Fermat s Last Theorem Hajime Mashima November 19, 2018 Abstract About 380 years ago, Pierre de Fermat wrote the following idea to Diophantus s Arithme

Size: px
Start display at page:

Download "Fermat s Last Theorem Hajime Mashima November 19, 2018 Abstract About 380 years ago, Pierre de Fermat wrote the following idea to Diophantus s Arithme"

Transcription

1 Fermat s Last Theorem Hajime Mashima November 19, 2018 Abstract About 380 years ago, Pierre de Fermat wrote the following idea to Diophantus s Arithmetica. Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet. Later, this proposition(fermat s Last Theorem) has continued to be a presence, such as the One Ring that appeared in J R R Tolkien s Lord of the Rings. Finally in 1994, it has been proven by Sir Andrew Wiles. However, interesting Fermat s proof is still unknown. Perhaps this is assumed to algebra category. Contents 1 introduction Fermat s Last Theorem Structure of the product Case 1 (p xyz) p = p = p Case 2 (p xyz) Comon(p 3) p = p introduction Fermat Fermat 1

2 1.1 Fermat s Last Theorem Theorem 1 (Fermat s Last Theorem) n, x, y, z x n + y n z n (0 < x < y < z, n 3) x p + y p z p (p 3 x, y, z ) 1.2 Structure of the product Theorem 2 (Fermat s little theorem) A p p A A p 1 1 (mod p) (1) x p + y p z p 0 mod p x p 1 x + y p 1 y z p 1 z 0 mod p (1) x + y z 0 mod p Definition 3 p xyz The Barlow-Abel Equations[1, p.45] x p + y p = (x + y) γ p z p y p = (z y) α p z p x p = (z x) β p L = {(x + y), (z y), (z x)}, R = {γ p, α p, β p } k Proposition 4 p xyz R 1 mod p Proof 5 p = 5 (y + (z y)) 5 = y 5 + 5y 4 (z y) + 10y 3 (z y) y 2 (z y) 3 + 5y(z y) 4 + (z y) 5 z 5 = y 5 + 5y 4 (z y) + 10y 3 (z y) y 2 (z y) 3 + 5y(z y) 4 + (z y) 5 z 5 y 5 = (z y)(5y y 3 (z y) + 10y 2 (z y) 2 + 5y(z y) 3 + (z y) 4 ) (2) ( y + (x + y)) 5 = y 5 + 5y 4 (x + y) 10y 3 (x + y) y 2 (x + y) 3 5y(x + y) 4 + (x + y) 5 x 5 = y 5 + 5y 4 (x + y) 10y 3 (x + y) y 2 (x + y) 3 5y(x + y) 4 + (x + y) 5 x 5 + y 5 = (x + y)(5y 4 10y 3 (x + y) + 10y 2 (x + y) 2 5y(x + y) 3 + (x + y) 4 ) 2

3 (z y) p 1 (x + y) p 1 R 1 mod p Proposition 6 p xyz L R (3) Proof 7 x p + y p = L R (x + y) c L 0 mod c R py p 1 mod c c py L R py p 1 mod c z p x p z p y p Proposition 8 q R (q p ) q 1 mod p (q p) (4) Proof 9 q 1 mod p (q p) q x p q y, z g, h(< q) y g mod q z h mod q z y h g mod q (3) g h mod q (5) y p = (qn 1 + g) p z p = (qn 2 + h) p z p y p = x p q zy Fermat s little theorem (qn 1 + g) p (qn 2 + h) p mod q (6) (qn 1 + g) q 1 (qn 2 + h) q 1 mod q (7) 3

4 q 1 mod p q 1 = pn + k (0 < k < p) (q 1)k p 2 = pn k p 2 + k p 1 p k Fermat s little theorem (q 1)k p 2 1 mod p (7) (qn 1 + g) (q 1)kp 2 (qn 2 + h) (q 1)kp 2 mod q (q 1)k p 2 = pm + 1 (qn 1 + g) pm+1 (qn 2 + h) pm+1 mod q (8) (6) (8), (9) (qn 1 + g) pm (qn 2 + h) pm mod q (9) (qn 1 + g) (qn 2 + h) mod q g h mod q (5) 4

5 1.3 Case 1 (p xyz) Proposition 10 x p + y p = z p p 2 (x + y z) Proof 11 (4) R = q p 1 qp 2 qp 3 q p n = (pk + 1) p q p n = (pk) p + p 2 (...) + 1 q p n 1 mod p 2 R 1 mod p 2 (10) x p + y p z p 0 mod p 2 x p z p y p mod p 2 y p z p x p mod p 2 z p x p + y p mod p 2 (10) x p (z y) 1 mod p 2 y p (z x) 1 mod p 2 z p (x + y) 1 mod p 2 x p + y p z p (z y) + (z x) (x + y) mod p 2 0 2z (x + y) (x + y) mod p 2 0 2z 2(x + y) mod p 2 0 2(x + y z) mod p 2 0 (x + y z) mod p 2 5

