E.,DSP 言 行行 [OpenCL Runtime] OpenCL C 言 API Khronos OpenCL Working Group AMD Broadcom Blizzard Apple ARM Codeplay Electronic Arts Freescale

More information

TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日

TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日 TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日 目次 1. TSUBAMEのGPU 環境 2. プログラム作成 3. プログラム実行 4. 性能解析 デバッグ サンプルコードは /work0/gsic/seminars/gpu- 2011-09- 28 からコピー可能です 1.

More information

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx GPU のプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU プログラミング環境 (CUDA) GPU プログラムの実行の流れ CUDA によるプログラムの記述 カーネル (GPU で処理する関数 ) の構造 記述方法とその理由 GPU 固有のパラメータの確認 405 GPU(Graphics Processing Unit) とは 画像処理専用のハードウェア 具体的には画像処理用のチップ

More information

IPSJ SIG Technical Report Vol.2011-IOT-12 No /3/ , 6 Construction and Operation of Large Scale Web Contents Distribution Platfo

IPSJ SIG Technical Report Vol.2011-IOT-12 No /3/ , 6 Construction and Operation of Large Scale Web Contents Distribution Platfo 1 1 2 3 4 5 1 1, 6 Construction and Operation of Large Scale Web Contents Distribution Platform using Cloud Computing 1. ( ) 1 IT Web Yoshihiro Okamoto, 1 Naomi Terada and Tomohisa Akafuji, 1, 2 Yuko Okamoto,

More information

熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date Type URL Presentation

熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date Type URL Presentation 熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date 2011-03-17 Type URL Presentation http://hdl.handle.net/2298/23539 Right GPGPU による高速演算について 榎本昌一 東京大学大学院工学系研究科システム創成学専攻

More information

1 M32R Single-Chip Multiprocessor [2] [3] [4] [5] Linux/M32R UP(Uni-processor) SMP(Symmetric Multi-processor) MMU CPU nommu Linux/M32R Linux/M32R 2. M

1 M32R Single-Chip Multiprocessor [2] [3] [4] [5] Linux/M32R UP(Uni-processor) SMP(Symmetric Multi-processor) MMU CPU nommu Linux/M32R Linux/M32R 2. M M32R Linux SMP a) Implementation of Linux SMP kernel for M32R multiprocessor Hayato FUJIWARA a), Hitoshi YAMAMOTO, Hirokazu TAKATA, Kei SAKAMOTO, Mamoru SAKUGAWA, and Hiroyuki KONDO CPU OS 32 RISC M32R

More information

Emacs ML let start ::= exp (1) exp ::= (2) fn id exp (3) ::= (4) (5) ::= id (6) const (7) (exp) (8) let val id = exp in

Emacs ML let start ::= exp (1) exp ::= (2) fn id exp (3) ::= (4) (5) ::= id (6) const (7) (exp) (8) let val id = exp in Emacs, {l06050,sasano}@sic.shibaura-it.ac.jp Eclipse Visual Studio Standard ML Haskell Emacs 1 Eclipse Visual Studio variable not found LR(1) let Emacs Emacs Emacs Java Emacs JDEE [3] JDEE Emacs Java 2

More information

AMD/ATI Radeon HD 5870 GPU DEGIMA LINPACK HD 5870 GPU DEGIMA LINPACK GFlops/Watt GFlops/Watt Abstract GPU Computing has lately attracted

AMD/ATI Radeon HD 5870 GPU DEGIMA LINPACK HD 5870 GPU DEGIMA LINPACK GFlops/Watt GFlops/Watt Abstract GPU Computing has lately attracted DEGIMA LINPACK Energy Performance for LINPACK Benchmark on DEGIMA 1 AMD/ATI Radeon HD 5870 GPU DEGIMA LINPACK HD 5870 GPU DEGIMA LINPACK 1.4698 GFlops/Watt 1.9658 GFlops/Watt Abstract GPU Computing has

