1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境 Lin

Size: px
Start display at page:

Download "1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境 Lin"

Transcription

1 Windows で始める CUDA 入門 GTC 2013 チュートリアル エヌビディアジャパン CUDA エンジニア森野慎也

2 1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境 Linux Windows MacOS X にて動作

3 Compute Capability ハードウエアアーキテクチャのバージョン Fermi (2.0 以降 ) がターゲットです 機能対応するデバイス発表 1.0 初期バージョン 2006/ global メモリ上の 32-bit atomic 演算 GeForce 9XXX 系 2007/ メモリアクセスパターンの改善実行スレッド数の増加 など GeForce GT240 など 1.3 倍精度演算 GTX285, Tesla C1060 など 2008/ cores/sm L1 キャッシュなど GTX580 Tesla C2070 など 2009/ cores/sm GTX460 GTX560Ti など cores/smx GTX680, Tesla K /3 3.5 Dynamic Parallelism, 64 DP/SMX Tesla K20(X) 2012/11

4 最近の CUDA デバイス デバイス名 コア数 ピーク演算性能単精度 / 倍精度 (FLOPS) メモリバンド幅 GB/sec Compute Capability 3.0 Quadro K T / 90 G 173 Tesla K x T / 0.19 T 320 GeForce GTX T / 134 G Compute Capability 3.5 Tesla K20X T / 1.31 T 250 Tesla K T / 1.17 T 208 GeForce GTX Titan T / 1.31 T 288.4

5 1. Nsight Visual Studio Edition Visual Studio での CUDA 開発 ビルド デバッグ プロファイル CUDA Toolkit に含まれる (CUDA 5.5 から ) 開発者登録が不要になりました

6 1. 装置構成 マザーボード CPU ( 数コア ) DRAM チップセット PCIe GPU: CPU につながった GPU プロセッサ (~ 数千コア ) DRAM 外部演算装置

7 1. 典型的な実行例 CPU プログラム開始 GPU は CPU からの制御で動作する GPU データ転送 GPU プログラム実行依頼 完了待ち GPU での演算 データ転送 入力データは CPU GPU へと転送 結果は GPU CPU と転送

8 1. CUDA カーネル カーネル = GPU 上のプログラム GPU 向け言語 (C++ ベース ) にて記述される 特別なコンパイラ (NVCC) でコンパイル 100 万スレッドオーダーでの並列動作 Massively parallel 並列度の階層構造 GPU のアーキテクチャに密接に関係

9 1. カーネル実行の階層 CPU GPU Grid データ転送 Block0 Block1 Thread Thread CPU からの呼び出し単位 Block に分解される Block GPU プログラム実行依頼 Grid Block2 Thread 一定数の Thread を持つ GPU 上の並列プロセッサ (SMX) 内部でで実行される Block n Thread Thread 最小の実行単位

10 1. Warp Block Warp0 Thread Warp 32 GPU-threads Warp1 Thread HW 上の実行単位 Warp2 Thread Warp n Thread

11 1. Streaming Multiprocessor extreme SMX ( 簡略化しています ) レジスタ 64 K 個 (256 KB) 192 Cores/SMX Compute Capability 3.5 Core Core Core Core Core Core Core Core Core Core Core Core SFU Core Core Core LD/ST Core Core Core DP Core Core Core 共有メモリ L1 Cache 64 KB テクスチャキャッシュ 48 KB SFU Special Function Unit LD/ST Load/Store Core 15 Core 15 Core 15 SFU 15 LD/ST 15 DP 15 DP 倍精度演算ユニット

12 1. Streaming Multiprocessor extreme GPU 内部の 並列プロセッサ 本質的に並列 ( しか実行できない ) Block は SMX 内部で動作 GPU は SMX の個数でスケールする 高性能な GPU 数多くの SMX を搭載 旧世代 (Fermi 以前 ): Streaming Multiprocessor (SM) と呼びます

13 1. Grid Block Warp Thread Grid カーネル全体 全ての Block を含む Block カーネル設計 時に 重要な粒度 Blockのサイズはカーネル内で一定 実行個数は 変更可能 Warp 高速なプログラムを書く 時に重要な粒度 HWに密接に関連 分岐処理 メモリアクセスの粒度 Thread 個々のGPUスレッド カーネルは スレッド単位の視点で書く

14 1. CUDA プログラム実行の概要 SM(X) CPU Grid Block Block Block Warp Warp Warp Grid Block CPU からの呼び出し単位 Block に分解 SM 上の実行単位 Warp に分解 SM 共有メモリのスコープ Warp CUDA 固有の並列単位 32 GPU threads 条件分岐の粒度 SM(X) ハードウエア上の並列プロセッサ

15 2. プログラミングの基礎 ホストプログラミング メモリ転送 カーネルの実行 カーネルプログラミング GPU 上の関数の実装

16 2.1 CUDA ホストプログラミング メモリのアロケーション 解放 cudamalloc()/cudafree() メモリコピー cudamemcpy() カーネルの呼び出し 特殊な構文 同期 cudadevicesynchronize()

17 2.1 cudamalloc() / cudafree() cudaerror_t cudamalloc(void devptr, size_t size) cudaerror_t cudafree(void *); 例 : float *devptr; /* float 型 1024 個の要素分のデバイスメモリをアロケート */ cudamalloc((void**)&devptr, sizeof(float) * 1024); /* 解放 */ cudafree(devptr);

18 2.1 cudamemcpy() cudaerror_t cudamemcpy (void dst, const void src, size_t count, enum cudamemcpykind kind) 例 : float src[1024] = {..} float *ddst; cudamalloc((void**)&ddst, sizeof(float) * 1024); cudamemcpy(ddst, src, sizeof(float) * 1024, cudamemcpyhosttodevice); src から ddst に float 型 1024 個の要素をコピーする

19 2.1 cudamemcpy() メモリは ホスト デバイス の二種類 enum cudamemcpykind cudamemcpyhosttodevice cudamemcpydevicetohost cudamemcpydevicetodevice cudamemcpyhosttohost (cudamemcpydefault : GPUdirect)

20 2.1 カーネル呼び出し カーネル呼び出しの構文 kernelname<<<griddim, BlockDim>>>( 引数 ); GridDim : グリッド中のブロック数 BlockDim : ブロックあたりのスレッド数引数は 複数個指定可能例 : sample<<<1, 256>>>(x, y, z);

21 2.1 cudadevicesynchronize() cudaerror_t cudadevicesynchronize (void) 例 : somekernel<<<xxx, yyy>>>(a, b, c); cudadevicesynchronize(); カーネルが終了するまで待つ

22 2.1 cudaerror_t エラーチェック 成功時は cudasuccess を返す エラーの場合 値を確認 const char cudageterrorstring (cudaerror_t error) エラーを説明する文字列を返す

23 2.1 CUDA カーネル global void mykernel(int a, float *pb, ) { /* device code */ } ホストから呼び出し可能なデバイス側の関数 global を修飾子として持つ 戻り値は void でなければならない 通常の C/C++ の構文が使用可能

24 2.2 プログラム例 配列の和 c[i] = a[i] + b[i] メモリの取り扱い基本的なカーネルの実装

25 2.2 デバイス メモリ構成 ホスト GPU SM(X) CPU ホストメモリ PCIe デバイスメモリ ( グローバルメモリ ) CPU 側ホストホストメモリ GPU 側デバイスグローバルメモリ

26 2.2 配列の和 : メモリの扱い ホスト GPU float *a, *b, *c をアロケート float *da, *db, *dc をアロケート ( デバイスメモリ ) *a, *bに値を設定ホスト-> デバイス転送 a-> da, b->db カーネル実行依頼 カーネル dc[i] = da[i] + db[i] ホスト <- デバイス転送 c <- dc 結果表示 検証 float *a, *b, *c を開放 float *da, *db, *dc を開放 ( デバイスメモリ )