6 1.3.1 p = 3 Proposition 12 x 3 + y 3 = z 3 3 xyz Proof 13 (x + (y z)) 3 = x 3 + 3x 2 (y z) + 3x(y z) 2 + (y z) 3 (x + y z) 3 = x 3 + 3x 2 y 3x 2 z + 3x(y 2 2yz + z 2 ) + y 3 3y 2 z + 3yz 2 z 3 x 3 + y 3 z 3 = 0 = x 3 + 3x 2 y 3x 2 z + 3xy 2 6xyz + 3xz 2 + y 3 3y 2 z + 3yz 2 z 3 = x 3 + 3x 2 y + 3xy 2 + 3xz 2 + y 3 + 3yz 2 3x 2 z 6xyz 3y 2 z z 3 = 3x 2 y + 3xy 2 + 3xz 2 + 3yz 2 3x 2 z 6xyz 3y 2 z = 3 ( x 2 y + xy 2 + xz 2 + yz 2 x 2 z 2xyz y 2 z ) = 3 ( xy (x + y) + z 2 (x + y) z ( x 2 + 2xy + y 2)) = 3 (xy (x + y) + z 2 (x + y) z (x + y) 2) = 3(x + y) ( xy + z 2 z (x + y) ) (x + y z) 3 = 3(x + y)(z x)(z y) 3 3 (x + y z) (x + y)(z x)(z y) x + y z 0 mod 3 x + y z mod 3 z x y mod 3 z y x mod 3 3 xyz 6

7 1.3.2 p = 5 Proposition 14 x 5 + y 5 z 5 Proof 15 (x + y z) 5 = 5x 4 y 5x 4 z + 10x 3 y 2 20x 3 yz + 10x 3 z x 2 y 3 30x 2 y 2 z + 30x 2 yz 2 10x 2 z 3 + 5xy 4 20xy 3 z + 30xy 2 z 2 20xyz 3 + 5xz 4 5y 4 z + 10y 3 z 2 10y 2 z 3 + 5yz 4 + x 5 + y 5 z 5 x 5 + y 5 z 5 = 0 (x + y z) 5 = 5x 4 y 5x 4 z + 10x 3 y 2 20x 3 yz + 10x 3 z x 2 y 3 30x 2 y 2 z + 30x 2 yz 2 10x 2 z 3 + 5xy 4 20xy 3 z + 30xy 2 z 2 20xyz 3 + 5xz 4 5y 4 z + 10y 3 z 2 10y 2 z 3 + 5yz 4 = 5 ( x 4 y x 4 z + 2x 3 y 2 4x 3 yz + 2x 3 z 2 + 2x 2 y 3 6x 2 y 2 z +6x 2 yz 2 2x 2 z 3 + xy 4 4xy 3 z + 6xy 2 z 2 4xyz 3 + xz 4 y 4 z + 2y 3 z 2 2y 2 z 3 + yz 4) = 5 ( x 4 y x 4 z + 2x 3 z 2 + 2x 2 y 3 4xy 3 z + 6xy 2 z 2 4xyz 3 + xz 4 +2x 3 y 2 4x 3 yz + 6x 2 yz 2 + xy 4 y 4 z + 2y 3 z 2 2y 2 z 3 + yz 4 2x 2 z 3 6x 2 y 2 z ) = 5 ( x 4 y x 4 z + 2x 3 z 2 + x 2 y 3 xy 3 z + 2xy 2 z 2 2xyz 3 + xz 4 +x 3 y 2 x 3 yz + 2x 2 yz 2 + xy 4 y 4 z + 2y 3 z 2 2y 2 z 3 + yz 4 +x 2 y 3 3xy 3 z + 4xy 2 z 2 2xyz 3 + x 3 y 2 3x 3 yz + 4x 2 yz 2 2x 2 z 3 6x 2 y 2 z ) = 5 ( x ( x 3 y x 3 z + 2x 2 z 2 + xy 3 y 3 z + 2y 2 z 2 2yz 3 + z 4 ) +y ( x 3 y x 3 z + 2x 2 z 2 + xy 3 y 3 z + 2y 2 z 2 2yz 3 + z 4 ) +x 2 y 3 + x 3 y 2 3x 3 yz + 4xy 2 z 2 3xy 3 z + 4x 2 yz 2 2xyz 3 2x 2 z 3 6x 2 y 2 z ) = 5 ( (x + y) ( x 3 y x 3 z + 2x 2 z 2 + xy 3 y 3 z + 2y 2 z 2 2yz 3 + z 4 ) +x 2 y 2 (x + y) 3x 3 yz 6x 2 y 2 z + 4x 2 yz 2 3xy 3 z + 4xy 2 z 2 2xyz 3 2x 2 z 3) 7