More information

SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [

SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [ SQUFOF SQUFOF NTT 2003 2 17 16 60 Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) 60 1 1.1 N 62 16 24 UBASIC 50 / 200 [ 01] 4 large prime 943 2 1 (%) 57 146 146 15

More information

スライド 1

スライド 1 GPU クラスタによる格子 QCD 計算 広大理尾崎裕介 石川健一 1.1 Introduction Graphic Processing Units 1 チップに数百個の演算器 多数の演算器による並列計算 ~TFLOPS ( 単精度 ) CPU 数十 GFLOPS バンド幅 ~100GB/s コストパフォーマンス ~$400 GPU の開発環境 NVIDIA CUDA http://www.nvidia.co.jp/object/cuda_home_new_jp.html

More information

26102 (1/2) LSISoC: (1) (*) (*) GPU SIMD MIMD FPGA DES, AES (2/2) (2) FPGA(8bit) (ISS: Instruction Set Simulator) (3) (4) LSI ECU110100ECU1 ECU ECU ECU ECU FPGA ECU main() { int i, j, k for { } 1 GP-GPU

More information

6 2. AUTOSAR 2.1 AUTOSAR AUTOSAR ECU OSEK/VDX 3) OSEK/VDX OS AUTOSAR AUTOSAR ECU AUTOSAR 1 AUTOSAR BSW (Basic Software) (Runtime Environment) Applicat

6 2. AUTOSAR 2.1 AUTOSAR AUTOSAR ECU OSEK/VDX 3) OSEK/VDX OS AUTOSAR AUTOSAR ECU AUTOSAR 1 AUTOSAR BSW (Basic Software) (Runtime Environment) Applicat AUTOSAR 1 1, 2 2 2 AUTOSAR AUTOSAR 3 2 2 41% 29% An Extension of AUTOSAR Communication Layers for Multicore Systems Toshiyuki Ichiba, 1 Hiroaki Takada, 1, 2 Shinya Honda 2 and Ryo Kurachi 2 AUTOSAR, a

More information

Microsoft Word - 0_0_表紙.doc

Microsoft Word - 0_0_表紙.doc 2km Local Forecast Model; LFM Local Analysis; LA 2010 11 2.1.1 2010a LFM 2.1.1 2011 3 11 2.1.1 2011 5 2010 6 1 8 3 1 LFM LFM MSM LFM FT=2 2009; 2010 MSM RMSE RMSE MSM RMSE 2010 1 8 3 2010 6 2010 6 8 2010

More information

26 FPGA 11 05340 1 FPGA (Field Programmable Gate Array) ASIC (Application Specific Integrated Circuit) FPGA FPGA FPGA FPGA Linux FreeDOS skewed way L1

26 FPGA 11 05340 1 FPGA (Field Programmable Gate Array) ASIC (Application Specific Integrated Circuit) FPGA FPGA FPGA FPGA Linux FreeDOS skewed way L1 FPGA 272 11 05340 26 FPGA 11 05340 1 FPGA (Field Programmable Gate Array) ASIC (Application Specific Integrated Circuit) FPGA FPGA FPGA FPGA Linux FreeDOS skewed way L1 FPGA skewed L2 FPGA skewed Linux

More information

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( ) 71 特集 オープンソースの大きな流れ Nonlinear Sloshing Analysis in a Three-dimensional Rectangular Pool Ken UZAWA, The Center for Computational Sciences and E-systems, Japan Atomic Energy Agency 1 1.1 ( ) (RIST) (ORNL/RSICC)

More information

GPGPUクラスタの性能評価

GPGPUクラスタの性能評価 2008 年度理研 HPC シンポジウム第 3 世代 PC クラスタ GPGPU クラスタの性能評価 2009 年 3 月 12 日 富士通研究所成瀬彰 発表の概要 背景 GPGPU による高速化 CUDA の概要 GPU のメモリアクセス特性調査 姫野 BMT の高速化 GPGPU クラスタによる高速化 GPU Host 間のデータ転送 GPU-to-GPU の通信性能 GPGPU クラスタ上での姫野

