001.dvi
|
|
|
- せせら いりぐら
- 6 years ago
- Views:
Transcription
1 THE SCIENCE AND ENGINEERING DOSHISHA UNIVERSITY, VOL.XX, NO.Y NOVEMBER 2003 Construction of Tera Flops PC Cluster System and evaluation of performance using Benchmark Tomoyuki HIROYASU * Mitsunori MIKI * and Hiroshi ARAKUTA ** (Received October 6, 2004) Complicated and diverse of objective problems with the development of technology, demand of high performance computer is increasing. Instead of vector superocomputer, in order to meet the needs of these demand, PC cluster systems have gotten a lot of attention in recent years. PC cluster systems consist of many PCs connected by network and are used for parallel or distributed computation. In scientific and engineering fields, HPC cluster systems are attractive to the computationally intensive tasks. We setting up of HPC cluster system called Supernova, toward a performance of 1 Tera Flops. Supernova is composed 256-node and running Linux Operating System. We evaluated this cluster system using High-Performance LINPACK Benchmark and Himeno Benchmark. In this paper, we present the result of performance and the combination of parameters using these Benchmarks in Supernova. Through experimenting we obtained knowledge to perform parameter tuning for better performance in these Benchmarks and knowledge about construction of PC Cluster System. Key words PC Cluster, Himeno Benchmark, LINPACK Benchmark, Linux PC,,, 1. 1 PC 1, 2) 500 TOP500 Supercomputer Sites 3) TOP500 * Department of Knowledge Engineering and Computer Sciences, Doshisha University, Kyoto Telephone: , Fax: , [email protected], [email protected] ** Graduate Student, Department of Knowledge Engineering and Computer Sciences, Doshisha University, Kyoto Telephone: , Fax: , [email protected]
2 TOP500 1TFlops Supernova Cluster System Supernova Benchmark High-Performance LINPACK Benchmark Supernova 2. PC PC 1 CPUOS PC HPC(High Performance Computing) HPC HPC Beowulf Beowulf 1990 NASA Beowulf 4, 5, 6) Beowulf Linux FreeBSD OS MPI PVM Beowulf SCore 7, 8) SCore Beowulf RWCP Real-World Computing Partnership Beowulf SCore SCore Linux PC HA(High Availability) HA HA 3. Supernova Cluster System 1TFlops Fig. 1 Supernova Cluster System Supernova Supernova AMD 64bit CPU Opteron 512CPU Table 1 Fig. 1. Supernova Cluster System. Table 1. Supernova. 256 CPU AMD Opteron 1.8GHz 512 Memory 2GB 256 total 512GB OS Turbolinux for AMD64 mpich TCP/IP Gigabit Ethernet
3 Opteron 1 2 FPU 1 1 Supernova Rpeak (1) TFlops Rpeak =#CPU ClockFrequency #FPU (1) 3.1 Opteron Supernova AMD Opteron Opteron Opteron HyperTransport HyperTransport 9) I/O 3 HyperTransport 19.2GB/s 3.2 Supernova Force10 Networks E1200 E Tbps Supernova 256 E Supernova Supernova 3.1 Opteron HyperTransport 100Mbps 1Gbps PC Myricom Myrinet InfiniBand 10) Supernova 4. Benchmark 4.1 Benchmark PC Benchmark 11) LINPACK 12) Nas ParallelBenchmark 13) Benchmark LIN- PACK 4.2 Benchmark Benchmark Poisson Jacobi