8 +xy 3 + xyz 2 xz 3 xz 3) 8 = 5 ( (x + y) ( x 3 y x 3 z + 2x 2 z 2 + xy 3 y 3 z + 2y 2 z 2 2yz 3 + z 4 ) +x 2 y 2 (x + y) 3x 2 yz(x + y) 3x 2 y 2 z + 4x 2 yz 2 3xy 3 z + 4xy 2 z 2 2xz 3 (x + y) ) = 5 ( (x + y) ( x 3 y x 3 z + 2x 2 z 2 + xy 3 y 3 z + 2y 2 z 2 2yz 3 + z 4 ) +x 2 y 2 (x + y) 3x 2 yz(x + y) 3xy 2 z(x + y) + 4x 2 yz 2 + 4xy 2 z 2 2xz 3 (x + y) ) = 5 ( (x + y) ( x 3 y x 3 z + 2x 2 z 2 + xy 3 y 3 z + 2y 2 z 2 2yz 3 + z 4 ) +x 2 y 2 (x + y) 3x 2 yz(x + y) 3xy 2 z(x + y) + 4xyz 2 (x + y) 2xz 3 (x + y) ) = 5 (x + y) ( x 3 y x 3 z + 2x 2 z 2 + xy 3 y 3 z + 2y 2 z 2 2yz 3 + z 4 +x 2 y 2 3x 2 yz 3xy 2 z + 4xyz 2 2xz 3) = 5 (x + y) ( x 3 (z y) + 2x 2 z 2 + xy 3 y 3 z + 2y 2 z 2 yz 3 + z 3 (z y) +x 2 y 2 3x 2 yz 3xy 2 z + 4xyz 2 2xz 3) = 5 (x + y) (( z 3 x 3) (z y) + 2x 2 z 2 + xy 3 y 3 z + y 2 z 2 + y 2 z 2 yz 3 +x 2 y 2 x 2 yz 2x 2 yz 3xy 2 z + 4xyz 2 2xz 3) = 5 (x + y) (( z 3 x 3) (z y) + xy 3 y 3 z + y 2 z 2 + y 2 z 2 yz 3 +x 2 y 2 x 2 yz + 2x 2 z(z y) 3xyz(y z) + xyz 2 2xz 3) = 5 (x + y) (( z 3 x 3 + 2x 2 z + 3xyz ) (z y) + xy 3 y 2 z(y z) +y 2 z 2 yz 3 + x 2 y 2 x 2 yz + xyz 2 2xz 3) = 5 (x + y) (( z 3 x 3 + 2x 2 z + 3xyz + y 2 z ) (z y) + xy 3 +yz 2 (y z) + x 2 y(y z) + xyz 2 2xz 3) = 5 (x + y) (( z 3 x 3 + 2x 2 z + 3xyz + y 2 z yz 2 x 2 y ) (z y) +xy 3 + xyz 2 2xz 3) = 5 (x + y) (( z 3 x 3 + 2x 2 z + 3xyz + y 2 z yz 2 x 2 y ) (z y)

9 = 5 (x + y) (( z 3 x 3 + 2x 2 z + 3xyz + y 2 z yz 2 x 2 y ) (z y) +xy 3 + xz 2 (y z) xz 3) = 5 (x + y) (( z 3 x 3 + 2x 2 z + 3xyz + y 2 z yz 2 x 2 y ) (z y) +xy 3 xz 3 + xz 2 (y z) ) = 5 (x + y) (( z 3 x 3 + 2x 2 z + 3xyz + y 2 z yz 2 x 2 y ) (z y) +x(y 3 z 3 ) + xz 2 (y z) ) = 5 (x + y) (( z 3 x 3 + 2x 2 z + 3xyz + y 2 z yz 2 x 2 y xz 2) (z y) x(z y)(y 2 + yz + z 2 ) ) = 5 (x + y) (z y) ( (z x)(x 2 + xz + z 2 ) +2x 2 z + 3xyz + y 2 z yz 2 x 2 y xz 2 x(y 2 + yz + z 2 ) ) = 5 (x + y) (z y) ( (z x)(x 2 + xz + z 2 ) +2x 2 z + 3xyz + y 2 z yz 2 x 2 y xz 2 xy 2 xyz xz 2) = 5 (x + y) (z y) ( (z x)(x 2 + xz + z 2 ) +2x 2 z 2xz 2 + 2xyz + y 2 z yz 2 x 2 y xy 2) = 5 (x + y) (z y) ( (z x)(x 2 + xz + z 2 ) +2xz(x z) + 2xyz + y 2 (z x) yz 2 x 2 y ) = 5 (x + y) (z y) ( (z x)(x 2 xz + z 2 + y 2 ) +xyz + xyz yz 2 x 2 y ) = 5 (x + y) (z y) ( (z x)(x 2 xz + z 2 + y 2 ) +xyz + yz(x z) x 2 y ) = 5 (x + y) (z y) ( (z x)(x 2 xz + z 2 + y 2 yz) +xyz x 2 y ) = 5 (x + y) (z y) ( (z x)(x 2 + y 2 + z 2 xz yz) + xy(z x) ) 9

10 (x + y z) 5 = 5(x + y)(z y)(z x)(x 2 + y 2 + z 2 + xy xz yz) (x + y z) 2 = x 2 + y 2 + z 2 + 2xy 2xz 2yz (x + y z) 2 (xy xz yz) = x 2 + y 2 + z 2 + (xy xz yz) (11) (x + y z) 5 = 5(x + y)(z y)(z x) ( (x + y z) 2 (xy xz yz) ) x + y z 0 mod 5 x + y z mod 5 z x y mod 5 z y x mod (x + y z) 5, 5 (x + y)(z y)(z x) 5 4 ( (x + y z) 2 (xy xz yz) ) 5 2 (xy xz yz) (11) x 2 + y 2 + z 2 0 mod 5 (12) 5 xyz k = {x, y, z} k 4 1 mod 5 k 2 ±1 mod 5 (12) x 2 + y 2 + z 2 ±1 mod 5 x 2 + y 2 + z 2 ±3 mod 5 10