More information

[email protected] No1 No2 OS Wintel Intel x86 CPU No3 No4 8bit=2 8 =256(Byte) 16bit=2 16 =65,536(Byte)=64KB= 6 5 32bit=2 32 =4,294,967,296(Byte)=4GB= 43 64bit=2 64 =18,446,744,073,709,551,615(Byte)=16EB

More information

HP Workstation 総合カタログ

HP Workstation 総合カタログ HP Workstation Z HP 6 Z HP HP Z840 Workstation P.9 HP Z640 Workstation & CPU P.10 HP Z440 Workstation P.11 17.3in WIDE HP ZBook 17 G2 Mobile Workstation P.15 15.6in WIDE HP ZBook 15 G2 Mobile Workstation

More information

programmingII2019-v01

programmingII2019-v01 II 2019 2Q A 6/11 6/18 6/25 7/2 7/9 7/16 7/23 B 6/12 6/19 6/24 7/3 7/10 7/17 7/24 x = 0 dv(t) dt = g Z t2 t 1 dv(t) dt dt = Z t2 t 1 gdt g v(t 2 ) = v(t 1 ) + g(t 2 t 1 ) v v(t) x g(t 2 t 1 ) t 1 t 2

More information

Vol.214-HPC-145 No /7/3 C #pragma acc directive-name [clause [[,] clause] ] new-line structured block Fortran!$acc directive-name [clause [[,] c

Vol.214-HPC-145 No /7/3 C #pragma acc directive-name [clause [[,] clause] ] new-line structured block Fortran!$acc directive-name [clause [[,] c Vol.214-HPC-145 No.45 214/7/3 OpenACC 1 3,1,2 1,2 GPU CUDA OpenCL OpenACC OpenACC High-level OpenACC CPU Intex Xeon Phi K2X GPU Intel Xeon Phi 27% K2X GPU 24% 1. TSUBAME2.5 CPU GPU CUDA OpenCL CPU OpenMP

More information

HPE Moonshot System ~ビッグデータ分析&モバイルワークプレイスを新たなステージへ~

HPE Moonshot System ~ビッグデータ分析&モバイルワークプレイスを新たなステージへ~ Brochure HPE Moonshot System HPE Moonshot System 4.3U 45 HPE Moonshot System Xeon & HPE Moonshot System HPE Moonshot System HPE HPE Moonshot System &IoT & SoC Xeon D-1500 Broadwell-DE HPE ProLiant m510

More information

I I / 47

I I / 47 1 2013.07.18 1 I 2013 3 I 2013.07.18 1 / 47 A Flat MPI B 1 2 C: 2 I 2013.07.18 2 / 47 I 2013.07.18 3 / 47 #PJM -L "rscgrp=small" π-computer small: 12 large: 84 school: 24 84 16 = 1344 small school small

More information

PRIMERGY 性能情報 SPECint2006 / SPECfp2006 測定結果一覧

PRIMERGY 性能情報 SPECint2006 / SPECfp2006 測定結果一覧 SPECint / SPECfp 測定結果一覧 しおり より 測定結果を確認したいモデル名を選択してください 07 年 6 月 8 日更新 分類 モデル名 更新日 前版からの変更 ラックサーバ RX00 S7 (0 年 5 月以降発表モデル ) 0 年 0 月 3 日 RX00 S7 (0 年 6 月発表モデル ) RX00

More information

2ndD3.eps

2ndD3.eps CUDA GPGPU 2012 UDX 12/5/24 p. 1 FDTD GPU FDTD GPU FDTD FDTD FDTD PGI Acceralator CUDA OpenMP Fermi GPU (Tesla C2075/C2070, GTX 580) GT200 GPU (Tesla C1060, GTX 285) PC GPGPU 2012 UDX 12/5/24 p. 2 FDTD

