2 CAD : CAD 7

Size: px
Start display at page:

Download "2 CAD : CAD 7"

Transcription

1 1 CAD

2 2 CAD : CAD 7

3 3 CAD

4 :

5 :

6

7 F (x, y) = 0 t (x(t), y(t)) xy

8 t (x(t), y(t), z(t)) xyz

9 z = f(x, y) F (x, y, z) = 0 (x(u, v), y(u, v), z(u, v))

10 0 10 )

11 (, 0), (, 0) 5 (, 0, 0), (0,, 0), (0, 0, ) : 3 3

12

13 (a, b) a, b a, b (a, b) = 0 a, b a, b = 0 a u (u, a) a u 1.2 a, b a, b a, b 1.3 a, b a, b a, b a, b 1.2 (1.15) P n a n P n a 1.6(a) (1.16) R(θ) a θ R(θ)a

14 h n (1.27) 1 r 0 u (1.29) xy O θ t x y (1.40), (1.42), (1.43) O θ t (1.41), (1.44), (1.45) 1.5 F (x, y) = 0 t x = x(t), y = y(t) F (1.53) F (1.59) x = x(t), y = y(t) (1.57), (1.59) k k

15 (1.72) s (1.73) κ s x = x(s), y = y(s) (1.74) κ a, b,... (geometricalgebar) [65] a a R Ra (versor) R RaR. 20 (1.8) a, b a, b 2 2 a, b a, b

16 a, b, c a, b, c a, b, c c a, b a b c = a b a, b a, b a, b, c 2.1(a) a, b, c a, b, c 2.1(b) a, b, c a, b, c a, b (a, b) = 0 a, b a b = 0 a, b, c a, b, c = (2.16) P n a n P n a 2.2(a) (2.17) R(n, Ω) a n Ω R(n, Ω)a a n ω / ȧ = ω a ω = ωn

17 m O n (1.29) m, n m 2 + n 2 = 1 n m 2.3(b) 1 r 0 u (1.28) 2.3(a) h n 2.5(b) xyz O R t x y z O R t 2.6 t x = x(t), y = y(t), z = y(t) (2.58) x = x(t), y = y(t), z = z(t) (2.60), (2.61)

18 18 k k s (2.68) κ τ s x = x(s), y = y(s), z = z(s) (2.70) κ τ (2.13) a, b, c a, b, c a, b, c (Sir William Rowan Hamilton: ) (quaternion) q = q 0 + q 1 i + q 2 j + q 3 k z = x + iy i, j, k i 2 = j 2 = k 2 = 1 (Hermann Günter Grassmann: ) (Grassmann algebra) 2 p 1, p 2 l l = p 1 p 2 3 p 1, p 2, p 3 Π Π = p 1 p 2 p 3 (outer product)

19 19 (Josiah Willard Gibbs: ) (a, b) a b a, b, c (vector calculus) 3 (David Orlin Hestenes: 1933 ) [65] (join) (meet) (dual plane) (dual point) (dual line) 2 (duality theorem) 3 (2.20) (Benjamin Olinde Rodrigues: ) (Rodrigues formula) 3 (2.17) (2.22) binormal (moving frame)

20 xyz z = f(x, y) F (x, y, z) = 0 u, v x = x(u, v), y = y(u, v), z = z(u, v) 3.2 z = f(x, y) f(x, y) 3.3 xy (3.13) H K (K > 0) (K = 0) (K < 0) 3.5

21 F (x, y, z) = 0 F (3.35) F (3.36) κ H K 2 F F (3.40) (3.42) 3.6 x = x(u, v), y = y(u, v), z = z(u, v) x, y, z u, v e 1, e 2 (3.53) n (3.54) e 1, e 2, n {e 1, e 2, n} (3.60) κ H K {e 1, e 2, n} (3.78), (3.79) 3.7 {e 1, e 2, n} (u, v) e i / u j, n/ u j u = u 1, v = u 2 (3.91), (3.92) j k ij ff 2