27 2.2 配列の和 : ホストコード int main() { static const int size= 256 * 100; int memsize = sizeof(float) * size; float *a, *b, *c, *da, *db, *dc; /* ホストもデバイスもメモリは同じポインタ型 */ /* ホスト側メモリの確保と値の初期化 ( 略 )*/ /* GPU 側メモリをアロケート */ cudamalloc(&da, memsize); cudamalloc(&db,memsize); cudamalloc(&dc, memsize); cudamemcpy(da, a, memsize, cudamemcpyhosttodevice); /* メモリ転送 (Host Device) */ cudamemcpy(db, b, memsize, cudamemcpyhosttodevice); /* カーネル (addarraykernel) をここで呼ぶ */ } cudamemcpy(c, dc, memsize, cudamemcpydevicetohost); /* メモリ転送 (Host Device) */ /* 表示などの処理 ( 略 ) */ cudafree(da); cudafree(db); cudafree(dc); free(a); free(b); free(c);

28 2.2 並列化 ( カーネル設計 ) 複数のブロックに配分して 和をとる 図は 1 ブロックあたり 4 スレッドとした場合 Block[0] Block[1] Block[2] Block[3] a[i] b[i] c[i]

29 2.2 Global ID / Local ID / Block ID Global ID Grid 内で一意 blockdim.x * blockidx.x + threadidx.x Local ID Block 内で一意 threadidx.x Global ID Block ID (blockidx) 0 Local ID (threadidx) 0 Thread 1 Thread 2 Thread 3 Thread Block ID blockidx.x (OpenCL から概念を拝借 ) Block ID 1 Local ID 0 Thread 1 Thread 2 Thread 3 Thread

30 2.2 カーネル実装 global void addarraykernel(float *dc, const float *da, const float *db, int size) { } /* Global ID を算出 */ int globalid = blockdim.x * blockidx.x + threadidx.x; if (globalid < size) { /* 範囲チェック */ /* 自スレッド担当の要素のみ 処理 */ dc[globalid] = da[globalid] + db[globalid]; }

31 2.2 ブロック数の指定 カーネルはブロック数でスケールする ブロックごとのスレッド数は一定 /* griddim * blockdim 個のスレッドを起動する */ int blockdim = 256; int griddim = (size + blockdim 1) / blockdim; addarraykernel<<<griddim, blockdim>>>(dc, da, db, size);

32 2.2 配列の和 : ホストコード int main() { static const int size= 256 * 100; int memsize = sizeof(float) * size; float *a, *b, *c, *da, *db, *dc; /* ホストもデバイスもメモリは同じポインタ型 */ /* ホスト側メモリの確保と値の初期化 ( 略 )*/ /* GPU 側メモリをアロケート */ cudamalloc(&da, memsize); cudamalloc(&db,memsize); cudamalloc(&dc, memsize); cudamemcpy(da, a, memsize, cudamemcpyhosttodevice); /* メモリ転送 (Host Device) */ cudamemcpy(db, b, memsize, cudamemcpyhosttodevice); int blockdim = 256; int griddim = (size + blockdim 1) / blockdim; addarraykernel<<<griddim, blockdim>>>(dc, da, db, size); // cudadevicesynchronize(); /* 同期 今回は 必須ではない */ } cudamemcpy(c, dc, memsize, cudamemcpydevicetohost); /* メモリ転送 (Host Device) */ /* 表示などの処理 ( 略 ) */ cudafree(da); cudafree(db); cudafree(dc); free(a); free(b); free(c);

33 3. Visual Studio 2010 によるビルド ビルドルールの追加

34 3. Visual Studio 2010 によるビルド Compute Capability の設定

35 3. Visual Studio 2010 によるビルド ライブラリ指定

36 NVIDIA Japan CUDA Monthly Seminar NVIDIA Japan では 毎月 CUDA の無償セミナーを実施しています 是非 ご参加ください 申し込み : 場所 : NVIDIA Japan 赤坂オフィス

CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン

CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン CUDA 画像処理入門 エヌビディアジャパン CUDA エンジニア森野慎也 GTC Japan 2014 CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン RGB Y( 輝度 ) 変換 カラー画像から グレイスケールへの変換 Y = 0.299 R + 0.587

More information

Slide 1

Slide 1 CUDA プログラミングの基本 パート II - カーネル CUDA の基本の概要 パート I CUDAのソフトウェアスタックとコンパイル GPUのメモリ管理 パート II カーネルの起動 GPUコードの具体像 注 : 取り上げているのは基本事項のみです そのほか多数の API 関数についてはプログラミングガイドを ご覧ください GPU 上でのコードの実行 カーネルは C 関数 + 多少の制約 ホストメモリはアクセスできない戻り値型は

More information

NUMAの構成

NUMAの構成 GPU のプログラム 天野 アクセラレータとは? 特定の性質のプログラムを高速化するプロセッサ 典型的なアクセラレータ GPU(Graphic Processing Unit) Xeon Phi FPGA(Field Programmable Gate Array) 最近出て来た Deep Learning 用ニューロチップなど Domain Specific Architecture 1GPGPU:General

More information

Slide 1

Slide 1 CUDA プログラミングの基本 パート I - ソフトウェアスタックとメモリ管理 CUDA の基本の概要 パート I CUDAのソフトウェアスタックとコンパイル GPUのメモリ管理 パートII カーネルの起動 GPUコードの具体項目 注 : 取り上げているのは基本事項のみです そのほか多数の API 関数についてはプログラミングガイドを ご覧ください CUDA インストレーション CUDA インストレーションの構成

More information

CUDA 連携とライブラリの活用 2

CUDA 連携とライブラリの活用 2 1 09:30-10:00 受付 10:00-12:00 Reedbush-H ログイン GPU 入門 13:30-15:00 OpenACC 入門 15:15-16:45 OpenACC 最適化入門と演習 17:00-18:00 OpenACC の活用 (CUDA 連携とライブラリの活用 ) CUDA 連携とライブラリの活用 2 3 OpenACC 簡単にGPUプログラムが作成できる それなりの性能が得られる

More information

TSUBAME2.0におけるGPUの 活用方法

TSUBAME2.0におけるGPUの 活用方法 GPU プログラミング 基礎編 東京工業大学学術国際情報センター 1. GPU コンピューティングと TSUBAME2.0 スーパーコンピュータ GPU コンピューティングとは グラフィックプロセッサ (GPU) は グラフィック ゲームの画像計算のために 進化を続けてきた 現在 CPU のコア数は 2~12 個に対し GPU 中には数百コア その GPU を一般アプリケーションの高速化に利用! GPGPU

More information

07-二村幸孝・出口大輔.indd

07-二村幸孝・出口大輔.indd GPU Graphics Processing Units HPC High Performance Computing GPU GPGPU General-Purpose computation on GPU CPU GPU GPU *1 Intel Quad-Core Xeon E5472 3.0 GHz 2 6 MB L2 cache 1600 MHz FSB 80 GFlops 1 nvidia

More information

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx GPU のプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU プログラミング環境 (CUDA) GPU プログラムの実行の流れ CUDA によるプログラムの記述 カーネル (GPU で処理する関数 ) の構造 記述方法とその理由 GPU 固有のパラメータの確認 405 GPU(Graphics Processing Unit) とは 画像処理専用のハードウェア 具体的には画像処理用のチップ

More information

ストリームを用いたコンカレントカーネルプログラミングと最適化 エヌビディアジャパン CUDAエンジニア森野慎也 GTC Japan 2014

ストリームを用いたコンカレントカーネルプログラミングと最適化 エヌビディアジャパン CUDAエンジニア森野慎也 GTC Japan 2014 ストリームを用いたコンカレントカーネルプログラミングと最適化 エヌビディアジャパン CUDAエンジニア森野慎也 GTC Japan 2014 コンカレントな処理の実行 システム内部の複数の処理を 平行に実行する CPU GPU メモリ転送 カーネル実行 複数のカーネル間 ストリーム GPU 上の処理キュー カーネル実行 メモリ転送の並列性 実行順序 DEFAULT STREAM Stream : GPU

More information

熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date Type URL Presentation

熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date Type URL Presentation 熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date 2011-03-17 Type URL Presentation http://hdl.handle.net/2298/23539 Right GPGPU による高速演算について 榎本昌一 東京大学大学院工学系研究科システム創成学専攻

More information

1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU.....