11 1.3.3 p 7 Proposition 16 x p + y p z p Definition 17 θ x + y z θ xyz Proof 18 x p + y p z p = 0 x p + y p z p x p + yy p 1 zz p 1 (13) x + y z x p + yx p 1 zx p 1 y p 1 z p 1 θ yz θ y p 1, z p 1 k k = k x p 1 ky p 1 x p 1 kz p 1 x p 1 (13) kx p + yky p 1 zkz p 1 kx p + yx p 1 zx p 1 k 1 y p 1 x p 1 z p 1 x p 1 11

12 y p 1 z p 1, y p 1 z p 1 θ yz θ y p 1 z p 1 k k = k x p 1 ky p 1 z p 1 x p 1 (14) x p + yx p 1 zx p 1 x p + yky p 1 z p 1 zky p 1 z p 1 x p + y p kz p 1 z p ky p 1 (15) z p y p + y p kz p 1 z p ky p 1 y p kz p 1 y p z p ky p 1 z p y p (kz p 1 1) z p (ky p 1 1) (16) yy p 1 (kz p 1 1) zz p 1 (ky p 1 1) yky p 1 (kz p 1 1) zkz p 1 (ky p 1 1) 0 < (ky p 1 ) < θ 0 < (kz p 1 ) < θ ky p 1 1, kz p 1 1 (ky p 1 ) (ky p 1 ) 1 (kz p 1 ) (kz p 1 ) 1 ky p skz p 1 (17) kz p tky p 1 (18) y p sz p 1 (19) z p ty p 1 (20) x p + y p z p x p + sz p 1 ty p 1 (19) (20) yz st (21) (15) y p k z p k st k 2 y p z p yz k 2 y p 1 z p 1 1 (14) kx p 1 1 (22) 12

13 yky p 1 (kz p 1 1) zkz p 1 (ky p 1 1) ky p (kz p 1 1) z(k 2 y p 1 z p 1 kz p 1 ) ky p (kz p 1 1) z(kx p 1 kz p 1 ) (22) ky p (kz p 1 1) z(kz p 1 1) y(ky p 1 1) kz p (ky p 1 1) ky p 1 1, kz p 1 1 ky p z kz p y (15) s z t y x p + yx p 1 zx p 1 x p + yy p 1 zz p 1 yy p 1 yx p 1 zz p 1 zx p 1 y(y p 1 x p 1 ) z(z p 1 x p 1 ) (22) y(ky p 1 1) z(kz p 1 1) (23) (16) z p (ky p 1 1) y p (kz p 1 1) z p (y(ky p 1 1)) y p+1 (kz p 1 1) (23) z p (z(kz p 1 1))) y p+1 (kz p 1 1) z p+1 (kz p 1 1) y p+1 (kz p 1 1) (z p+1 y p+1 )(kz p 1 1) 0 (z p+1 y p+1 )(ky p 1 1) 0 13

14 ky p 1 1, kz p 1 1 z p+1 y p+1 (24) s z, t y (19)(20) y p z p z p y p z p+1 zy p (24) y p+1 zy p y z y z s y, t z (17) ky p 1 kz p 1 x p + y p z p x p ky p 1 + y p ky p 1 z p ky p 1 x p ky p 1 + y p kz p 1 z p ky p 1 (15) ky p 1 1 kz p 1 1 z + y 0 z + x 0 (25) 14

15 x p 1 y p 1, x p 1 y p 1 θ xy θ x p 1 y p 1 k k = k z p 1 kx p 1 y p 1 z p 1 (26) xz p 1 + yz p 1 z p xkx p 1 y p 1 + ykx p 1 y p 1 z p x p ky p 1 + y p kx p 1 z p (27) x p ky p 1 + y p kx p 1 x p + y p y p kx p 1 y p x p x p ky p 1 y p (kx p 1 1) x p (ky p 1 1) (28) yy p 1 (kx p 1 1) xx p 1 (ky p 1 1) yky p 1 (kx p 1 1) xkx p 1 (ky p 1 1) 0 < (ky p 1 ) < θ 0 < (kx p 1 ) < θ kx p 1 1, ky p 1 1 (ky p 1 ) (ky p 1 ) 1 (kx p 1 ) (kx p 1 ) 1 ky p skx p 1 (29) kx p tky p 1 (30) y p sx p 1 (31) x p ty p 1 (32) x p + y p z p ty p 1 + sx p 1 z p (31) (32) xy st (33) (27) x p k y p k st k 2 x p y p xy k 2 x p 1 y p 1 1 (26) kz p 1 1 (34) 15

16 yky p 1 (kx p 1 1) xkx p 1 (ky p 1 1) ky p (kx p 1 1) x(k 2 x p 1 y p 1 kx p 1 ) ky p (kx p 1 1) x(kz p 1 kx p 1 ) (34) ky p (kx p 1 1) x(kx p 1 1) y(ky p 1 1) kx p (ky p 1 1) kx p 1 1, ky p 1 1 ky p x kx p y (27) s x t y xz p 1 + yz p 1 z p xx p 1 + yy p 1 z p xz p 1 xx p 1 yz p 1 + yy p 1 x(x p 1 z p 1 ) y(y p 1 z p 1 ) (34) x(kx p 1 1) y(ky p 1 1) (35) (28) y p (kx p 1 1) x p (ky p 1 1) y p ( x(kx p 1 1)) x p+1 (ky p 1 1) (35) y p (y(ky p 1 1)) x p+1 (ky p 1 1) y p+1 (ky p 1 1) x p+1 (ky p 1 1) (y p+1 x p+1 )(ky p 1 1) 0 (x p+1 y p+1 )(kx p 1 1) 0 16