4 4.2.1 Benchmark Benchmark Benchmark Jacobi Table 2 Table 2. Benchmark. Array Size #Array Elements XS S M L XL x y z CPU CPU Poisson Poisson (2) 2 u x u y u = f(x, y, z) (2) z2 (2) (3) f i,j,k = u i+1,j,k 2u i,j,k + u i 1,j,k x 2 + u i,j+1,k 2u i,j,k + u i,j 1,k y 2 + u i,j,k+1 2u i,j,k + u i,j,k 1 z 2 (3) x = y = z (3) (4) u i,j,k = 1 6 [u i+1,j,k + u i 1,j,k + u i,j+1,k + u i,j 1,k + u i,j,k+1 + u i,j,k 1 ( x) 2 f i,j,k ] (4) u i,j,k Gauss-Seidel Jacobi Benchmark Jacobi u m+1 i,j,k (m) (5) u m+1 i,j,k = 1 6 [um i+1,j,k + um i 1,j,k + um i,j+1,k + um i,j 1,k + u m i,j,k+1 + um i,j,k 1 ( x)2 f i,j,k ] Benchmark Jacobi (5) 4.3 LINPACK Benchmark LINPACK Tenessee J.Dongarra LU Fortran LINPACK BLAS Basic Linear Algebra Subprograms LINPACK 3 LINPACK Benchmark N=100 N=100 LU DGEFA DGESL SGEFA SGESL 2 LU x Toward Peak Performance N=1000 Highly Parallel Computing TOP500 HPL HPL
5 LINPACK (6) = 2 3 N 3 + O(N 2 ) (6) A LU x LU LU A n n b n Ax = b (7) A LU A L U (8) A = LU (8) n n L L ij L ij (9) L ij =0(i>j) (9) 4.4 High-Performance LINPACK Benchmark HPL High-Performance LINPACK Benchmark LINPACK BLAS ATLAS Automatically Tuned Linear Algebra Software goto-library HPL HPL HPL Fig. 2 2 LU Fig. 3 Panel Factorization Panel Broadcast LU L U (13) n n U U ij U ij (10) N P0 P2 P U ij =0(i<j) (10) P1 P3 P A LU (7) (11) N Global Array Pn : Process Number Local Array Ax = LUx = b (11) y = Ux Ly = b (12) (12) Fig. 2. Factorization U. Factorization U y =(y 1 y 2 y n ) (12) y n y n 1 y 1 O(n 2 ) y (13) x O(n 2 ) Ux = y (13) L update Broadcast Fig. 3. L update Broadcast.
6 4.4.2 HPL 16 N P Q Broadcast N P Q Panel Broadcast Look-ahead Update long U mix L1 U alignment Panel Factorization Panel Factorization Performance[MFlops] Performance[MFlops] 8.0E+02 GNU PGI 6.0E E E E+00 (1,1,1) Division of Grid (a) 1CPU (b) 2CPU 3.0E+03 GNU PGI 2.0E E E+00 (1,1,4) (1,2,2) (1,4,1) (2,1,2) (2,2,1) (4,1,1) Division of Grid Performance[MFlops] Performance[MFlops] 1.5E+03 GNU PGI 1.0E E E+00 (1,1,2) (1,2,1) (2,1,1) Division of Grid (c) 4CPU (d) 8CPU Performance[MFlops] 6.0E+03 GNU PGI 4.0E E E+00 (1,1,8) (1,2,4) (1,4,2) (1,8,1) (2,1,4) (2,2,2) (2,4,1) (4,1,2) (4,2,1) (8,1,1) Division of Grid 1.0E+04 GNU PGI 8.0E E E E E+00 (1,1,16) (1,2,8) (1,4,4) (1,8,2) (1,16,1) (2,1,8) (2,2,4) (2,4,2) (2,8,1) (4,1,4) (4,2,2) (4,4,1) (8,1,2) (8,2,1) (16,1,1) Division of Grid (e) 16CPU Fig. 4.. Factorization Factorization 5. Benchmark Benchmark Benchmark Fig. 4 Fig. 5 M CPU 1CPU 2CPU 4CPU 8CPU 16CPU GNU Fortran Compiler 3.2 PGI Fortran Compiler 5.0 Fig. 4 PGI GNU Fig. 5 CPU PGI GNU Difference of Performance[MFlops] 1.0E+04 GNU PGI 8.0E E E E E #CPU Fig. 5. CPU. PGI CPU (x y z) Fig. 4 1CPU (1 1 1) 2CPU (2 1 1) 4CPU (2 1 2) 8CPU (2 2 2) 16CPU (4 2 2) CPU