More information

FIT2013( 第 12 回情報科学技術フォーラム ) I-032 Acceleration of Adaptive Bilateral Filter base on Spatial Decomposition and Symmetry of Weights 1. Taiki Makishi Ch

FIT2013( 第 12 回情報科学技術フォーラム ) I-032 Acceleration of Adaptive Bilateral Filter base on Spatial Decomposition and Symmetry of Weights 1. Taiki Makishi Ch I-032 Acceleration of Adaptive Bilateral Filter base on Spatial Decomposition and Symmetry of Weights 1. Taiki Makishi Chikatoshi Yamada Shuichi Ichikawa Gaussian Filter GF GF Bilateral Filter BF CG [1]

More information

Run-Based Trieから構成される 決定木の枝刈り法

Run-Based Trieから構成される  決定木の枝刈り法 Run-Based Trie 2 2 25 6 Run-Based Trie Simple Search Run-Based Trie Network A Network B Packet Router Packet Filtering Policy Rule Network A, K Network B Network C, D Action Permit Deny Permit Network

More information

MPI usage

MPI usage MPI (Version 0.99 2006 11 8 ) 1 1 MPI ( Message Passing Interface ) 1 1.1 MPI................................. 1 1.2............................... 2 1.2.1 MPI GATHER.......................... 2 1.2.2

More information

hotspot の特定と最適化

hotspot の特定と最適化 1 1? 1 1 2 1. hotspot : hotspot hotspot Parallel Amplifier 1? 2. hotspot : (1 ) Parallel Composer 1 Microsoft* Ticker Tape Smoke 1.0 PiSolver 66 / 64 / 2.76 ** 84 / 27% ** 75 / 17% ** 1.46 89% Microsoft*

More information

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L 1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives

More information

OpenMP (1) 1, 12 1 UNIX (FUJITSU GP7000F model 900), 13 1 (COMPAQ GS320) FUJITSU VPP5000/64 1 (a) (b) 1: ( 1(a))

OpenMP (1) 1, 12 1 UNIX (FUJITSU GP7000F model 900), 13 1 (COMPAQ GS320) FUJITSU VPP5000/64 1 (a) (b) 1: ( 1(a)) OpenMP (1) 1, 12 1 UNIX (FUJITSU GP7000F model 900), 13 1 (COMPAQ GS320) FUJITSU VPP5000/64 1 (a) (b) 1: ( 1(a)) E-mail: {nanri,amano}@cc.kyushu-u.ac.jp 1 ( ) 1. VPP Fortran[6] HPF[3] VPP Fortran 2. MPI[5]

More information

(Basic Theory of Information Processing) 1

(Basic Theory of Information Processing) 1 (Basic Theory of Information Processing) 1 10 (p.178) Java a[0] = 1; 1 a[4] = 7; i = 2; j = 8; a[i] = j; b[0][0] = 1; 2 b[2][3] = 10; b[i][j] = a[2] * 3; x = a[2]; a[2] = b[i][3] * x; 2 public class Array0

More information

strtok-count.eps

strtok-count.eps IoT FPGA 2016/12/1 IoT FPGA 200MHz 32 ASCII PCI Express FPGA OpenCL (Volvox) Volvox CPU 10 1 IoT (Internet of Things) 2020 208 [1] IoT IoT HTTP JSON ( Python Ruby) IoT IoT IoT (Hadoop [2] ) AI (Artificial

More information

HP High Performance Computing(HPC)

HP High Performance Computing(HPC) ACCELERATE HP High Performance Computing HPC HPC HPC HPC HPC 1000 HPHPC HPC HP HPC HPC HPC HP HPCHP HP HPC 1 HPC HP 2 HPC HPC HP ITIDC HP HPC 1HPC HPC No.1 HPC TOP500 2010 11 HP 159 32% HP HPCHP 2010 Q1-Q4