17 kx p 1 1, ky p 1 1 x p+1 y p+1 (36) s x, t y (31)(32) y p x p x p y p (36) x p+1 xy p y p+1 xy p y x (29) (27) s y, t x ky p 1 kx p 1 kx p 1 1 ky p 1 1 (25)(37) x y 0 (37) (x + y z) + (x y) + (z + x) 0 (x + y z) + (2x y + z) 0 3x 0 (x + y z) + (y x) + (z + y) 0 (x + y z) + ( x + 2y + z) 0 3y 0 (x + y z) + (z + x) + (z + y) 0 (x + y z) + (x + y + 2z) 0 3z 0 θ = p ( 5) p xyz p xyz 17

18 1.4 Case 2 (p xyz) Proposition 19 Proof 20 p x, p yz p n x (n 2), p pn 1 L p x, p (z y) (2) ( x p = (z y) py p 1 + R = py p 1 + (p 2)!2! yp 2 (z y) + + ) 1!(p 1)! y(z y)p 2 + (z y) p 1 (p 2)!2! yp 2 (z y) + + 1!(p 1)! y(z y)p 2 + (z y) p 1 p 2 R p y p 1 p 1 R (38) p x p L R p abc Definition 21 z y = a p p p 1 z x = b p x + y = c p p (x + y z) (z x) (x + y) = b p c p (x + y z) x = b p c p 0 mod p (z y) 2x = b p c p 0 mod p p L p R b p c p x p 2 a p p p 1 2x = b p c p 0 mod p 2 (x (z y)) p = x p (p 1)!1! xp 1 (z y) + + 1!(p 1)! x(z y)p 1 (z y) p x p = (z y)pα p ( (x + y z) p = (z y) pα p p 2 x (39) (p 1)!1! xp (p 2)!2! xp 2 (z y) 2 (p 3)!3! xp 3 (z y) 3 + ) 1!(p 1)! x(z y)p 2 (z y) p 1 18

19 K = pα p (p 1)!1! xp !(p 1)! x(z y)p 2 (z y) p 1 (40) (39) x = ap 2 α (x (z y)) p = (z y) K (ap 2 α a p p p 1 ) p = a p p p 1 K a p p 2p (α a p 1 p p 3 ) p = a p p p 1 K p p+1 (α a p 1 p p 3 ) p = K p p+1 K (40), p α p p 1 K p 2 x p 2p 1 (z y) p n x (n 2) p pn x p p pn 1 L x + y z = x (z y) x + y z = p n aα p pn 1 a p x + y z = p n (aα p n(p 1) 1 a p ) p n x + y z (41) 19

20 1.4.1 Comon(p 3) Proposition 22 3 x + y z Proof 23 3 x, 3 yz x p + y p z p 0 mod 3 Fermat s little theorem k 2n 1 mod 3 (k 3) (42) y p z p 0 mod 3 yy p 1 zz p 1 0 mod 3 yy 2n zz 2n 0 mod 3 y z 0 mod 3 x + y z 0 mod 3 3 z, 3 xy 3 xyz x p + y p z p 0 mod 3 (42) x p + y p z p 0 mod 3 xx p 1 + yy p 1 zz p 1 0 mod 3 x + y z 0 mod 3 20

21 Proposition 24 Proof 25 x p + y p = z p (p 3) x + y z = 3 m p n abc x + y z = p n abct θ (41) p T θ T θ x + y z θ = p θ 3 θ 3 Case 1 θ xyz θ z, θ x + y θ xyz ((x + y) z) p = z p + (p 1)!1! zp 1 (x + y) ( x p + y p = (x + y) py p 1 1!(p 1)! z(x + y)p 1 + (x + y) p (p 2)!2! yp 2 (x + y) + (p 2)!2! zp 2 (x + y) 2 + (p 3)!3! zp 3 (x + y) 3 ) 1!(p 1)! y(x + y)p 2 + (x + y) p 1 z p = x p + y p (44) (43) ( (x + y z) p = (x + y) py p 1 (p 2)!2! yp 2 (x + y) + 1!(p 1)! y(x + y)p 2 + (x + y) p 1 (p n abt ) p = (p 1)!1! zp 1 + (p 2)!2! zp 2 (x + y) ) + 1!(p 1)! z(x + y)p 2 (x + y) p 1 ( py p 1 (p 1)!1! zp z y p = 3 (p 2)!2! yp 2 (x + y) + (p 2)!2! zp 2 (x + y) ) 1!(p 1)! z(x + y)p 2 (x + y) p 1 θ py p 1 θ y Leonhard Euler (p 3)!3! zp 3 (x + y) 2 1!(p 1)! y(x + y)p 2 + (x + y) p 1 (p 3)!3! zp 3 (x + y) 2 (43) (44) 21