7 PGI PGI -O1 -fthread-jumps -defer-pop -O2 -O1 -O3 -O2 -O2 -finline-functions -fast -Mvect=assoc -Mvect=cachesize:* -Mcache align -Mnontemporal Prefetch 128 M CPU (4 2 2) Table 3 -fast -Mvect=assoc -O MFlops Supernova RIKEN BMT 2003 PC 1 Table 3.. Compile Option Performance [MFlops] None fast -Mvect=assoc -O fast -Mvect=assoc -O Mcache align -Mnontemporal Mvect=cachesize: O Mvect=assoc,cachesize: HPL LINPACK HPL N N HPL HPL N N N 6.2 HPL 6.3 P Q P Q P Q P Q P Q 6.4 Panel Broadcast Panel Broadcast Increasing- 1ring Increasing-2ring Bandwidth-reducing 3 Panel Factorization modified 3 6 normal modified
8 normal Update Panel Factorization modified Update Panel Factorization 7. HPL 7.1 HPL ) ATLAS CPU N:10000 BCAST:1ring gcc3.2formit-frame-pointer -O3 -funroll-loops atlas Fig n 28n (n=2) (n=3) (n=4) (n=5) (a) 1CPU n 28n Fig (n=2) (n=3) (n=4) (n=5) (b) 2CPU Fig Fig (a) 1CPU Fig (b) 2CPU Fig Panel Broadcast Panel Broadcast Fig. 8 BCAST Table 4 gcc3.2-fomit-framepointer -O3 -funroll-loops atlas Table 4. BCAST. 64cpu 128cpu 256cpu 512cpu N (P Q) (8 8) (8 16) (16 16) (16 32) rg 1rM 2rg 2rM Lng LnM Topology rg 1rM 2rg 2rM Lng LnM Topology (a) 64CPU (b) 128CPU rg 1rM 2rg 2rM Lng LnM Topology (c) 256CPU (d) 512CPU Fig. 8. Panel Broadcast. Fig. 8 BCAST CPU normal modified modified normal Fig. 8 normal modified Fig. 8 CPU Supernova BCAST Long bandwidth reducing modified modified Long Supernova rg 1rM 2rg 2rM Lng LnM Topology
9 7.3 HPL AT- LAS goto-library Fig. 9 Table 5 gcc3.2-fomit-frame-pointer -O3 -funroll-loops Table 5.. 4cpu 8cpu 16cpu 32cpu 64cpu N (P Q) (2 2) (2 4) (4 4) (4 8) (8 8) library atlas libgoto opteron-r0.7.so BCAST Increasing-1ring Performance[GFlops] atlas libgoto_opteron-r0.7.so #CPU #CPU (a) (b) Fig. 9.. Fig. 9(a) atlas goto-library Fig. 9(b) atlas goto-library Fig. 9(a) goto-library Fig. 9(b) CPU goto-library 7.4 (P Q) P Q CPU (P Q) (16 32) Supernova Difference of Performance[GFlops] Fig. 10 Table 6 gcc3.2-fomit-frame-pointer -O3 -funroll-loops Table 6.. N (1 512) (2 256) (4 128) (P Q) (8 64) (4 128) library libgoto opteron-r0.7.so BCAST Increasing-1ring Performance[GFlops] (1,512) (2,256) (4,128) (8,64) (16,32) Process Grid Fig Fig. 10 (P Q) (16 32) (1 512) (2 256) HPL HPL HPL 100% (1 512) (2 256) 7.5 N 6.1 N HPL Supernova 80% N N HPL N
10 Table 7.. 1cpu 2cpu 4cpu 8cpu 16cpu 32cpu 64cpu 128cpu 256cpu 512 cpu N (P Q) (1 1) (1 2) (2 2) (2 4) (4 4) (4 8) (8 8) (8 16) (16 16) (16 32) BCAST Increasing-1ring library atlas Fig (P Q) (16 32) BCAST LnM gcc3.2-fomit-frame-pointer -O3 -funroll-loops Fig. 11. HPL. Fig. 11 N Supernova HPL Table 8 Table 8.. N (P Q) (16 32) BCAST Long bandwidth reducing modified library libgoto opteron-r0.7.so Supernova E1200 E1200 NETGEAR 15) Gigabit Switch GS524T 1CPU 512CPU Table 7 Fig. 12 gcc3.2 -fomit-frame-pointer -O3 -funroll-loops atlas Performance[GFlops] Difference of Performance[GFlops] Fig. 12. GS524T E #CPU (a) #CPU (b).