1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU..... CPU GPU N Q07-065 2011 2 17 1 1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU...........................................

More information

GPU のアーキテクチャとプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓

GPU のアーキテクチャとプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓 GPU のアーキテクチャとプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU のアーキテクチャ CUDA CUDA によるプログラミング 58 GPU(Graphics Processing Unit) とは 画像処理専用のハードウェア 具体的には画像処理用のチップ チップ単体では販売されていない PCI Ex カードで販売 ( チップ単体と区別せずに GPU と呼ぶことも多い

More information

1. マシンビジョンにおける GPU の活用

1. マシンビジョンにおける GPU の活用 CUDA 画像処理入門 GTC 213 チュートリアル エヌビディアジャパン CUDA エンジニア森野慎也 1. マシンビジョンにおける GPU の活用 1. 医用画像処理における GPU の活用 CT や MRI から画像を受信して三次元画像の構築をするシステム 2 次元スキャンデータから 3 次元 4 次元イメージの高速生成 CUDA 化により画像処理速度を約 2 倍に高速化 1. CUDA で画像処理

More information

GPU 画像 動画処理用ハードウェア 低性能なプロセッサがたくさん詰まっている ピーク性能が非常に高い GPUを数値計算に用いるのがGPGPU Graphics Processing Unit General Purpose GPU TSUBAME2.0: GPUスパコン 本演習ではNVIDIA社の

GPU 画像 動画処理用ハードウェア 低性能なプロセッサがたくさん詰まっている ピーク性能が非常に高い GPUを数値計算に用いるのがGPGPU Graphics Processing Unit General Purpose GPU TSUBAME2.0: GPUスパコン 本演習ではNVIDIA社の 演習II (連続系アルゴリズム) 第2回: GPGPU 須田研究室 M1 本谷 徹 motoya@is.s.u-tokyo.ac.jp 2012/10/19 GPU 画像 動画処理用ハードウェア 低性能なプロセッサがたくさん詰まっている ピーク性能が非常に高い GPUを数値計算に用いるのがGPGPU Graphics Processing Unit General Purpose GPU TSUBAME2.0:

More information

untitled

untitled GPGPU NVIDACUDA Learn More about CUDA - NVIDIA http://www.nvidia.co.jp/object/cuda_education_jp.html NVIDIA CUDA programming Guide CUDA http://www.sintef.no/upload/ikt/9011/simoslo/evita/2008/seland.pdf

More information

概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran

概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran CUDA Fortran チュートリアル 2010 年 9 月 29 日 NEC 概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran を用いた Linux

More information

( CUDA CUDA CUDA CUDA ( NVIDIA CUDA I

(    CUDA CUDA CUDA CUDA (  NVIDIA CUDA I GPGPU (II) GPGPU CUDA 1 GPGPU CUDA(CUDA Unified Device Architecture) CUDA NVIDIA GPU *1 C/C++ (nvcc) CUDA NVIDIA GPU GPU CUDA CUDA 1 CUDA CUDA 2 CUDA NVIDIA GPU PC Windows Linux MaxOSX CUDA GPU CUDA NVIDIA

More information

Slides: TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments

Slides: TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments 計算機アーキテクチャ第 11 回 マルチプロセッサ 本資料は授業用です 無断で転載することを禁じます 名古屋大学 大学院情報科学研究科 准教授加藤真平 デスクトップ ジョブレベル並列性 スーパーコンピュータ 並列処理プログラム プログラムの並列化 for (i = 0; i < N; i++) { x[i] = a[i] + b[i]; } プログラムの並列化 x[0] = a[0] + b[0];

More information

GPU GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1

GPU GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1 GPU 4 2010 8 28 1 GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1 Register & Shared Memory ( ) CPU CPU(Intel Core i7 965) GPU(Tesla

More information

GPU チュートリアル :OpenACC 篇 Himeno benchmark を例題として 高エネルギー加速器研究機構 (KEK) 松古栄夫 (Hideo Matsufuru) 1 December 2018 HPC-Phys 理化学研究所 共通コードプロジェクト

GPU チュートリアル :OpenACC 篇 Himeno benchmark を例題として 高エネルギー加速器研究機構 (KEK) 松古栄夫 (Hideo Matsufuru) 1 December 2018 HPC-Phys 理化学研究所 共通コードプロジェクト GPU チュートリアル :OpenACC 篇 Himeno benchmark を例題として 高エネルギー加速器研究機構 (KEK) 松古栄夫 (Hideo Matsufuru) 1 December 2018 HPC-Phys 勉強会 @ 理化学研究所 共通コードプロジェクト Contents Hands On 環境について Introduction to GPU computing Introduction

More information

Microsoft PowerPoint - suda.pptx

Microsoft PowerPoint - suda.pptx GPU の HWアーキテクチャと高性能化手法 須田礼仁 ( 東京大学 ) 2011/03/22 GPU 高性能プログラミング GPU のハードウェアを理解する CUDA のソフトウェアを理解する CUDA でプログラムを書くのは難しくないが, CUDA で高速なプログラムを書くのは難しい どうすれば遅くなるかを理解する! 効果が大きいものから順に説明します 1 高性能プログラミングの手順 1. 現在のコードの,

More information

TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日

TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日 TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日 目次 1. TSUBAMEのGPU 環境 2. プログラム作成 3. プログラム実行 4. 性能解析 デバッグ サンプルコードは /work0/gsic/seminars/gpu- 2011-09- 28 からコピー可能です 1.

More information

CUDA基礎1

CUDA基礎1 CUDA 基礎 1 東京工業大学 学術国際情報センター 黄遠雄 2016/6/27 第 20 回 GPU コンピューティング講習会 1 ヘテロジニアス コンピューティング ヘテロジニアス コンピューティング (CPU + GPU) は広く使われている Financial Analysis Scientific Simulation Engineering Simulation Data Intensive

More information

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx GPU のメモリ階層 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU のメモリ階層 グローバルメモリ 共有メモリ モザイク処理への適用 コンスタントメモリ 空間フィルタへの適用 577 GPU の主要部品 基盤 GPU( チップ )+ 冷却部品 画面出力端子 電源入力端子 メモリ 特性の把握が重要 電源入力端子 画面出力端子 メモリ チップ PCI Ex 端子 http://www.geforce.com/whats

More information

GPGPUクラスタの性能評価

GPGPUクラスタの性能評価 2008 年度理研 HPC シンポジウム第 3 世代 PC クラスタ GPGPU クラスタの性能評価 2009 年 3 月 12 日 富士通研究所成瀬彰 発表の概要 背景 GPGPU による高速化 CUDA の概要 GPU のメモリアクセス特性調査 姫野 BMT の高速化 GPGPU クラスタによる高速化 GPU Host 間のデータ転送 GPU-to-GPU の通信性能 GPGPU クラスタ上での姫野

More information

GPGPUイントロダクション

GPGPUイントロダクション 大島聡史 ( 並列計算分科会主査 東京大学情報基盤センター助教 ) GPGPU イントロダクション 1 目的 昨今注目を集めている GPGPU(GPU コンピューティング ) について紹介する GPGPU とは何か? 成り立ち 特徴 用途 ( ソフトウェアや研究例の紹介 ) 使い方 ( ライブラリ 言語 ) CUDA GPGPU における課題 2 GPGPU とは何か? GPGPU General-Purpose

More information

3次多項式パラメタ推定計算の CUDAを用いた実装 (CUDAプログラミングの練習として) Implementation of the Estimation of the parameters of 3rd-order-Polynomial with CUDA

3次多項式パラメタ推定計算の CUDAを用いた実装 (CUDAプログラミングの練習として)  Implementation of the Estimation of the parameters of 3rd-order-Polynomial with CUDA 3 次多項式パラメタ推定計算の CUDA を用いた実装 (CUDA プログラミングの練習として ) Estimating the Parameters of 3rd-order-Polynomial with CUDA ISS 09/11/12 問題の選択 目的 CUDA プログラミングを経験 ( 試行錯誤と習得 ) 実際に CPU のみの場合と比べて高速化されることを体験 問題 ( インプリメントする内容