22 1.4.3 p 5 Proposition 26 3 xyz, x + y z = 3 m p n abc x p + y p z p m > 1 3 z, 3 xy Proof 27 ( (x + y z) p = (x + y) py p 1 (p 1)!1! zp (3 m p n abc) p = c p ( py p 1... ) (3 m p n ab) p = ( py p 1... ) 3 pm (p n ab) p = ( py p 1... ) p 5 3 y 3 z 3 p (x + y) (p 2)!2! yp 2 (x + y) + (p 2)!2! zp 2 (x + y) ) 1!(p 1)! z(x + y)p 2 (x + y) p 1 3 py p 1 3 y p 1 3 y 1!(p 1)! y(x + y)p 2 + (x + y) p 1 (p 3)!3! zp 3 (x + y) 2 m = 0 x + y z = p n abc (45) Proposition x + y z Case.1 3 xyz x + y z = 3p n abc 3x 0 3x 0 mod x 3 xyz 3 xyz x + y z = 3p n abc (46) 22

23 z (x + y) = k > 0 z = x + y + k z p = x p + y p + k p + p(...) z p = x p + y p 0 = k p + p(...) p(...) > 0 0 k p + p(...) Kp n abc = x + y z > 0 (47) (x + y z) 3 = 3(x + y)(z x)(z y) + x 3 + y 3 z 3 (Kp n abc) 3 = 3(x + y)(z x)(z y) + x 3 + y 3 z 3 K 3 p 3n (abc) 3 = 3p pn 1 (abc) p + x 3 + y 3 z 3 K 3 p 3n (abc) 3 3p pn 1 (abc) p = x 3 + y 3 z 3 p 3n (abc) 3 (K 3 3p n(p 3) 1 (abc) p 3 ) = x 3 + y 3 z 3 (47) abc > 0 p 5, (45) K 3 = 1 p 3n (abc) 3 (1 3p n(p 3) 1 (abc) p 3 ) < 0 (48) p 5, (46) K 3 = 3 3 3p 3n (abc) 3 (3 2 p n(p 3) 1 (abc) p 3 ) < 0 (49) X < Y < Z, X n + Y n = Z n X n Y m + Y n+m < Z n+m X n+m + Y n+m < X n Y m + Y n+m < Z n+m X n+m + Y n+m < Z n+m x p + y p = z p (p 5) x 3 + y 3 z 3 > 0 (50) (48)(49) (50) References [1] Laubenbacher R, Pengelley D (2007). Voici ce que j ai trouvé: Sophie Germain s grand plan to prove Fermat s Last Theorem 23

L211 数学と論理学 第1回

L211 数学と論理学 第1回 L211 数学と論理学第 1 回 プライニングノルベルト preining@jaist.ac.jp http://www.preining.info/jaist/l211/2015j/ 数学と論理学 目的数学的な考え方は現代の科学技術の奥深くまで浸透している そして高度な抽象性を持つ数学の概念が思いもかけない形で応用されることもある 数学と論理学の発展を振り返りこれらのことを明らかにするとともに 現代の数学の流れについてもふれてみたい

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

学術俯瞰講義 ~ 数学を創る ~ 第 2 回 Mathematics On Campus ことばを創り 世界を創る : このマークが付してある著作物は 第三者が有する著作物ですので 同著作物の再使用 同著作物の二次的著作物の創作等については 著作権者より直接使用許諾を得る必要が

学術俯瞰講義 ~ 数学を創る ~ 第 2 回 Mathematics On Campus ことばを創り 世界を創る : このマークが付してある著作物は 第三者が有する著作物ですので 同著作物の再使用 同著作物の二次的著作物の創作等については 著作権者より直接使用許諾を得る必要が 学術俯瞰講義 ~ 数学を創る ~ 第 2 回 Mathematics On Campus ことばを創り 世界を創る 2009.10.15 : このマークが付してある著作物は 第三者が有する著作物ですので 同著作物の再使用 同著作物の二次的著作物の創作等については 著作権者より直接使用許諾を得る必要があります 東京大学教養学部英語部会 ( 編集 ) 東京大学教養学部英語部会 ( 編集 ) On Campus

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

1.1 1 A

1.1 1 A . A..2 2 2. () (xyz) ( xyz) ( xy z) = (x x)yz ( xy z) = yz ( xy z) = y(z ( x z)) = y((z x)(z z)) = y( x z) (2) (3) M aj (x, y, M aj ( x, ȳ, z)) = xy ȳm aj ( x, ȳ, z) M aj ( x, ȳ, z)x M aj (x, y, z) x =

More information

U( xq(x)) Q(a) 1 P ( 1 ) R( 1 ) 1 Q( 1, 2 ) 2 1 ( x(p (x) ( y(q(x, y) ( z( R(z))))))) 2 ( z(( y( xq(x, y))) R(z))) 3 ( x(p (x) ( ( yq(a, y) ( zr(z))))

U( xq(x)) Q(a) 1 P ( 1 ) R( 1 ) 1 Q( 1, 2 ) 2 1 ( x(p (x) ( y(q(x, y) ( z( R(z))))))) 2 ( z(( y( xq(x, y))) R(z))) 3 ( x(p (x) ( ( yq(a, y) ( zr(z)))) 4 15 00 ; 321 5 16 45 321 http://abelardfletkeioacjp/person/takemura/class2html 1 1 11 1 1 1 vocabulary (propositional connectives):,,, (quantifires): (individual variables): x, y, z, (individual constatns):

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1)

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1) 3 3 1 α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) 2000 2) 5 2 3 4 2 3 5 3) 2 2 4) (α β) 2 3 4 5 20 A 12 20 5 5 5) 6) 5 20 12 5 A (5) 1) Évariste Galois(1811-1832) 2) Joseph-Louis Lagrange(1736-1813) 18 3),Niels

More information

.....Z...^.[.......\..