22 22 (3.94) (3.95) 2 3 (differential geometry) (3.15) (total curvature) (Gaussian curvature) 3.3 (Jan Johan Koenderink: 1943 )[28] 3.6 (u, v) (tensor calculus) 3 CAD (Albert Einstein: ) (1936 ) (statistical geometry)

23

24 S ,

25 uv xyz 2 u, v 3 u, v 2 x, y, z 4 x, y, z x f(x) = 0, g(x) = 0 x 2 x, y f(x, y) = 0, g(x, y) = 0, h(x, y) = 0 x, y [27 32] (catastorophy) 1970 (René Frédéric Thom: )[52]

26 26 4.5

27 (5.4) L, l v L p p v l P (5.10) 1

28 (, 0) (0, ) 2 (0, 0) (1, 1) 1 (5.13) (5.15) Π, π v Π p p v π P (5.17) 2

29 (5.21), (5.22), (5.23) x 2 + y 2 = (a)

30 (b) (, 0, 0), (0,, 0) (0, 0, ) 2 (0, 0, 0) (1, 1, 1) 1 (5.44) (5.47) (5.49) 3

31 (5.55), (5.56), (5.57) x 2 + y 2 + z 2 = )

32 Π v p p v Π P 2 2 Π v π Π p p v π P p 2 π 2 π π π π CAD (homogeneous coordinate) CAD (projective space) (topology) 1 (point at infinity) 2 (linet at infinity) 2 3 (planet at infinity)

33 33 CAD 5.10 (x, y, z) (x, y, z ) x y = A z A (5.51) B x y z 1 x y z 1 = x x x y y BA z C,..., D y z = D BA z CAD [ x y z 1] [ x y z 1] = [ x y z 1 ]A 4 4 B [ x y z 1] = [ x y z 1 ]AB C,..., D [ x y z 1] = [ x y z 1 ]ABC D CAD x y z 1 ( x y z 1) ABC A B C...

34 34 6 : A : (x A, y A ), B : (x B, y B ), C : (x C, y C ) (x, y) (barycentric coordinates) (α, β, γ) (x, y) ( ) ( ) ( ) ( ) x x A x B x C = α + β + γ, α + β + γ = 1 (6.1) y y B y C y C x A x B x C α x y A y B y C β = y. (6.2) γ α = 1 x x B x C y y D B y C, β = 1 x A x x C y D A y y C, γ = 1 D x A x B x C D = y A y B y C x A x B x y A y B y 1 1 1, (6.3)

35 6 : 35 A A γ > 0 P β > 0 γ > 0 β < 0 P B α > 0 B α > 0 C C (a) (b) 6.1: P (a) P ABC (a) P ABC 3 A : (x A, y A ), B : (x B, y B ), C : (x C, y C ) (x, y) (α, β, γ) (6.3) (α, β, γ) (x, y) (6.1) (6.1) 6.1 ABC (1/3, 1/3, 1/3) 6.2 P (α, β, γ) A, P BC D B, P CA E C, P AC F 6.1 α : β : γ = P BC : P CA : P AB (6.4) 6.1 ABC ABC (α, β, γ) (area coordinages) (x, y) ABC α 0, β 0, γ 0 α > 0, β > 0, γ > (x, y) BC, CA, AB α = 0, β = 0, γ = 0 α < 0 (x, y) BC A β < 0 CA B γ < 0 AB C , 6.2 (6.3) (α, β, γ) 1.1

36 6 : 36 β = 0 α > 0 β < 0 γ < 0 γ = 0 α = 0 α > 0 β > 0 γ < 0 B A α > 0 β > 0 γ > 0 α > 0 β < 0 γ > 0 α < 0 β > 0 γ < 0 α < 0 β > 0 γ > 0 C α < 0 β < 0 γ > 0 6.2: BC, CA, AB α = 0, β = 0, γ = n r r (subspace) r (affine space) r (flat) n n 1 (hyperplane) n N n N r 1,..., r N c 1 x c N x N (6.5) c c N = 1 (affine combination) r 1,..., r N r 1,..., r N (6.5) c c N = 1 c 1 0,..., c N 0 (convex conbination) r 1,..., r N (convex hull) r 1,..., r N (convex set) 2 (6.1) n (general position) n + 1 n 6.2 n + 1 n (simplex)