More information

PowerPoint Presentation

PowerPoint Presentation ヘテロジニアスな環境におけるソフトウェア開発 Agenda 今日の概要 ヘテロジニアスな環境の登場 ホモジニアスからヘテロジニアスへ ヘテロジニアスなアーキテクチャ GPU CUDA OpenACC, XeonPhi 自分のプログラムを理解するために デバッガ 共通の操作体験 TotalView 続きはブースで より速く ホモジーニアスな並列 HPC 銀河生成 金融のリスク計算 車の衝突解析 製薬

More information

Slide 1

Slide 1 電子情報通信学会研究会組込みシステム研究会 (IPSJ-EMB) 2010 年 1 月 28 日 超並列マルチコア GPU を用いた高速演算処理の実用化 NVIDIA Solution Architect 馬路徹 目次 なぜ今 GPU コンピューティングか? CPUの性能向上速度が減速 性能向上 = 並列処理 にGPUコンピューティングが応える CUDAシステムアーキテクチャによる超並列処理の実現

More information

Microsoft PowerPoint - GPUシンポジウム _d公開版.ppt [互換モード]

Microsoft PowerPoint - GPUシンポジウム _d公開版.ppt [互換モード] 200/0/9 数値流体解析の並列効率とその GPU による高速化の試み 清水建設 ( 株 ) 技術研究所 PHAM VAN PHUC ( ファムバンフック ) 流体計算時間短縮と GPU の活用の試み 現 CPUとの比較によりGPU 活用の可能性 現 CPU の最大利用 ノード内の最大計算資源の利用 すべてCPUコアの利用 適切なアルゴリズムの利用 CPU コア性能の何倍? GPU の利用の試み

More information

名称 : 日本 GPU コンピューティングパートナーシップ (G-DEP) 所在 : 東京都文京区本郷 7 丁目 3 番 1 号東京大学アントレプレナープラザ, 他工場 URL アライアンスパートナー コアテクノロジーパートナー NVIDIA JAPAN ソリュ

名称 : 日本 GPU コンピューティングパートナーシップ (G-DEP) 所在 : 東京都文京区本郷 7 丁目 3 番 1 号東京大学アントレプレナープラザ, 他工場 URL   アライアンスパートナー コアテクノロジーパートナー NVIDIA JAPAN ソリュ GPUDirect の現状整理 multi-gpu に取組むために G-DEP チーフエンジニア河井博紀 (kawai@gdep.jp) 名称 : 日本 GPU コンピューティングパートナーシップ (G-DEP) 所在 : 東京都文京区本郷 7 丁目 3 番 1 号東京大学アントレプレナープラザ, 他工場 URL http://www.gdep.jp アライアンスパートナー コアテクノロジーパートナー

More information

いまからはじめる組み込みGPU実装

いまからはじめる組み込みGPU実装 いまからはじめる組み込み GPU 実装 ~ コンピュータービジョン ディープラーニング編 ~ MathWorks Japan アプリケーションエンジニアリング部シニアアプリケーションエンジニア大塚慶太郎 2017 The MathWorks, Inc. 1 コンピュータービジョン ディープラーニングによる 様々な可能性 自動運転 ロボティクス 予知保全 ( 製造設備 ) セキュリティ 2 転移学習を使った画像分類

More information

工学院大学建築系学科近藤研究室2000年度卒業論文梗概

工学院大学建築系学科近藤研究室2000年度卒業論文梗概 耐災害性の高い通信システムにおけるサーバ計算機の性能と消費電力に関する考察 耐障害性, 消費電力, 低消費電力サーバ 山口実靖 *. はじめに 性能と表皮電力の関係について調査し, 考察を行う 災害においては, 減災活動が極めて重要である すなわち 災害が発生した後に適切に災害に対処することにより, その被害を大きく軽減できる. 適切な災害対策を行うには災害対策を行う拠点が正常に運営されていることが必要不可欠であり,

More information

Microsoft Word - paper.docx

Microsoft Word - paper.docx による高速画像処理 名古屋大学大学院情報科学研究科出口大輔, 井手一郎, 村瀬洋 概要 : 本発表では, 近年注目を集めている GP(General Purpose computing on s) の技術に着目し,GP を利用するための開発環境の使い方やプログラミングのノウハウを分かりやすく解説する. GP は を汎用計算に利用しようという試みであり, 現在では物理シミュレーション, 数値計算, 信号解析,

More information

目的と目次 OpenCL はこれからのマルチコアプログラミングの主流 ( かも ) GPU (NVIDIA, AMD/ATI) Cell B.E. 組み込みプロセッサ 共通コードとして OpenCL に対応するために必要な準備を考える 目次 基礎編 ( 今回 ) OpenCL とは 実践編 高速化の

目的と目次 OpenCL はこれからのマルチコアプログラミングの主流 ( かも ) GPU (NVIDIA, AMD/ATI) Cell B.E. 組み込みプロセッサ 共通コードとして OpenCL に対応するために必要な準備を考える 目次 基礎編 ( 今回 ) OpenCL とは 実践編 高速化の OpenCL と共通コード (1) 基礎編 Typo 訂正版 : 4 Dec 2010 Hideo Matsufuru (KEK) 3 Dec 2010 共通コードミーティング @ 筑波大計算科学研究センター 目的と目次 OpenCL はこれからのマルチコアプログラミングの主流 ( かも ) GPU (NVIDIA, AMD/ATI) Cell B.E. 組み込みプロセッサ 共通コードとして OpenCL

More information

GPGPU

GPGPU GPGPU 2013 1008 2015 1 23 Abstract In recent years, with the advance of microscope technology, the alive cells have been able to observe. On the other hand, from the standpoint of image processing, the

More information

DO 時間積分 START 反変速度の計算 contravariant_velocity 移流項の計算 advection_adams_bashforth_2nd DO implicit loop( 陰解法 ) 速度勾配, 温度勾配の計算 gradient_cell_center_surface 速

DO 時間積分 START 反変速度の計算 contravariant_velocity 移流項の計算 advection_adams_bashforth_2nd DO implicit loop( 陰解法 ) 速度勾配, 温度勾配の計算 gradient_cell_center_surface 速 1 1, 2 1, 2 3 2, 3 4 GP LES ASUCA LES NVIDIA CUDA LES 1. Graphics Processing Unit GP General-Purpose SIMT Single Instruction Multiple Threads 1 2 3 4 1),2) LES Large Eddy Simulation 3) ASUCA 4) LES LES

More information

Microsoft PowerPoint - GPU_computing_2013_01.pptx

Microsoft PowerPoint - GPU_computing_2013_01.pptx GPU コンピューティン No.1 導入 東京工業大学 学術国際情報センター 青木尊之 1 GPU とは 2 GPGPU (General-purpose computing on graphics processing units) GPU を画像処理以外の一般的計算に使う GPU の魅力 高性能 : ハイエンド GPU はピーク 4 TFLOPS 超 手軽さ : 普通の PC にも装着できる 低価格

More information

tabaicho3mukunoki.pptx

tabaicho3mukunoki.pptx 1 2 はじめに n 目的 4倍精度演算より高速な3倍精度演算を実現する l 倍精度では足りないが4倍精度は必要ないケースに欲しい l 4倍精度に比べてデータサイズが小さい Ø 少なくともメモリ律速な計算では4倍精度よりデータ 転送時間を減らすことが可能 Ø PCIeやノード間通信がボトルネックとなりやすい GPUクラスタ環境に有効か n 研究概要 l DD型4倍精度演算 DD演算 に基づく3倍精度演算

More information

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx GPGPU の歴史と応用例 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU の進化の歴史 GPU のアーキテクチャ GPU の産業応用例 38 GPGPU 実践基礎工学 GPU(Graphics Processing Unit) とは 画像処理専用のハードウェア 具体的には画像処理用のチップ チップ単体では販売されていない PCI Ex カードで販売 ( チップ単体と区別せずに GPU

More information

IPSJ SIG Technical Report Vol.2013-HPC-138 No /2/21 GPU CRS 1,a) 2,b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla

IPSJ SIG Technical Report Vol.2013-HPC-138 No /2/21 GPU CRS 1,a) 2,b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla GPU CRS 1,a),b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla K0 CUDA5.0 cusparse CRS SpMV 00 1.86 177 1. SpMV SpMV CRS Compressed Row Storage *1 SpMV GPU GPU NVIDIA Kepler

More information

Microsoft PowerPoint - 先端GPGPUシミュレーション工学特論(web).pptx

Microsoft PowerPoint - 先端GPGPUシミュレーション工学特論(web).pptx 複数 GPU の利用 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 並列アーキテクチャと並列処理の分類 OpenMP 複数 GPU の利用 GPU Direct によるデータ通信 939 複数の GPU を利用する目的 Grouse の 1 ノードには 4 台の GPU を搭載 Tesla M2050 1T FLOPS/ 台 3 GB/ 台 4 台全てを使う事で期待できる性能 GPU を

More information

GPUコンピューティング講習会パート1

GPUコンピューティング講習会パート1 GPU コンピューティング (CUDA) 講習会 GPU と GPU を用いた計算の概要 丸山直也 スケジュール 13:20-13:50 GPU を用いた計算の概要 担当丸山 13:50-14:30 GPU コンピューティングによる HPC アプリケーションの高速化の事例紹介 担当青木 14:30-14:40 休憩 14:40-17:00 CUDA プログラミングの基礎 担当丸山 TSUBAME の

More information

Microsoft Word - HOKUSAI_system_overview_ja.docx

Microsoft Word - HOKUSAI_system_overview_ja.docx HOKUSAI システムの概要 1.1 システム構成 HOKUSAI システムは 超並列演算システム (GWMPC BWMPC) アプリケーション演算サーバ群 ( 大容量メモリ演算サーバ GPU 演算サーバ ) と システムの利用入口となるフロントエンドサーバ 用途の異なる 2 つのストレージ ( オンライン ストレージ 階層型ストレージ ) から構成されるシステムです 図 0-1 システム構成図

More information

2 09:00-09:30 受付 09:30-12:00 GPU 入門,CUDA 入門 13:00-14:30 OpenACC 入門 + HA-PACS ログイン 14:45-16:15 OpenACC 最適化入門と演習 16:30-18:00 CUDA 最適化入門と演習

2 09:00-09:30 受付 09:30-12:00 GPU 入門,CUDA 入門 13:00-14:30 OpenACC 入門 + HA-PACS ログイン 14:45-16:15 OpenACC 最適化入門と演習 16:30-18:00 CUDA 最適化入門と演習 担当 大島聡史 ( 助教 ) ohshima@cc.u-tokyo.ac.jp 星野哲也 ( 助教 ) hoshino@cc.u-tokyo.ac.jp 質問やサンプルプログラムの提供についてはメールでお問い合わせください 1 2016 年 6 月 8 日 ( 水 ) 東京大学情報基盤センター 2 09:00-09:30 受付 09:30-12:00 GPU 入門,CUDA 入門 13:00-14:30

More information

GPUコンピューティングの現状と未来

GPUコンピューティングの現状と未来 GPU コンピューティングの現状と未来 成瀬彰, HPC Developer Technology, NVIDIA Summary 我々のゴールと方向性 ゴール実現に向けて進めている技術開発 Unified Memory, OpenACC Libraries, GPU Direct Kepler の機能紹介 Warp shuffle, Memory system Hyper-Q, Dynamic Parallelism

More information

VXPRO R1400® ご提案資料

VXPRO R1400® ご提案資料 Intel Core i7 プロセッサ 920 Preliminary Performance Report ノード性能評価 ノード性能の評価 NAS Parallel Benchmark Class B OpenMP 版での性能評価 実行スレッド数を 4 で固定 ( デュアルソケットでは各プロセッサに 2 スレッド ) 全て 2.66GHz のコアとなるため コアあたりのピーク性能は同じ 評価システム

More information

memo

memo 計数工学プログラミング演習 ( 第 3 回 ) 2016/04/26 DEPARTMENT OF MATHEMATICAL INFORMATICS 1 内容 ポインタ malloc 構造体 2 ポインタ あるメモリ領域 ( アドレス ) を代入できる変数 型は一致している必要がある 定義時には値は不定 ( 何も指していない ) 実際にはどこかのメモリを指しているので, #include

More information

Images per Second Images per Second VOLTA: ディープラーニングにおける大きな飛躍 ResNet-50 トレーニング 2.4x faster ResNet-50 推論 TensorRT - 7ms レイテンシ 3.7x faster P100 V100 P10

Images per Second Images per Second VOLTA: ディープラーニングにおける大きな飛躍 ResNet-50 トレーニング 2.4x faster ResNet-50 推論 TensorRT - 7ms レイテンシ 3.7x faster P100 V100 P10 NVIDIA TESLA V100 CUDA 9 のご紹介 森野慎也, シニアソリューションアーキテクト (GPU-Computing) NVIDIA Images per Second Images per Second VOLTA: ディープラーニングにおける大きな飛躍 ResNet-50 トレーニング 2.4x faster ResNet-50 推論 TensorRT - 7ms レイテンシ

More information

Microsoft PowerPoint - OpenMP入門.pptx

Microsoft PowerPoint - OpenMP入門.pptx OpenMP 入門 須田礼仁 2009/10/30 初版 OpenMP 共有メモリ並列処理の標準化 API http://openmp.org/ 最新版は 30 3.0 バージョンによる違いはあまり大きくない サポートしているバージョンはともかく csp で動きます gcc も対応しています やっぱり SPMD Single Program Multiple Data プログラム #pragma omp

More information

スライド 1

スライド 1 GPU クラスタによる格子 QCD 計算 広大理尾崎裕介 石川健一 1.1 Introduction Graphic Processing Units 1 チップに数百個の演算器 多数の演算器による並列計算 ~TFLOPS ( 単精度 ) CPU 数十 GFLOPS バンド幅 ~100GB/s コストパフォーマンス ~$400 GPU の開発環境 NVIDIA CUDA http://www.nvidia.co.jp/object/cuda_home_new_jp.html

More information

ホワイトペーパー

ホワイトペーパー ホワイトペーパー NVIDIA の次世代 CUDA コンピュートアーキテクチャ : Fermi 目次 GPU コンピューティングの歴史 G80 アーキテクチャ計算処理とグラフィックスをカバーする NVIDIA の次世代アーキテクチャ CUDA ( 開発コード : Fermi ) CUDA の概要ハードウェア実行 Fermi アーキテクチャの概要第 3 世代のストリーミング マルチプロセッサ 512

More information

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2016-CSEC-75 No /12/1 ハッシュ関数 Keccak の GPU 実装 グェンダットトゥオン 1 1 岩井啓輔 1 黒川恭一 概要 : 次世代ハッシュ関数 SHA-3 の候補であった Ke

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2016-CSEC-75 No /12/1 ハッシュ関数 Keccak の GPU 実装 グェンダットトゥオン 1 1 岩井啓輔 1 黒川恭一 概要 : 次世代ハッシュ関数 SHA-3 の候補であった Ke ハッシュ関数 Keccak の GPU 実装 グェンダットトゥオン 1 1 岩井啓輔 1 黒川恭一 概要 : 次世代ハッシュ関数 SHA-3 の候補であった Keccak は 2012 年 10 月 2 日のコンペティションの勝者として選定され,2015 年 8 月 5 日に正式版が FIPS PUB 202 として公表された.Keccak は, スポンジ構造に基づくハッシュ関数であり,MD5 や

More information

Slide 1

Slide 1 GPUコンピューティング入門 2015.08.26 エヌビディア合同会社 CUDAエンジニア 村上真奈 エヌビディアのGPUについて (20 分 ) GPUコンピューティングとは?(10 分 ) OpenACC 入門 (90 分 ) CUDA 入門 (90 分 ) Agenda 2 エヌビディアのGPUについて (20 分 ) GPUコンピューティングとは?(10 分 ) OpenACC 入門 (90