.....Z...^.[.......\.. 15 10 16 42 55 55 56 60 62 199310 1995 134 10 8 15 1 13 1311 a s d f 141412 2 g h j 376104 3 104102 232 4 5 51 30 53 27 36 6 Y 7 8 9 10 8686 86 11 1310 15 12 Z 13 14 15 16 102193 23 1712 60 27 17 18 Z

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 (1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP

More information

Collatzの問題 (数学/数理科学セレクト1)

Collatzの問題 (数学/数理科学セレクト1) / AICHI UNIVERSITY OF EDUCATION A { z = x + iy 0.100

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x, 9.. x + y + 0. x,y, x,y, x r cos θ y r sin θ xy x y x,y 0,0 4. x, y 0, 0, r 0. xy x + y r 0 r cos θ sin θ r cos θ sin θ θ 4 y mx x, y 0, 0 x 0. x,y 0,0 x x + y x 0 x x + mx + m m x r cos θ 5 x, y 0, 0,

More information

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A 7 Lorentz 7.1 Ampère I 1 I 2 I 2 I 1 L I 1 I 2 21 12 L r 21 = 12 = µ 0 2π I 1 I 2 r L. (7.1) 7.1 µ 0 =4π 10 7 N A 2 (7.2) magnetic permiability I 1 I 2 I 1 I 2 12 21 12 21 7.1: 1m 95 96 7 1m =2 10 7 N

More information

3 m = [n, n1, n 2,..., n r, 2n] p q = [n, n 1, n 2,..., n r ] p 2 mq 2 = ±1 1 1 6 1.1................................. 6 1.2......................... 8 1.3......................... 13 2 15 2.1.............................

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

0   (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4 0 http://homepage3.nifty.com/yakuikei (18) 1 99 3 2014/12/13 (19) 1 100 3 n Z (n Z ) 5 30 (5 30 ) 37 22 (mod 5) (20) 201 300 3 (37 22 5 ) (12, 8) = 4 (21) 16! 2 (12 8 4) (22) (3 n )! 3 (23) 100! 0 1 (1)

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα = 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a + b α (norm) N(α) = a + b = αα = α α (spure) (trace) 1 1. a R aα = aα. α = α 3. α + β = α + β 4. αβ = αβ 5. β 0 6. α = α ( ) α = α

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

I: 2 : 3 +

I: 2 : 3 + I: 1 I: 2008 I: 2 : 3 + I: 3, 3700. (ISBN4-00-010352-0) H.P.Barendregt, The lambda calculus: its syntax and semantics, Studies in logic and the foundations of mathematics, v.103, North-Holland, 1984. (ISBN

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p a a a a y y ax q y ax q q y ax y ax a a a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p y a xp q y a x p q p p x p p q p q y a x xy xy a a a y a x

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

記号と準備

記号と準備 tbasic.org * 1 [2017 6 ] 1 2 1.1................................................ 2 1.2................................................ 2 1.3.............................................. 3 2 5 2.1............................................

More information

2005

2005 20 30 8 3 190 60 A,B 67,2000 98 20 23,600 100 60 10 20 1 3 2 1 2 1 12 1 1 ( ) 340 20 20 30 50 50 ( ) 6 80 5 65 17 21 5 5 12 35 1 5 20 3 3,456,871 2,539,950 916,921 18 10 29 5 3 JC-V 2 ( ) 1 17 3 1 6

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O -

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O - 44 4 4.1 d P = d dv M v = F M = F 4.1 M v P = M v F 4.1 d H = M 4.2 H M Z K I z R R J x k i P r! j Y y - XY Z I, J, K -xyz i, j, k P R = R + r 4.3 X Fig. 4.1 Fig. 4.1 ω P [ ] d d = + ω 4.4 [ ] 4 45 4.3

More information

Jacobson Prime Avoidance

Jacobson Prime Avoidance 2016 2017 2 22 1 1 3 2 4 2.1 Jacobson................. 4 2.2.................... 5 3 6 3.1 Prime Avoidance....................... 7 3.2............................. 8 3.3..............................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

slide1.dvi

slide1.dvi 1. 2/ 121 a x = a t 3/ 121 a x = a t 4/ 121 a > 0 t a t = a t t {}}{ a a a t 5/ 121 a t+s = = t+s {}}{ a a a t s {}}{{}}{ a a a a = a t a s (a t ) s = s {}}{ a t a t = a ts 6/ 121 a > 0 t a 0 t t = 0 +

More information

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1 ABCD ABD AC BD E E BD : () AB = AD =, AB AD = () AE = AB + () A F AD AE = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD AB + AD AB + 7 9 AD AB + AD AB + 9 7 4 9 AD () AB sin π = AB = ABD AD

More information

16 : 2015/11/4(23:14) (1891) (1995) (2002) 7 8 IT 20 ( ),,, 1979,,, 2010,,, , 13,, Évariste Galois

16 : 2015/11/4(23:14) (1891) (1995) (2002) 7 8 IT 20 ( ),,, 1979,,, 2010,,, , 13,, Évariste Galois 2 1 1 2000 2 (1891) 17 2 3 (1995) 4 5 6 (2002) 7 8 IT 20 ( ),,, 1979,,, 2010,,, 2010 13, 13,, 2011 13 1 Évariste Galois 1811-1832 2 Evgraf Stepanovich Fedorov 1853-1919) 1885 20 3 Andrew John Wiles, 1953-4