11 Fig. 12(a) E1200 Fig. 12(b) CPU E1200 GS524T CPU E1200 Fig. 12(a) 128CPU CPU 128CPU PC GS524T PC 9. Benchmark LINPACK HPL Benchmark Benchmark PGI HPL ATLAS HPL gotolibrary PC Benchmark Supernova 16CPU 11271MFlops RIKEN BMT 2003 PC Supernova 1 HPL Supernova 1.169TFlops 63.4% TOP PC 1 Supernova 1) Rajkumar Buyya. High Performance Cluster Computing: Architecture and Systems, Vol. 1. Prentice Hall, ) Rajkumar Buyya. High Performance Cluster Computing: Programming and Applications, Vol. 2. Prentice Hall, ) TOP500 Supercomputer Sites. top500.org/. 4) T. Sterling, D. Savarese, D. J. Beeker, J. E. Dorband, U. A. Renawake, and C. V. Packer. Beowulf: A parallel workstation for scientific computation. In Proceedings of the 24th International Conference on Parallel Processing, pp , ) Donald J. Becker, Thomas Sterling, Daniel Savarese, John E. Dorband, Udaya A. Ra nawak, and Charles V. Packer. BEOWULF: A PAR- ALLEL WORKSTATION FOR SCIENTIFIC COMPUTATION. In Proceedings of International Conference on Parallel Processing, ) T. L. Sterling, J. Salmon, D. J. Beeker, Savarese, and D. F. Savarese. How to build a beowulf: A guide to the implementation and application of pc clusters. MIT Press, ) PC Cluster Consortium. or.jp/. 8) H. Tezuka, A Hori, Y. Ishikawa, and M. Sato. Pm: An operating system coordinated high
12 performance communication library. In Highperformance Computing and Networking97, pp , ) HyperTransport Consortium. hypertransport.org/. 10) InfiniBand Trade Association Home Page. http: // 11) Himeno Benchmark xp Home Page. HimenoBMT/index.html. 12) The linpack benchmark. org/benchmark/top500/lists/linpack.html. 13) The NAS Parallel Benchmarks Home Page. 14) HPL Algorithm. benchmark/hpl/algorithm.html. 15) NETGEAR Home Page. com/.
Second-semi.PDF
PC 2000 2 18 2 HPC Agenda PC Linux OS UNIX OS Linux Linux OS HPC 1 1CPU CPU Beowulf PC (PC) PC CPU(Pentium ) Beowulf: NASA Tomas Sterling Donald Becker 2 (PC ) Beowulf PC!! Linux Cluster (1) Level 1:
23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h
23 FPGA CUDA Performance Comparison of FPGA Array with CUDA on Poisson Equation ([email protected]), ([email protected]), ([email protected]), ([email protected]),
09中西
PC NEC Linux (1) (2) (1) (2) 1 Linux Linux 2002.11.22) LLNL Linux Intel Xeon 2300 ASCIWhite1/7 / HPC (IDC) 2002 800 2005 2004 HPC 80%Linux) Linux ASCI Purple (ASCI 100TFlops Blue Gene/L 1PFlops (2005)
Vol. 48 No. 4 Apr LAN TCP/IP LAN TCP/IP 1 PC TCP/IP 1 PC User-mode Linux 12 Development of a System to Visualize Computer Network Behavior for L
Vol. 48 No. 4 Apr. 2007 LAN TCP/IP LAN TCP/IP 1 PC TCP/IP 1 PC User-mode Linux 12 Development of a System to Visualize Computer Network Behavior for Learning to Associate LAN Construction Skills with TCP/IP
GPGPU
GPGPU 2013 1008 2015 1 23 Abstract In recent years, with the advance of microscope technology, the alive cells have been able to observe. On the other hand, from the standpoint of image processing, the
1 DHT Fig. 1 Example of DHT 2 Successor Fig. 2 Example of Successor 2.1 Distributed Hash Table key key value O(1) DHT DHT 1 DHT 1 ID key ID IP value D
P2P 1,a) 1 1 Peer-to-Peer P2P P2P P2P Chord P2P Chord Consideration for Efficient Construction of Distributed Hash Trees on P2P Systems Taihei Higuchi 1,a) Masakazu Soshi 1 Tomoyuki Asaeda 1 Abstract:
AMD/ATI Radeon HD 5870 GPU DEGIMA LINPACK HD 5870 GPU DEGIMA LINPACK GFlops/Watt GFlops/Watt Abstract GPU Computing has lately attracted
DEGIMA LINPACK Energy Performance for LINPACK Benchmark on DEGIMA 1 AMD/ATI Radeon HD 5870 GPU DEGIMA LINPACK HD 5870 GPU DEGIMA LINPACK 1.4698 GFlops/Watt 1.9658 GFlops/Watt Abstract GPU Computing has
情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-HPC-139 No /5/29 Gfarm/Pwrake NICT NICT 10TB 100TB CPU I/O HPC I/O NICT Gf
Gfarm/Pwrake NICT 1 1 1 1 2 2 3 4 5 5 5 6 NICT 10TB 100TB CPU I/O HPC I/O NICT Gfarm Gfarm Pwrake A Parallel Processing Technique on the NICT Science Cloud via Gfarm/Pwrake KEN T. MURATA 1 HIDENOBU WATANABE
17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System
1. (1) ( MMI ) 2. 3. MMI Personal Computer(PC) MMI PC 1 1 2 (%) (%) 100.0 95.2 100.0 80.1 2 % 31.3% 2 PC (3 ) (2) MMI 2 ( ),,,, 49,,p531-532,2005 ( ),,,,,2005,p66-p67,2005 17 Proposal of an Algorithm of
第62巻 第1号 平成24年4月/石こうを用いた木材ペレット
Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting
1 2 4 5 9 10 12 3 6 11 13 14 0 8 7 15 Iteration 0 Iteration 1 1 Iteration 2 Iteration 3 N N N! N 1 MOPT(Merge Optimization) 3) MOPT 8192 2 16384 5 MOP
10000 SFMOPT / / MOPT(Merge OPTimization) MOPT FMOPT(Fast MOPT) FMOPT SFMOPT(Subgrouping FMOPT) SFMOPT 2 8192 31 The Proposal and Evaluation of SFMOPT, a Task Mapping Method for 10000 Tasks Haruka Asano
Web Web Web Web Web, i
22 Web Research of a Web search support system based on individual sensitivity 1135117 2011 2 14 Web Web Web Web Web, i Abstract Research of a Web search support system based on individual sensitivity
DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)
1 2 1 3 Experimental Evaluation of Convenient Strain Measurement Using a Magnet for Digital Public Art Junghyun Kim, 1 Makoto Iida, 2 Takeshi Naemura 1 and Hiroyuki Ota 3 We present a basic technology
& Vol.2 No (Mar. 2012) 1,a) , Bluetooth A Health Management Service by Cell Phones and Its Us
1,a) 1 1 1 1 2 2 2011 8 10, 2011 12 2 1 Bluetooth 36 2 3 10 70 34 A Health Management Service by Cell Phones and Its Usability Evaluation Naofumi Yoshida 1,a) Daigo Matsubara 1 Naoki Ishibashi 1 Nobuo
28 Docker Design and Implementation of Program Evaluation System Using Docker Virtualized Environment
28 Docker Design and Implementation of Program Evaluation System Using Docker Virtualized Environment 1170288 2017 2 28 Docker,.,,.,,.,,.,. Docker.,..,., Web, Web.,.,.,, CPU,,. i ., OS..,, OS, VirtualBox,.,
Vol. 23 No. 4 Oct. 2006 37 2 Kitchen of the Future 1 Kitchen of the Future 1 1 Kitchen of the Future LCD [7], [8] (Kitchen of the Future ) WWW [7], [3
36 Kitchen of the Future: Kitchen of the Future Kitchen of the Future A kitchen is a place of food production, education, and communication. As it is more active place than other parts of a house, there
6_27.dvi
Vol. 49 No. 6 1932 1941 (June 2008) RFID 1 2 RFID RFID RFID 13.56 MHz RFID A Experimental Study for Measuring Human Activities in A Bathroom Using RFID Ryo Onishi 1 and Shigeyuki Hirai 2 A bathroom is
2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055
1 1 1 2 DCRA 1. 1.1 1) 1 Tactile Interface with Air Jets for Floating Images Aya Higuchi, 1 Nomin, 1 Sandor Markon 1 and Satoshi Maekawa 2 The new optical device DCRA can display floating images in free