More information

GPGPUによる高速画像処理

GPGPUによる高速画像処理 GPGPU による高速画像処理 ~ リアルタイム画像処理への挑戦 ~ 名古屋大学大学院情報科学研究科 出口大輔 リアルタイム画像処理 2 3 発表の流れ GPGPU を始める前に GPGPU の基礎知識 CUDA の使い方 CUDA を使う前に プログラミングの予備知識 CUDA を使って Hello World GPGPU にチャレンジ 行列積の計算 テンプレートマッチング ガウシアンフィルタ SIFT

More information

GPUを用いたN体計算

GPUを用いたN体計算 単精度 190Tflops GPU クラスタ ( 長崎大 ) の紹介 長崎大学工学部超高速メニーコアコンピューティングセンターテニュアトラック助教濱田剛 1 概要 GPU (Graphics Processing Unit) について簡単に説明します. GPU クラスタが得意とする応用問題を議論し 長崎大学での GPU クラスタによる 取組方針 N 体計算の高速化に関する研究内容 を紹介します. まとめ

More information

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h 23 FPGA CUDA Performance Comparison of FPGA Array with CUDA on Poisson Equation (lijiang@sekine-lab.ei.tuat.ac.jp), (kazuki@sekine-lab.ei.tuat.ac.jp), (takahashi@sekine-lab.ei.tuat.ac.jp), (tamukoh@cc.tuat.ac.jp),

More information

本文ALL.indd

本文ALL.indd Intel Xeon プロセッサにおける Cache Coherency 時間の性能測定方法河辺峻田口成美古谷英祐 Intel Xeon プロセッサにおける Cache Coherency 時間の性能測定方法 Performance Measurement Method of Cache Coherency Effects on an Intel Xeon Processor System 河辺峻田口成美古谷英祐

More information

CCS HPCサマーセミナー 並列数値計算アルゴリズム

CCS HPCサマーセミナー 並列数値計算アルゴリズム 大規模系での高速フーリエ変換 2 高橋大介 daisuke@cs.tsukuba.ac.jp 筑波大学計算科学研究センター 2016/6/2 計算科学技術特論 B 1 講義内容 並列三次元 FFT における自動チューニング 二次元分割を用いた並列三次元 FFT アルゴリズム GPU クラスタにおける並列三次元 FFT 2016/6/2 計算科学技術特論 B 2 並列三次元 FFT における 自動チューニング

More information

型名 RF007 ラジオコミュニケーションテスタ Radio Communication Tester ソフトウェア開発キット マニュアル アールエフネットワーク株式会社 RFnetworks Corporation RF007SDK-M001 RF007SDK-M001 参考資料 1

型名 RF007 ラジオコミュニケーションテスタ Radio Communication Tester ソフトウェア開発キット マニュアル アールエフネットワーク株式会社 RFnetworks Corporation RF007SDK-M001 RF007SDK-M001 参考資料 1 型名 RF007 ラジオコミュニケーションテスタ Radio Communication Tester ソフトウェア開発キット マニュアル アールエフネットワーク株式会社 RFnetworks Corporation RF007SDK-M001 RF007SDK-M001 参考資料 1 第 1 章製品概要本開発キットは RF007 ラジオコミュニケーションテスタ ( 本器 ) を使用したソフトウェアを開発するためのライブラリソフトウェアです

More information

memo

memo 計数工学プログラミング演習 ( 第 3 回 ) 2017/04/25 DEPARTMENT OF MATHEMATICAL INFORMATICS 1 内容 ポインタの続き 引数の値渡しと参照渡し 構造体 2 ポインタで指されるメモリへのアクセス double **R; 型 R[i] と *(R+i) は同じ意味 意味 R double ** ポインタの配列 ( の先頭 ) へのポインタ R[i]

More information

Microsoft PowerPoint _OpenCAE並列計算分科会.pptx

Microsoft PowerPoint _OpenCAE並列計算分科会.pptx 地球流体力学に関する GPGPU を用いた数値計算 神戸大学惑星科学研究センター西澤誠也 地球流体力学とは 地球 惑星に関連がある流体の力学 回転, 重力の影響 e.g. 大気, 海洋, マントル 数値計算は天気予報 & 弾道軌道予測から始まった ベクトル計算機 地球流体の計算はベクトル長が長いものが多い ベクトル計算機の凋落 某社の次世代スパコンからの撤退 個人的スパコンの将来予想 個々の演算器はシンプルに

More information

Slide 1

Slide 1 OpenFoam のための C/C++ 第 3 回 OpenFoam で勉強るテンプレート 田中昭雄 1 目的 この勉強会の資料があれば OpenFoam カスタマイズ時に C/C++ で迷わない 2 予定 第 1 回メモリ管理 第 2 回 CFDの例で勉強するクラス 第 3 回 OpenFOAMで勉強するテンプレート 第 4 回 OpenFOAMカスタマイズ 第 5 回未定 第 6 回未定 3 今回のテーマ

More information

GPU CUDA CUDA 2010/06/28 1

GPU CUDA CUDA 2010/06/28 1 GPU CUDA CUDA 2010/06/28 1 GPU NVIDIA Mark Harris, Optimizing Parallel Reduction in CUDA http://developer.download.nvidia.com/ compute/cuda/1_1/website/data- Parallel_Algorithms.html#reduction CUDA SDK

More information

Microsoft PowerPoint ppt

Microsoft PowerPoint ppt 基礎演習 3 C 言語の基礎 (5) 第 05 回 (20 年 07 月 07 日 ) メモリとポインタの概念 ビットとバイト 計算機内部では データは2 進数で保存している 計算機は メモリにデータを蓄えている bit 1bit 0 もしくは 1 のどちらかを保存 byte 1byte 1bitが8つ集まっている byte が メモリの基本単位として使用される メモリとアドレス メモリは 1byte

More information

1 OpenCL OpenCL 1 OpenCL GPU ( ) 1 OpenCL Compute Units Elements OpenCL OpenCL SPMD (Single-Program, Multiple-Data) SPMD OpenCL work-item work-group N

1 OpenCL OpenCL 1 OpenCL GPU ( ) 1 OpenCL Compute Units Elements OpenCL OpenCL SPMD (Single-Program, Multiple-Data) SPMD OpenCL work-item work-group N GPU 1 1 2 1, 3 2, 3 (Graphics Unit: GPU) GPU GPU GPU Evaluation of GPU Computing Based on An Automatic Program Generation Technology Makoto Sugawara, 1 Katsuto Sato, 1 Kazuhiko Komatsu, 2 Hiroyuki Takizawa

More information

main.dvi

main.dvi PC 1 1 [1][2] [3][4] ( ) GPU(Graphics Processing Unit) GPU PC GPU PC ( 2 GPU ) GPU Harris Corner Detector[5] CPU ( ) ( ) CPU GPU 2 3 GPU 4 5 6 7 1 toyohiro@isc.kyutech.ac.jp 45 2 ( ) CPU ( ) ( ) () 2.1

More information

VOLTA AND TURING: ARCHITECTURE Akira Naruse, Developer Technology, 2018/9/14

VOLTA AND TURING: ARCHITECTURE Akira Naruse, Developer Technology, 2018/9/14 VOLTA AND TURING: ARCHITECTURE AND PERFORMANCE OPTIMIZATION Akira Naruse, Developer Technology, 2018/9/14 VOLTA AND TURING: ARCHITECTURE Akira Naruse, Developer Technology, 2018/9/14 For HPC and Deep Learning

More information

AquesTalk Mac マニュアル

AquesTalk Mac マニュアル AquesTalk Mac マニュアル 2010/1/6 ( 株 ) アクエスト http://www.a-quest.com/ 1. 概要 本文書は 規則音声合成ライブラリ AquesTalk Mac( 以下 AquesTalk ) をアプリケーションに組み込んで使用するためのプログラミングに関して 方法および注意点を示したものです AquesTalk Mac は Win 版の AquesTalk

More information

Microsoft PowerPoint - exp2-02_intro.ppt [互換モード]

Microsoft PowerPoint - exp2-02_intro.ppt [互換モード] 情報工学実験 II 実験 2 アルゴリズム ( リスト構造とハッシュ ) 実験を始める前に... C 言語を復習しよう 0. プログラム書ける? 1. アドレスとポインタ 2. 構造体 3. 構造体とポインタ 0. プログラム書ける? 講義を聴いているだけで OK? 言語の要素技術を覚えれば OK? 目的のプログラム? 要素技術 データ型 配列 文字列 関数 オブジェクト クラス ポインタ 2 0.