More information

š š o š» p š î å ³å š š n š š š» š» š ½Ò š ˆ l ˆ š p î å ³å š î å» ³ ì š š î å š o š š ½ ñ š å š š n n å š» š m ³ n š

š š o š» p š î å ³å š š n š š š» š» š ½Ò š ˆ l ˆ š p î å ³å š î å» ³ ì š š î å š o š š ½ ñ š å š š n n å š» š m ³ n š š š o š» p š î å ³å š š n š š š» š» š ½Ò š ˆ l ˆ š p î å ³å š î å» ³ ì š š î å š o š š ½ ñ š å š š n n å š» š m ³ n š n š p š š Ž p í š p š š» n É» š å p š n n š û o å Ì å š ˆ š š ú š p š m å ìå ½ m î

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

2014 x n 1 : : :

2014 x n 1 : : : 2014 x n 1 : : 2015 1 30 : 5510113 1 x n 1 n x 2 1 = (x 1)(x+1) x 3 1 = (x 1)(x 2 +x+1) x 4 1 = (x 1)(x + 1)(x 2 + 1) x 5 1 = (x 1)(x 4 + x 3 + x 2 + x + 1) 1, 1,0 n = 105 2 1 n x n 1 Maple 1, 1,0 n 2

More information

2012専門分科会_new_4.pptx

2012専門分科会_new_4.pptx d dt L L = 0 q i q i d dt L L = 0 r i i r i r r + Δr Δr δl = 0 dl dt = d dt i L L q i q i + q i i q i = q d L L i + q i i dt q i i q i = i L L q i L = 0, H = q q i L = E i q i i d dt L q q i i L = L(q

More information

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2. (x,y) (1,0) x 2 + y 2 5x 2 y x 2 + y 2. xy x2 + y 2. 2x + y 3 x 2 + y 2 + 5. sin(x 2 + y 2 ). x 2 + y 2 sin(x 2 y + xy 2 ). xy (i) (ii) (iii) 2xy x 2 +

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

LCM,GCD LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM

LCM,GCD LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM LCM,GCD 2017 4 21 LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM(a, b) = m 1 + m 2 CM(a, b), qm 1 CM(a, b) m 1, m 2

More information

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x A( ) 1 1.1 12 3 15 3 9 3 12 x (x ) x 12 0 12 1.1.1 x x = 12q + r, 0 r < 12 q r 1 N > 0 x = Nq + r, 0 r < N q r 1 q x/n r r x mod N 1 15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = 3 1.1.2 N N 0 x, y x y N x y

More information

iii 1 1 1 1................................ 1 2.......................... 3 3.............................. 5 4................................ 7 5................................ 9 6............................

More information

main.dvi

main.dvi 9 5.4.3 9 49 5 9 9. 9.. z (z) = e t t z dt (9.) z z = x> (x +)= e t t x dt = e t t x e t t x dt = x(x) (9.) t= +x x n () = (n +) =!= e t dt = (9.3) z

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

論理学入門 講義ノート email: mitsu@abelardfletkeioacjp Copyright c 1995 by the author ll right reserved 1 1 3 2 5 3 7 31 7 32 9 33 13 4 29 41 33 42 38 5 45 51 45 52 47 3 1 19 [ 1] Begin at the beginning [ 2] [

More information

R R 16 ( 3 )

R R 16   ( 3 ) (017 ) 9 4 7 ( ) ( 3 ) ( 010 ) 1 (P3) 1 11 (P4) 1 1 (P4) 1 (P15) 1 (P16) (P0) 3 (P18) 3 4 (P3) 4 3 4 31 1 5 3 5 4 6 5 9 51 9 5 9 6 9 61 9 6 α β 9 63 û 11 64 R 1 65 13 66 14 7 14 71 15 7 R R 16 http://wwwecoosaka-uacjp/~tazak/class/017

More information

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,,

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,, (1 C205) 4 8 27(2015) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7.... 1., 2014... 2. P. G., 1995.,. 3.,. 4.. 5., 1996... 1., 2007,. ii 2. F. ( ),.. 3... 4.,,. 5. G., L., D. ( )

More information

11夏特集号初校.indd

11夏特集号初校.indd 1 2 3 5 50 40 7 6 3 ABC 3 5 A 5% B C 100 3 1 2 3 A 5% 5% 5% B 10% 5% 0% C 20% 10% 15% A 15.8% 15.0% 0.8% B 15.5% 15.0% 0.5% C 12.2% 15.0% 2.8% 2,000 1,500 1,000 500 0 10% 5% 3% 1% 01 5 10 15 20 25 30

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

sikepuri.dvi

sikepuri.dvi 2009 2 2 2. 2.. F(s) G(s) H(s) G(s) F(s) H(s) F(s),G(s) H(s) : V (s) Z(s)I(s) I(s) Y (s)v (s) Z(s): Y (s): 2: ( ( V V 2 I I 2 ) ( ) ( Z Z 2 Z 2 Z 22 ) ( ) ( Y Y 2 Y 2 Y 22 ( ) ( ) Z Z 2 Y Y 2 : : Z 2 Z

More information