1 GPU GPGPU GPU CPU 2 GPU 2007 NVIDIA GPGPU CUDA[3] GPGPU CUDA GPGPU CUDA GPGPU GPU GPU GPU Graphics Processing Unit LSI LSI CPU ( ) DRAM GPU LSI GPU
GPGPU (I) GPU GPGPU 1 GPU(Graphics Processing Unit) GPU GPGPU(General-Purpose computing on GPUs) GPU GPGPU GPU ( PC ) PC PC GPU PC PC GPU GPU 2008 TSUBAME NVIDIA GPU(Tesla S1070) TOP500 29 [1] 2009 AMD
fiš„v5.dvi
(2001) 49 2 293 303 VRML 1 2 3 2001 4 12 2001 10 16 Web Java VRML (Virtual Reality Modeling Language) VRML Web VRML VRML VRML VRML Web VRML VRML, 3D 1. WWW (World Wide Web) WWW Mittag (2000) Web CGI Java
HASC2012corpus HASC Challenge 2010,2011 HASC2011corpus( 116, 4898), HASC2012corpus( 136, 7668) HASC2012corpus HASC2012corpus
HASC2012corpus 1 1 1 1 1 1 2 2 3 4 5 6 7 HASC Challenge 2010,2011 HASC2011corpus( 116, 4898), HASC2012corpus( 136, 7668) HASC2012corpus HASC2012corpus: Human Activity Corpus and Its Application Nobuo KAWAGUCHI,
[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing
1,a) 1,b) 1,c) 2012 11 8 2012 12 18, 2013 1 27 WEB Ruby Removal Filters Using Genetic Programming for Early-modern Japanese Printed Books Taeka Awazu 1,a) Masami Takata 1,b) Kazuki Joe 1,c) Received: November
Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L
1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives
IPSJ SIG Technical Report Vol.2013-ARC-203 No /2/1 SMYLE OpenCL (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 1
SMYLE OpenCL 128 1 1 1 1 1 2 2 3 3 3 (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 128 SMYLEref SMYLE OpenCL SMYLE OpenCL Implementation and Evaluations on 128 Cores Takuji Hieda 1 Noriko Etani
2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC
H.264 CABAC 1 1 1 1 1 2, CABAC(Context-based Adaptive Binary Arithmetic Coding) H.264, CABAC, A Parallelization Technology of H.264 CABAC For Real Time Encoder of Moving Picture YUSUKE YATABE 1 HIRONORI
1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing
1,a) 2,b) 3 Modeling of Agitation Method in Automatic Mahjong Table using Multi-Agent Simulation Hiroyasu Ide 1,a) Takashi Okuda 2,b) Abstract: Automatic mahjong table refers to mahjong table which automatically
07-二村幸孝・出口大輔.indd
GPU Graphics Processing Units HPC High Performance Computing GPU GPGPU General-Purpose computation on GPU CPU GPU GPU *1 Intel Quad-Core Xeon E5472 3.0 GHz 2 6 MB L2 cache 1600 MHz FSB 80 GFlops 1 nvidia
2 22006 2 e-learning e e 2003 1 4 e e e-learning 2 Web e-leaning 2004 2005 2006 e 4 GP 4 e-learning e-learning e-learning e LMS LMS Internet Navigware
2 2 Journal of Multimedia Aided Education Research 2006, Vol. 2, No. 2, 19 e 1 1 2 2 1 1 GP e 2004 e-learning 2004 e-learning 2005 e-learning e-learning e-learning e-learning 2004 e-learning HuWeb 2005
[4] ACP (Advanced Communication Primitives) [1] ACP ACP [2] ACP Tofu UDP [3] HPC InfiniBand InfiniBand ACP 2 ACP, 3 InfiniBand ACP 4 5 ACP 2. ACP ACP
InfiniBand ACP 1,5,a) 1,5,b) 2,5 1,5 4,5 3,5 2,5 ACE (Advanced Communication for Exa) ACP (Advanced Communication Primitives) HPC InfiniBand ACP InfiniBand ACP ACP InfiniBand Open MPI 20% InfiniBand Implementation
Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m
Vol.55 No.1 2 15 (Jan. 2014) 1,a) 2,3,b) 4,3,c) 3,d) 2013 3 18, 2013 10 9 saccess 1 1 saccess saccess Design and Implementation of an Online Tool for Database Education Hiroyuki Nagataki 1,a) Yoshiaki
IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came