More information

並列・高速化を実現するための 高速化サービスの概要と事例紹介

並列・高速化を実現するための 高速化サービスの概要と事例紹介 第 4 回 AVS 可視化フォーラム 2019 並列 高速化を実現するための 高速化サービスの概要と事例紹介 株式会社アーク情報システム営業部仮野亮ソリューション技術部佐々木竜一 2019.08.30 はじめに アーク情報システムの紹介 高速化サービスとは? 事例紹介 コンサルティングサービスについて アーク情報システムの紹介 設立 資本金 :1987 年 10 月 :3 億 600 万円 従業員数

More information

関数 C 言語は関数の言語 関数とは 関数の定義 : f(x) = x * x ; 使うときは : y = f(x) 戻り値 引数

関数 C 言語は関数の言語 関数とは 関数の定義 : f(x) = x * x ; 使うときは : y = f(x) 戻り値 引数 関数 C 言語は関数の言語 関数とは 関数の定義 : f(x) = x * x ; 使うときは : y = f(x) 戻り値 引数 関数の定義 戻り値の型 関数名 引数の型 引数の名前 int funcname ( int a, char b) { int c ; c = a * b ; return c ; 引数の型 引数の名前 戻り値 戻り値の型は int 変数 c の型も int return

More information

スライド 1

スライド 1 知能制御システム学 画像処理の高速化 OpenCV による基礎的な例 東北大学大学院情報科学研究科鏡慎吾 swk(at)ic.is.tohoku.ac.jp 2007.07.03 リアルタイム処理と高速化 リアルタイム = 高速 ではない 目標となる時間制約が定められているのがリアルタイム処理である.34 ms かかった処理が 33 ms に縮んだだけでも, それによって与えられた時間制約が満たされるのであれば,

More information

GPUコンピューティング講習会パート1

GPUコンピューティング講習会パート1 GPU コンピューティング (CUDA) 講習会 GPU と GPU を用いた計算の概要 丸山直也 スケジュール 13:20-13:50 GPU を用いた計算の概要 担当丸山 13:50-14:30 GPU コンピューティングによる HPC アプリケーションの高速化の事例紹介 担当青木 14:30-14:40 休憩 14:40-17:00 CUDA プログラミングの基礎 担当丸山 TSUBAME の

More information

POSIXスレッド

POSIXスレッド POSIX スレッド (3) システムプログラミング 2011 年 11 月 7 日 建部修見 同期の戦略 単一大域ロック スレッドセーフ関数 構造的コードロッキング 構造的データロッキング ロックとモジュラリティ デッドロック 単一大域ロック (single global lock) 単一のアプリケーションワイドの mutex スレッドが実行するときに獲得, ブロックする前にリリース どのタイミングでも一つのスレッドが共有データをアクセスする

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 部内向けスキルアップ研修 組込み OS 自作入門 2014 年 2 月 10st ステップ担当 : 中村 目次 はじめに OSの役割 メモリ管理 メモリ管理実装 プログラムの実行 まとめ はじめに 前回やったこと OS の原型を作成 今回やること 9th ステップでは CPU 時間 という資源管理 本ステップでは メモリ という資源管理 10.1 OS の役割 10.1.1 コンピュータの 3 大要素

More information

Catalog_Quadro_Series_ のコピー2

Catalog_Quadro_Series_ のコピー2 NVIDIA Quadro Series NVIDIA Quadro Design, Built, and Tested by NVIDIA NVIDIA QUADRO シリーズ 総合カタログ BREAKTHROUGH IN EVERY FORM. 比類なきパワー 比類なき創造的自由 NVIDIA のこ れ ま で で 最 も 強 力 な GPU アー キ テ クチャであ る NVIDIA Pascal

More information

修士論文

修士論文 AVX を用いた倍々精度疎行列ベクトル積の高速化 菱沼利彰 1 藤井昭宏 1 田中輝雄 1 長谷川秀彦 2 1 工学院大学 2 筑波大学 1 目次 1. 研究背景 目的 2. 実装, 実験環境 3. 実験 - 倍々精度ベクトル演算 - 4. 実験 - 倍々精度疎行列ベクトル積 - 5. まとめ 多倍長精度計算フォーラム 2 目次 1. 研究背景 目的 2. 実装, 実験環境 3. 実験 - 倍々精度ベクトル演算

More information

Microsoft PowerPoint - ARCEMB08HayashiSlides.ppt [互換モード]

Microsoft PowerPoint - ARCEMB08HayashiSlides.ppt [互換モード] 演算 / メモリ性能バランスを考慮した CMP 向けオンチップ メモリ貸与法の提案 九州大学 林徹生今里賢一井上弘士村上和彰 1 発表手順 背景 目的 演算 / メモリ性能バランシング 概要 アクセスレイテンシの削減とオーバーヘッド 提案手法の実現方法 着目する命令 (Cell プロセッサへの ) 実装 性能評価 姫野ベンチマーク Susan@MiBench おわりに 2 チップマルチプロセッサ (CMP)

More information

Microsoft PowerPoint - CproNt02.ppt [互換モード]

Microsoft PowerPoint - CproNt02.ppt [互換モード] 第 2 章 C プログラムの書き方 CPro:02-01 概要 C プログラムの構成要素は関数 ( プログラム = 関数の集まり ) 関数は, ヘッダと本体からなる 使用する関数は, プログラムの先頭 ( 厳密には, 使用場所より前 ) で型宣言 ( プロトタイプ宣言 ) する 関数は仮引数を用いることができる ( なくてもよい ) 関数には戻り値がある ( なくてもよい void 型 ) コメント

More information

研究報告用MS-Wordテンプレートファイル

研究報告用MS-Wordテンプレートファイル マルチコアおよび GPGPU 環境における画像処理最適化 矢野勝久 高山征大 境隆二出宮健彦 スケーラを題材として, マルチコアおよび GPGPU 各々の HW 特性に適した画像処理の最適化を図る. マルチコア環境では, 数値演算処理の削減,SIMD 化など直列性能の最適化を行った後,OpenMP を利用して並列化を図る.GPGPU(CUDA) では, スレッド並列を優先して並列処理の設計を行いブロックサイズを決める.

More information

N 体問題 長岡技術科学大学電気電子情報工学専攻出川智啓

N 体問題 長岡技術科学大学電気電子情報工学専攻出川智啓 N 体問題 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 天体の運動方程式 天体運動の GPU 実装 最適化による性能変化 #pragma unroll 855 計算の種類 画像処理, 差分法 空間に固定された観測点を配置 観測点 ( 固定 ) 観測点上で物理量がどのように変化するかを追跡 Euler 型 多粒子の運動 観測点を配置せず, 観測点が粒子と共に移動 Lagrange 型 観測点

More information

hpc141_shirahata.pdf

hpc141_shirahata.pdf GPU アクセラレータと不揮発性メモリ を考慮した I/O 性能の予備評価 白幡晃一 1,2 佐藤仁 1,2 松岡聡 1 1: 東京工業大学 2: JST CREST 1 GPU と不揮発性メモリを用いた 大規模データ処理 大規模データ処理 センサーネットワーク 遺伝子情報 SNS など ペタ ヨッタバイト級 高速処理が必要 スーパーコンピュータ上での大規模データ処理 GPU 高性能 高バンド幅 例

More information

Insert your Title here

Insert your Title here マルチコア マルチスレッド環境での静的解析ツールの応用 米 GrammaTech 社 CodeSonar によるスレッド間のデータ競合の検出 2013 GrammaTech, Inc. All rights reserved Agenda 並列実行に起因する不具合の摘出 なぜ 並列実行されるプログラミングは難しいのか データの競合 デッドロック どのようにして静的解析ツールで並列実行の問題を見つけるのか?