37 6 : 37 - A A - B (α, β, γ ) (α, β, γ ) C - C B 6.3: Ā B C ABC 6.4: 6.2 Ā B C ABC Ā B C (α, β, γ) ABC (α, β, γ) 6.3 ( x, ȳ) (x, y) x = a 11 x + a 12 ȳ + a 13, y = a 21 x + a 22 ȳ + a 23 (6.6) 2 (affine transformation) (5.14) (6.6) (5.18) x a 11 a 12 a 13 x y = a 21 a 22 a 23 ȳ (6.7) (6.6), (6.7) ( x, ȳ) (x, y)

38 6 : 38 ABC (x, y) 1. (x, y) ABC (α, β, γ) ( (6.3)) 2. α 0, β 0, γ 0 Ā B C (α, β, γ) ( x, ȳ) ( (6.1)) 3. ( x, ȳ) (x, y) Ā B C ABC (texture mapping) 6.3 Ā B C ( x, ȳ) ABC (x, y) (x, y) ( x, ȳ) R G B (x, y) (6.6), (6.7) ( x, ȳ) (x, y) 1 (x, y) 2 (x, y) ( x, ȳ) ( x, ȳ) 4 ( x, ȳ) (i, j) ξ = x i, η = ȳ j (i, j) I(i, j) ( x, ȳ) 6.4 I( x, ȳ) = (1 ξ)(1 η)i(i, j) + ξ(1 η)i(i + 1, j) + (1 ξ)ηi(i, j + 1) + ξηi(i + 1, j + 1) (6.8)

39 6 : 39 (i, j) η 1-η (i, j+1) ξ 1-ξ (i+1, j) η 1-η (i+1, j+1) 6.5: I(i, j) I(i, j + 1) η : 1 η I(i + 1, j) I(i + 1, j + 1) η : 1 η ξ : 1 ξ I(i, j) I(i, j + 1) η : 1 η I(i + 1, j) I(i + 1, j + 1) η : 1 η ξ : 1 ξ 6.5 ξ : 1 ξ η : 1 η (bilinear interpolation) (a) 3 6.6(b) 6.6(a) 6.6(b) 6.6(a) (rendering)

40 6 : 40 3 (smooth shading) 3 3 CAD 3 (computer vision) 3 3 (3D reconstruction) 6.3 (5.13) (projective transformation, homography) 1 1 x = h 11x + h 12 y + h 13 h 31 x + h 32 y + h 33, ȳ = h 21x + h 22 y + h 23 h 31 x + h 32 y + h 33 (6.9) 6.7 (x, y), ( x, ȳ) X : Y : Z, X : Ȳ : Z 5.6 x = X/Z, y = Y/Z, x = X/ Z, ȳ = Ȳ / Z (5.17) X h 11 h 12 h 13 X Ȳ = k h 21 h 22 h 23 Y (6.10) Z h 31 h 32 h 33 Z k (projection transformation matrix, homography matrix) (6.9), (6.10) (6.6), (6.7) h 31 = h 32 = 0 3 {a 1, a 2, a 3 } (reciprocal system) {ã 1, ã 2, ã 3 } (a) (b) 6.6: (a) 3 (b) 3