3DCG 1,a) 2 2 2 2 3 On rigid body animation taking into account the 3D computer graphics camera viewpoint Abstract: In using computer graphics for making games or motion pictures, physics simulation is
Vol. 48 No. 3 Mar PM PM PMBOK PM PM PM PM PM A Proposal and Its Demonstration of Developing System for Project Managers through University-Indus
Vol. 48 No. 3 Mar. 2007 PM PM PMBOK PM PM PM PM PM A Proposal and Its Demonstration of Developing System for Project Managers through University-Industry Collaboration Yoshiaki Matsuzawa and Hajime Ohiwa
HP High Performance Computing(HPC)
ACCELERATE HP High Performance Computing HPC HPC HPC HPC HPC 1000 HPHPC HPC HP HPC HPC HPC HP HPCHP HP HPC 1 HPC HP 2 HPC HPC HP ITIDC HP HPC 1HPC HPC No.1 HPC TOP500 2010 11 HP 159 32% HP HPCHP 2010 Q1-Q4
IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple
1 2 3 4 5 e β /α α β β / α A judgment method of difficulty of task for a learner using simple electroencephalograph Katsuyuki Umezawa 1 Takashi Ishida 2 Tomohiko Saito 3 Makoto Nakazawa 4 Shigeichi Hirasawa
A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member
A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member (University of Tsukuba), Yasuharu Ohsawa, Member (Kobe
Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth
Journal of Geography 116 (6) 749-758 2007 Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth Data: A Case Study of a Snow Survey in Chuetsu District,
Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive
An Application of Multiple Induction Motor Control with a Single Inverter to an Unmanned Vehicle Propulsion Akira KUMAMOTO* and Yoshihisa HIRANE* This paper is concerned with a new scheme of independent
untitled
A = QΛQ T A n n Λ Q A = XΛX 1 A n n Λ X GPGPU A 3 T Q T AQ = T (Q: ) T u i = λ i u i T {λ i } {u i } QR MR 3 v i = Q u i A {v i } A n = 9000 Quad Core Xeon 2 LAPACK (4/3) n 3 O(n 2 ) O(n 3 ) A {v i }
Introduction Purpose This training course demonstrates the use of the High-performance Embedded Workshop (HEW), a key tool for developing software for
Introduction Purpose This training course demonstrates the use of the High-performance Embedded Workshop (HEW), a key tool for developing software for embedded systems that use microcontrollers (MCUs)
Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).
Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation
IPSJ SIG Technical Report Vol.2011-IOT-12 No /3/ , 6 Construction and Operation of Large Scale Web Contents Distribution Platfo
1 1 2 3 4 5 1 1, 6 Construction and Operation of Large Scale Web Contents Distribution Platform using Cloud Computing 1. ( ) 1 IT Web Yoshihiro Okamoto, 1 Naomi Terada and Tomohisa Akafuji, 1, 2 Yuko Okamoto,
第3回戦略シンポジウム緑川公開用
2010 5 15 - - (SDSM) SMS MpC DLM Top500 Top 500 list of Supercomputers (http://www.top500.org) Top 500 list of Supercomputers (http://www.top500.org) 1998 11 SMP Symmetric Multiprocessor CPU CPU CPU CPU
IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe
1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Speech Visualization System Based on Augmented Reality Yuichiro Nagano 1 and Takashi Yoshino 2 As the spread of the Augmented Reality(AR) technology and service,
258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System
Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.