More information

27_02.indd

27_02.indd GPGPU を用いたソフトウェア高速化手法 Technique to Speedup of the software by GPGPU 大田弘樹 馬場明子 下田雄一 安田隆洋 山本啓二 Hiroki Ota, Akiko Baba, Shimoda Yuichi, Takahiro Yasuta, Keiji Yamamoto PCやワークステーションにおいて画像処理に特化して使用されてきたGPUを

More information

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx 並列計算の概念 ( プロセスとスレッド ) 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 並列計算の分類 並列アーキテクチャ 並列計算機システム 並列処理 プロセスとスレッド スレッド並列化 OpenMP プロセス並列化 MPI 249 CPU の性能の変化 動作クロックを向上させることで性能を向上 http://pc.watch.impress.co.jp/docs/2003/0227/kaigai01.htm

More information

スライド 1

スライド 1 東北大学工学部機械知能 航空工学科 2019 年度クラス C D 情報科学基礎 I 14. さらに勉強するために 大学院情報科学研究科 鏡慎吾 http://www.ic.is.tohoku.ac.jp/~swk/lecture/ 0 と 1 の世界 これまで何を学んだか 2 進数, 算術演算, 論理演算 計算機はどのように動くのか プロセッサとメモリ 演算命令, ロード ストア命令, 分岐命令 計算機はどのように構成されているのか

More information

NUMAの構成

NUMAの構成 共有メモリを使ったデータ交換と同期 慶應義塾大学理工学部 天野英晴 hunga@am.ics.keio.ac.jp 同期の必要性 あるプロセッサが共有メモリに書いても 別のプロセッサにはそのことが分からない 同時に同じ共有変数に書き込みすると 結果がどうなるか分からない そもそも共有メモリって結構危険な代物 多くのプロセッサが並列に動くには何かの制御機構が要る 不可分命令 同期用メモリ バリア同期機構

More information

! 行行 CPUDSP PPESPECell/B.E. CPUGPU 行行 SIMD [SSE, AltiVec] 用 HPC CPUDSP PPESPE (Cell/B.E.) SPE CPUGPU GPU CPU DSP DSP PPE SPE SPE CPU DSP SPE 2

! 行行 CPUDSP PPESPECell/B.E. CPUGPU 行行 SIMD [SSE, AltiVec] 用 HPC CPUDSP PPESPE (Cell/B.E.) SPE CPUGPU GPU CPU DSP DSP PPE SPE SPE CPU DSP SPE 2 ! OpenCL [Open Computing Language] 言 [OpenCL C 言 ] CPU, GPU, Cell/B.E.,DSP 言 行行 [OpenCL Runtime] OpenCL C 言 API Khronos OpenCL Working Group AMD Broadcom Blizzard Apple ARM Codeplay Electronic Arts Freescale

More information

program7app.ppt

program7app.ppt プログラム理論と言語第 7 回 ポインタと配列, 高階関数, まとめ 有村博紀 吉岡真治 公開スライド PDF( 情報知識ネットワーク研 HP/ 授業 ) http://www-ikn.ist.hokudai.ac.jp/~arim/pub/proriron/ 本スライドは,2015 北海道大学吉岡真治 プログラム理論と言語, に基づいて, 現著者の承諾のもとに, 改訂者 ( 有村 ) が加筆修正しています.

More information

N08

N08 CPU のキモチ C.John 自己紹介 英語きらい 絵かけない 人の話を素直に信じない CPUにキモチなんてない お詫び 予告ではCとC# とありましたがやる気と時間の都合上 C++のみを対象とします 今日のネタ元 MSDN マガジン 2010 年 10 月号 http://msdn.microsoft.com/ja-jp/magazine/cc850829.aspx Windows と C++

More information

1 GPU GPGPU GPU CPU 2 GPU 2007 NVIDIA GPGPU CUDA[3] GPGPU CUDA GPGPU CUDA GPGPU GPU GPU GPU Graphics Processing Unit LSI LSI CPU ( ) DRAM GPU LSI GPU

1 GPU GPGPU GPU CPU 2 GPU 2007 NVIDIA GPGPU CUDA[3] GPGPU CUDA GPGPU CUDA GPGPU GPU GPU GPU Graphics Processing Unit LSI LSI CPU ( ) DRAM GPU LSI GPU GPGPU (I) GPU GPGPU 1 GPU(Graphics Processing Unit) GPU GPGPU(General-Purpose computing on GPUs) GPU GPGPU GPU ( PC ) PC PC GPU PC PC GPU GPU 2008 TSUBAME NVIDIA GPU(Tesla S1070) TOP500 29 [1] 2009 AMD

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 高性能計算基盤 第 7 回 CA1003: 主記憶共有型システム http://arch.naist.jp/htdocs-arch3/ppt/ca1003/ca1003j.pdf Copyright 2019 奈良先端大中島康彦 1 2 3 4 マルチスレッディングとマルチコア 5 6 7 主記憶空間の数が 複数 か 1 つ か 8 ただしプログラムは容易 9 1 つの主記憶空間を共有する場合 10

More information

スライド 1

スライド 1 東北大学工学部機械知能 航空工学科 2016 年度 5 セメスター クラス C3 D1 D2 D3 計算機工学 14. さらに勉強するために 大学院情報科学研究科 鏡慎吾 http://www.ic.is.tohoku.ac.jp/~swk/lecture/ 0 と 1 の世界 これまで何を学んだか 2 進数, 算術演算, 論理演算 計算機はどのように動くのか プロセッサとメモリ 演算命令, ロード

More information

(Microsoft PowerPoint \215u\213`4\201i\221\272\210\344\201j.pptx)

(Microsoft PowerPoint \215u\213`4\201i\221\272\210\344\201j.pptx) AICS 村井均 RIKEN AICS HPC Summer School 2012 8/7/2012 1 背景 OpenMP とは OpenMP の基本 OpenMP プログラミングにおける注意点 やや高度な話題 2 共有メモリマルチプロセッサシステムの普及 共有メモリマルチプロセッサシステムのための並列化指示文を共通化する必要性 各社で仕様が異なり 移植性がない そして いまやマルチコア プロセッサが主流となり

More information

概要 プログラミング論 変数のスコープ, 記憶クラス. メモリ動的確保. 変数のスコープ 重要. おそらく簡単. 記憶クラス 自動変数 (auto) と静的変数 (static). スコープほどではないが重要.

概要 プログラミング論 変数のスコープ, 記憶クラス. メモリ動的確保. 変数のスコープ 重要. おそらく簡単. 記憶クラス 自動変数 (auto) と静的変数 (static). スコープほどではないが重要. 概要 プログラミング論 変数のスコープ, 記憶クラス. メモリ動的確保. 変数のスコープ 重要. おそらく簡単. 記憶クラス 自動変数 (auto) と静的変数 (static). スコープほどではないが重要. http://www.ns.kogakuin.ac.jp/~ct13140/progc/ C-2 ブロック 変数のスコープ C 言語では, から をブロックという. for( ) if( )

More information

RX ファミリ用 C/C++ コンパイラ V.1.00 Release 02 ご使用上のお願い RX ファミリ用 C/C++ コンパイラの使用上の注意事項 4 件を連絡します #pragma option 使用時の 1 または 2 バイトの整数型の関数戻り値に関する注意事項 (RXC#012) 共用

RX ファミリ用 C/C++ コンパイラ V.1.00 Release 02 ご使用上のお願い RX ファミリ用 C/C++ コンパイラの使用上の注意事項 4 件を連絡します #pragma option 使用時の 1 または 2 バイトの整数型の関数戻り値に関する注意事項 (RXC#012) 共用 RX ファミリ用 C/C++ コンパイラ V.1.00 Release 02 ご使用上のお願い RX ファミリ用 C/C++ コンパイラの使用上の注意事項 4 件を連絡します #pragma option 使用時の 1 または 2 バイトの整数型の関数戻り値に関する注意事項 (RXC#012) 共用体型のローカル変数を文字列操作関数で操作する場合の注意事項 (RXC#013) 配列型構造体または共用体の配列型メンバから読み出した値を動的初期化に用いる場合の注意事項

More information