41 6 : 41 ã 1 = a 2 a 3 a 1, a 2, a 3, ã 2 = a 3 a 1 a 1, a 2, a 3, ã 3 = a 1 a 2 a 1, a 2, a 3 (6.11) 6.3 {a 1, a 2, a 3 } {ã 1, ã 2, ã 3 } (a i, ã j ) = δ ij (6.12) δ ij i = j 1 i 0 0 (3.58), (3.74) (6.12) a 2 a 3 a 2, a a 1, a 2, a 3 (a 1 a 2, a 3 ) (2.13) a 1, ) a 2, a 3 A = (a 1 a 2 a 3 ã 1, ã 2, ã 3 ) (ã à = 1 ã 2 ã 3 (6.12) A à = I ( ) ) 6.3 à = ã 1 ã 2 ã 3 A = (a 1 a 2 a à = (A ) 1 (= (A 1 ) ) (6.13) ABC Ā B C A, B, C X A : Y A : Z A, X B : Y B : Z B, X C : Y C : Z C Ā, B, C X : Ā Y : ZĀ, X Ā B : Y B : Z B, X C : Y C : Z C {(X A, Y A, Z A ), (X B, Y B, Z B ), (X C, Y C, Z C ) } {( X A, ỸA, Z A ), ( X B, ỸB, Z B ), ( X C, ỸC, Z C ) } 6.4 αβγ 0 α, β, γ X Ā X A H = α Y Ā Ỹ A Z A Z Ā X B + β Y B Z B X B Ỹ B Z B + γ X C Y C Z C X C Ỹ C Z C (6.14) 3 A, B, C 3 Ā, B, C 6.7:

42 6 : (6.10) H α, β, γ α + β + γ = 1 (6.14) (α, β, γ) ABC Ā B C 6.4 (6.14) α = β = γ 6.4 ABCD Ā B C D ABCD Ā B C D 3 3 A, B. C 3 Ā, B. C (6.14) α, β, γ D D 6.6 (6.14) H D D α, β, γ W A = X A X D + ỸAY D + Z A Z D, W B = X B X D + ỸBY D + Z B Z D, W C = X C X D + ỸCY D + Z C Z D (6.15) X W Ā A X BW B X CW C α Y W Ā A Y BW B Y CW C β = Z W Ā A Z BW B Z CW C γ 6.5 X D Y D Z D (6.16) (6.16) ABCD Ā B C D 4 A, B, C, D 4 Ā, B, C, D 6.3 (6.9) 6.11 Ā B C D, ABCD 4 Ā, B. C, D (xā, y Ā ), (x B, y B ), (x C, y C ), (x D, y D ) 4 A, B. C, D (x A, y A ), (x B, y B ), (x C, y C ), (x D, y D ) X A x A Y A = y A, 1 Z A X B Y B Z B = x B y B 1, X C Y C Z C = x C y C 1,

43 6 : 43 X Ā Y Ā Z Ā = x Ā y Ā 1, X B Y B Z B = x B y B 1, X C Y C Z C = x C y C 1 (6.17) Ā B C D ABCD (6.17) (6.15) W A, W B, W C (6.16) α, β, γ (6.14) H ABCD (x, y) 1. (x, y) ABCD ( x, ȳ) x x ȳ = Z[H y ] (6.18) 1 1 Z[ ] 3 1 Z[(X, Y, Z) = (X/Z, Y/Z, 1) 2. Ā B C D ( x, ȳ) (x, y) (6.17), (6.18) Z 1 Z[ ] (6.10) k (x, y) ABCD (x, y) ABC BCD 6.1 (6.14) ABC Ā B C Ā B C D ABCD α, β, γ (6.16) D D 6.3 RGB ( x, ȳ) (x, y) ( x, ȳ) 1

44 6 : 44 (a) (b) 6.8: (a) (b) 3 6.8(b) 3 6.8(a) 6.8(b) 6.8(b) (b) 6.8(a) (projection mapping) (calibration) m

45 6 : 45 (a) (b) 6.9: (a) 2 4 (b) (image mosaicing) (mosaicing) (6.4) 6.2. (6.6) (6.6) 3 Ā : (xā, yā), B : (x B, y B), C : (x C, y C) 3 A : (x A, y A ), B : (x B, y B ), C : (x C, y C ) a 11, a 12,..., a (6.8) 6.5. (6.9) (6.10) 6.6. (A ) 1 = (A 1 )