3 * *
3 * 199090 1999122000 18927.5 2000 *739 85291 5 1 E-mail: [email protected] 4 19801990 1960 R. Vernon, 1971 1985 62 1985 5 1989 19851221986 22319873361988470 19896751990 360560 1992 1990 1990 198661
1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2
CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for
HP High Performance Computing(HPC)
HP High Performance Computing HPC HPC HPC HPC HPC 1000 HPHPC HPC HP HPC HPC HPCHP HPC HP HPHPC HPC HP HPC HP IT IDCHP HPC 4 1 HPC HPCNo.1 HPCTOP5002008 6 HP 183 37% HP HPCHP B 1 Other 2Q08 HPC 2 20% 27%
KII, Masanobu Vol.7 No Spring
KII, Masanobu 1 2 3 4 5 2 2.1 1945 60196075 19759019904 002 Vol.7 No.1 2004 Spring 1194560 1 1946 2 195328 3 4 1958 1960 2196075 5 6 7 8 1946 2 1972 1/23/4 1974 1968481973 1969 3197590 9 1980 1987 41990
fiš„v8.dvi
(2001) 49 2 333 343 Java Jasp 1 2 3 4 2001 4 13 2001 9 17 Java Jasp (JAva based Statistical Processor) Jasp Jasp. Java. 1. Jasp CPU 1 106 8569 4 6 7; [email protected] 2 106 8569 4 6 7; [email protected]
Microsoft PowerPoint - sales2.ppt
最適化とは何? CPU アーキテクチャに沿った形で最適な性能を抽出できるようにする技法 ( 性能向上技法 ) コンパイラによるプログラム最適化 コンパイラメーカの技量 経験量に依存 最適化ツールによるプログラム最適化 KAP (Kuck & Associates, Inc. ) 人によるプログラム最適化 アーキテクチャのボトルネックを知ること 3 使用コンパイラによる性能の違い MFLOPS 90
WebRTC P2P Web Proxy P2P Web Proxy WebRTC WebRTC Web, HTTP, WebRTC, P2P i
26 WebRTC The data distribution system using browser cache sharing and WebRTC 1150361 2015/02/27 WebRTC P2P Web Proxy P2P Web Proxy WebRTC WebRTC Web, HTTP, WebRTC, P2P i Abstract The data distribution
3_23.dvi
Vol. 52 No. 3 1234 1244 (Mar. 2011) 1 1 mixi 1 Casual Scheduling Management and Shared System Using Avatar Takashi Yoshino 1 and Takayuki Yamano 1 Conventional scheduling management and shared systems
i
21 Fault-Toleranted Authentication Data Distribution Protocol for Autonomous Distributed Networks 1125153 2010 3 2 i Abstract Fault-Toleranted Authentication Data Distribution Protocol for Autonomous Distributed
& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro
TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato
Appropriate Disaster Preparedness Education in Classrooms According to Students Grade, from Kindergarten through High School Contrivance of an Educati
Appropriate Disaster Preparedness Education in Classrooms According to Students Grade, from Kindergarten through High School Contrivance of an Education of Disaster Preparedness System and Class Practice
JFE.dvi
,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : [email protected] E-mail : [email protected] SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho
熊本大学学術リポジトリ Kumamoto University Repositor Title 特別支援を要する児童生徒を対象としたタブレット端末 における操作ボタンの最適寸法 Author(s) 竹財, 大輝 ; 塚本, 光夫 Citation 日本産業技術教育学会九州支部論文集, 23: 61-
熊本大学学術リポジトリ Kumamoto University Repositor Title 特別支援を要する児童生徒を対象としたタブレット端末 における操作ボタンの最適寸法 Author(s) 竹財, 大輝 ; 塚本, 光夫 Citation 日本産業技術教育学会九州支部論文集, 23: 61-68 Issue date 215 Type URL Right Journal Article http://hdl.handle.net/2298/3622