More information

HP xw9400 Workstation

HP xw9400 Workstation HP xw9400 Workstation HP xw9400 Workstation AMD Opteron TM PCI Express x16 64 PCI Express x16 2 USB2.0 8 IEEE1394 2 8DIMM HP HP xw9400 Workstation HP CPU HP CPU 240W CPU HP xw9400 HP CPU CPU CPU CPU Sound

More information

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055 1 1 1 2 DCRA 1. 1.1 1) 1 Tactile Interface with Air Jets for Floating Images Aya Higuchi, 1 Nomin, 1 Sandor Markon 1 and Satoshi Maekawa 2 The new optical device DCRA can display floating images in free

More information

PRIMERGY 性能情報 SPECint2006 / SPECfp2006 測定結果一覧

PRIMERGY 性能情報 SPECint2006 / SPECfp2006 測定結果一覧 SPECint / SPECfp 測定結果一覧 しおり より 測定結果を確認したいモデル名を選択してください 07 年 8 月 30 日更新 分類 モデル名 更新日 前版からの変更 ラックサーバ RX00 S7 (0 年 5 月以降発表モデル ) 0 年 0 月 3 日 RX00 S7 (0 年 6 月発表モデル ) RX00

More information

2012年度HPCサマーセミナー_多田野.pptx

2012年度HPCサマーセミナー_多田野.pptx ! CCS HPC! I " [email protected]" " 1 " " " " " " " 2 3 " " Ax = b" " " 4 Ax = b" A = a 11 a 12... a 1n a 21 a 22... a 2n...... a n1 a n2... a nn, x = x 1 x 2. x n, b = b 1 b 2. b n " " 5 Gauss LU

More information

スパコンに通じる並列プログラミングの基礎

スパコンに通じる並列プログラミングの基礎 2018.06.04 2018.06.04 1 / 62 2018.06.04 2 / 62 Windows, Mac Unix 0444-J 2018.06.04 3 / 62 Part I Unix GUI CUI: Unix, Windows, Mac OS Part II 2018.06.04 4 / 62 0444-J ( : ) 6 4 ( ) 6 5 * 6 19 SX-ACE * 6

More information

XcalableMP入門

XcalableMP入門 XcalableMP 1 HPC-Phys@, 2018 8 22 XcalableMP XMP XMP Lattice QCD!2 XMP MPI MPI!3 XMP 1/2 PCXMP MPI Fortran CCoarray C++ MPIMPI XMP OpenMP http://xcalablemp.org!4 XMP 2/2 SPMD (Single Program Multiple Data)

More information

スパコンに通じる並列プログラミングの基礎

スパコンに通じる並列プログラミングの基礎 2016.06.06 2016.06.06 1 / 60 2016.06.06 2 / 60 Windows, Mac Unix 0444-J 2016.06.06 3 / 60 Part I Unix GUI CUI: Unix, Windows, Mac OS Part II 0444-J 2016.06.06 4 / 60 ( : ) 6 6 ( ) 6 10 6 16 SX-ACE 6 17

More information

インテル(R) Visual Fortran Composer XE 2013 Windows版 入門ガイド

インテル(R) Visual Fortran Composer XE 2013 Windows版 入門ガイド Visual Fortran Composer XE 2013 Windows* エクセルソフト株式会社 www.xlsoft.com Rev. 1.1 (2012/12/10) Copyright 1998-2013 XLsoft Corporation. All Rights Reserved. 1 / 53 ... 3... 4... 4... 5 Visual Studio... 9...

More information

HP Workstation Xeon 5600

HP Workstation Xeon 5600 HP Workstation Xeon 5600 HP 2 No.1 HP 5 3 Z 2No.1 HP :IDC's Worldwide Quarterly Workstation Tracker, 2009 Q4 14.0in Wide HP EliteBook 8440w/CT Mobile Workstation 15.6in Wide HP EliteBook 8540w Mobile Workstation

More information