46 (6.14) 3 A, B, C 3 Ā, B, C A, B, C, D Ā, B, C, D H (6.14) α, β, γ (6.16) (6.9) A : (x A, y A ), B : (x B, y B ), C : (x C, y C ), D : (x D, y D ) Ā : (xā, yā), B : (x B, y B), C : (x C, y C), D : (x D, y D) h 11, h 12,..., h ABC ABC ABC

47 (voxel) CT MRI (volume data) (solid texture) 3 (3D texture) 3

48 48 [49] 3 [67] 6.4 (video mapping) [69] [71] HMD (virtual reality) (feature point) (Harris operator)[57] SIFT (SIFT operator)[70] (descriptor) RANSAC [56] 4 [67] [67]

49 (transformation) (group of transformation) xy 7.2 (Euclidean transformation) ( ) x y = ( cos θ sin θ ) ( ) ( sin θ x + cos θ y t 1 t 2 ) (7.1)

50 : (rigid motion) (motion) (congruence transformation) (x, y) O θ (t 1, t 2 ) (7.1) x cos θ sin θ t 1 x y = sin θ cos θ t 2 y (7.2) (group of Euclidean transformations) (congruent) (Euclidean geometry) O x xy θ (t 1, t 2 ) x y 7.2 xy (x, y) x y (x, y ) (x, y) (x, y ) (7.1) θ (t 1, t 2 ) ( t 1, t 2 ) θ (1.40), (1.41) 1.10

51 7 51 y y O 1 2 x 1 O 1 2 x 7.2: 7.3 (similar transformation) ( ) ( x cos θ y = s sin θ ) ( ) ( sin θ x + cos θ y t 1 t 2 ), s 0 (7.3) (x, y) O θ s (t 1, t 2 ) (7.3) x s cos θ s sin θ t 1 x y = s sin θ s cos θ t 2 y, s 0 (7.4) (group of similar transformations) s = 1 (similar) (similar geometry) 7.3:

52 7 52 y y O 1 2 x 1 O 1 2 x 7.4: xy s θ (t 1, t 2 ) x y 7.4 xy (x, y) x y (x, y ) (x, y) (x, y ) (7.3) (Euclidean reconstruction) 7.4 (similar transformation) (5.14), (6.6) ( ) ( ) ( ) ( x a 11 a 12 x y = + a 21 a 22 y a 13 a 23 ), a 11 a 22 a 12 a 21 0 (7.5)

53 : (7.5) x a 11 a 12 a 13 x y = a 21 a 22 a 23 y, a 11 a 22 a 12 a 21 0 (7.6) (group of affine transformations) (7.5) s ( 0) s = 1 (affine geometry) xy x y 7.6 xy (x, y) x y (x, y ) (x, y) (x, y ) (7.5) (oblique coordinate system) (orthogonal coordinate system) (Cartesian coordinate sytem) 7.5 N (x 1, y 1 ),..., (x N, y N ) (x 1, y 1 ),..., (x N, y N ) N = N

54 7 54 y y O 1 2 x 1 O 1 2 x 7.6: 7.1 x = 1 N N x α, α=1 ȳ = 1 N N y α, α=1 x = 1 N N x α, α=1 ȳ = 1 N N y α (7.7) α=1 (7.5) x, y, x, y x α, y α, x α, y α (1/N) N α=1 ( ) ( ) ( ) ( ) 1 N x α = 1 N a 11 a 12 x α a 13 + N N a 21 a 22 y α a 23 α=1 y α α=1 ( ) ( ) ( ) ( x a 11 a 12 x ȳ = + a 21 a 22 ȳ a 13 a 23 ( x, ȳ) ( x, ȳ ) ) (7.8) (7.9) x α, y α, x α, y α (7.5) (7.9) ( x α x y α ȳ ) ( ) ( a 11 a 12 = a 21 a 22 x α x y α ȳ α = 1,..., N ( ) ( ) ( ) x 1 x x N x a 11 a 12 x 1 x x N x y 1 ȳ y N = ȳ a 21 a 22 y 1 ȳ y N ȳ ) (7.10) (7.11)

55 7 55 ( x 1 x x N x y 1 ȳ y N ȳ ) x 1 x y 1 ȳ ( ) ( a 11 a 12 x 1 x x N x = a 21 a 22 y 1 ȳ y N ȳ.. x N x y N ȳ ) x 1 x y 1 ȳ. x N x. y N ȳ (7.12) N ( N α=1 (x α x )(x α x)/n N α=1 (x α x )(y α ȳ)/n N α=1 (y α ȳ )(x α x)/n N α=1 (y α ȳ )(y α ȳ)/n = ( a 11 a 12 a 21 a 22 ) ( N α=1 (x α x) 2 /N N α=1 (y α ȳ)(x α x)/n ) ) N α=1 (x α x)(y α ȳ)/n N α=1 (y α ȳ) 2 /N (7.13) ( ) ( N a 11 a 12 α=1 = (x α x )(x α x)/n ) N α=1 (x α x )(y α ȳ)/n a 21 a N 22 α=1 (y α ȳ )(x α x)/n N α=1 (y α ȳ )(y α ȳ)/n ( N α=1 (x α x) 2 ) /N N 1 α=1 (x α x)(y α ȳ)/n (7.14) N α=1 (y α ȳ)(x α x)/n N α=1 (y α ȳ) 2 /N a 11, a 12, a 21, a 22 a 13, a 23 (7.9) ( ) ( ) ( x = ȳ a 13 a 23 a 11 a 12 a 21 a 22 ) ( ) x ȳ (7.15) (7.14) s s s 2 s (7.5) (7.6) σ (likelihood) (maximum likelihood estimation) (7.13) {(x α, y α )} (covariance matrix) {(x α, y α )}, {(x α, y α)} (correlation matrix) 7.3

56 7 56 s s = a a a a (7.16) (7.14) s A R A (singular value decomposition) A = U ( ) σ1 0 V (7.17) 0 σ 2 U, V σ 1 σ 2 ( 0) (singular value) R = UV (7.18) σ 1, σ 2 A σ 1 1, σ R (7.16) (7.18) (7.17), (7.18) (projective transformation, homography) (6.9), (5.13) x = h 11x + h 12 y + h 13 h 31 x + h 32 y + h 33, y = h 21x + h 22 y + h 23 h 31 x + h 32 y + h 33 (7.19) :

57 7 57 (7.19) (5.17) 6.5 X h 11 h 12 h 13 X Ȳ = k h 21 h 22 h 23 Y (7.20) Z h 31 h 32 h 33 Z k 0 (group of projective transformations) (7.19) h 33 = h 32 = 0, h 33 0 (projective geometry) (cross ratio) 5.1 xy x y 7.8 xy (x, y) x y (x, y ) (x, y) (x, y ) (7.19) 5.4 x y (0,0) ( (1,1) ( (, 0), (0, ) ( (1,1) 4 x (, 0) x x x (, 0) (1, 1) x y (0, ) y y y oo y O 1 2 x O 1 2 x oo 7.8: (0, 0) (1, 1) (, 0), (0, ) (, 0), (0, )

58 7 58 (, 0), (0, ) x, y N (x 1, y 1 ),..., (x N, y N ) (x 1, y 1 ),..., (x N, y N ) N = N (7.19) N projective affine similar Eculidean identity 7.9:

59 7 59 (group of translations) (group of rotations) (invariant) (invariance) (Felix Christian Klein: ) (Erlangen program) , (residual) 7.9 A B 7.10

60 7 60 class A class B data 7.10: B A B A (degree of freedom) 9 8 6, 4, 3 (overfitting) 0 (geometric model selection) (model selection criterion) J = ( ) + ( ) (7.21) (penalty term) (penalty term) J AIC(geometric AIC) BIC(geometric BIC) MDL(geometric MDL) 7.1. (7.14), (7.15) 2 a 11,..., a 23 ( ) J = 2 N x ( ( ) ( ) ( α a 11 a 12 x α + N a 21 a 22 y α α=1 y α a 13 a 23 ) ) 2 2/N (7.22)

61 (7.11) (7.14) (7.6) a 11,..., a (7.19) N (x 1, y 1 ),..., (x N, y N ) N (x 1, y 1 ),..., (x N, y N ) O θ (t 1, t 2 ) (7.1) O θ s ( 0) (t 1, t 2 ) (7.3) 2

62 (7.5) (x α, y α ) (x α, y α), α = 1,..., N 3 (N = 3) N > (7.14), (7.15)

63 (7.19) N (> 4) (7.17), (7.18) [23] [61] [63]

64 64 [67] 7.9 [58, 59] AIC BIC MDL [60] [64] [62] Triono [72] [68] [66] 3 GPS

65 65 [56] M. A. Fischler and R. C. Bolles: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, 24-6(1981), pp [57] C. Harris and M. Stephens: A combined corner and edge detector, Proceedings of the 4th Alvey Vision Conference, August 1988, Manchester, U.K., pp [58] K. Kanatani: Comments on Symmetry as a Continuous Feature, IEEE Transactions on Pattern Analysis and Machine Intelligence, 19-3 (1997), pp [59] K. Kanatani: Comments on Nonparametric Segmentation of Curves into Various Representations, IEEE Transactions on Pattern Analysis and Machine Intelligence, (1997), pp [60] K. Kanatani: Geometric information criterion for model selection, International Journal of Computer Vision, 26-2 (1998), pp [61] (2003). [62] K. Kanatani: Uncertainty modeling and model selection for geometric inference, IEEE Transactions on Pattern Analysis and Machine Intelligence, (2004), pp [63] (2005). [64] K. Kanatani: Geometric BIC, IEICE Transaction on Information & Systems, E93-D-1 (2010), pp [65] Geometric Algebra:, (2014). [66] K. Kanatani and C. Matsunaga: Computing internally constrained motion of 3-D sensor data for motion interpretation, Pattern Recognition, 46-6 (2013), pp [67] 3, (2016).

66 66 [68] AIC A Vol. J83-A-6 (2000), pp [69] Vol. J83-12 (2000), pp [70] D. Lowe: Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 60-2 (2004), pp [71] M. Sakamoto, Y. Sugaya, and K. Kanatani: Homography optimization for consistent circular panorama generation, Proceedings of the 2000 IEEE Pacific-Rim Symposium on Image and Video Technology, December 2006, Hsinchu, Taiwan, pp [72] I. Triono, N. Ohta and K. Kanatani: Automatic recognition of regular figures by geometric AIC, IEICE Transactions on Information and Systems, E81-D-2 (1998), pp

67 (6.3) α α = 1 x x B x x C x D y y B y y C y = 1 D x B x x C x y B y y C y = 1 ( ) ( ) xb x xc x D, = 1 P B, P C y B y y C y D 1 2, 3 (3,3) (1.8) 1.1 P B, P C α P BC 2/D β P CA 2/D γ P AB 2/D 1.1 P ABC 6.1(b) 7.2. (6.3) (x, y) (α, β, γ) (x, y) 1 (6.1) (α, β, γ) (x, y) (α, β, γ) 1 ( x, ȳ) (α, β, γ) (x, y) (x, y) (6.6) ( x, ȳ) Ā, B, C A, B, C (6.6) x A = a 11 x Ā + a 12 y Ā + a 13, y A = a 21 x Ā + a 22 y Ā + a 23, x B = a 11 x B + a 12 y B + a 13, y B = a 21 x B + a 22 y B + a 23, x C = a 11 x C + a 12 y C + a 13, y C = a 21 x C + a 22 y C + a 23 xā y Ā 1 x B y B 1 a 11 a 12 = x A x B, x C y C 1 a 13 x C xā y Ā 1 x B y B 1 a 21 a 22 = y A y B x C y C 1 a 23 y C 1 a 11, a 12,..., a 23 Ā B C I(i, j) I(i, j + 1) η : 1 η I(i + 1, j) I(i + 1, j + 1) η : 1 η

68 68 ξ : 1 ξ ( ) ( ) I( x, ȳ) = (1 ξ) (1 η)i(i, j) + ηi(i, j + 1) + ξ (1 η)i(i + 1, j) + ηi(i + 1, j + 1) = 1 ξ)(1 η)i(i, j) + ξ(1 η)i(i + 1, j) + (1 ξ)ηi(i, j + 1) + ξηi(i + 1, j + 1) ξ : 1 ξ η : 1 η 7.5. X : Ȳ : Z = x : ȳ : 1 = h 11X/Z + h 12 Y/Z + h 13 : h 21X/Z + h 22 Y/Z + h 23 : 1 h 31 X/Z + h 32 Y/Z + h 33 h 31 X/Z + h 32 Y/Z + h 33 X = h 11 Z + h Y 12 Z + h X 13 : h 21 Z + h Y 22 Z + h X 23 : h 31 Z + h Y 32 Z + h 33 = h 11 X + h 12 Y + h 13 Z : h 21 X + h 22 Y + h 23 Z : h 31 X + h 32 Y + h 33 Z 0 k X = k(h 11 X + h 12 Y + h 13 Z), Ȳ = k(h 21 X + h 22 Y + h 23 Z), Z = k(h31 X + h 13 Y + h 33 Z) (6.10) 7.6. AA 1 = I (A 1 ) A = I (A 1 ) A (A 1 ) = (A ) A H X A Y A Z A ( = α XĀ Y Ā Z Ā X Ā = α Y Ā Z Ā X A Ỹ A Z A 1 + β + β X B X B Y B Ỹ B Z B Z B X C 0 + γ Y C X B Y B Z B Z C + γ X C Y C Z C X C ) Ỹ C Z C X A Y A Z A 0 (7.23) Ā B, C B, C 7.8. (6.14) H αβγ 0 α, β, γ α + β + γ = 1 (X A, Y A, Z A ) = (x A, y A, 1), (X B, Y B, Z B ) = (x B, y B, 1), (X C, Y C, Z C ) = (x C, y C, 1) (X Ā, ȲĀ, Z Ā ) = (x Ā, y Ā, 1), (X B, Y B, Z ) = (x B, y B, 1), (X C, Y C, Z C) = (x C, y C, 1) H x A y A = α xā y Ā1, H x B y B = β x B y, H x C y C 1 1 B1 1 = γ x C y C1

69 69 ABC G : (x G, y G ) H Ḡ : (xḡ, y Ḡ ) k 0 x Ḡ x G (x A + x B + x C )/3 yḡ1 = kh y G = kh (y A + y B + y C )/3 = k ( x A x B 3 H y A + y B + y C = k ( α xā y 3 Ā1 + β x B y + γ x C y ) B1 C1 x C ) 3 α + β + γ = 1 k = 3 ( ) xḡ xḡ ( ) ( ) ( ) xā x = α + β B x + γ C yā y B y C (6.1) α, β, γ Ḡ Ā B C 7.9. H Ḡ (α, β, γ) (1, 1, 1) (α, β, γ) = (1, 1, 1) G Ḡ A, B, C, G Ā, B, C, Ḡ A, B, C A, B, C, G Ā, B, C, Ḡ A, B, C, G Ā, B, C, Ḡ H (α, β, γ) = (1, 1, 1) α + β + γ = 1 α, β, γ α = β = γ H D D X D X D Y D = kh Y D Z D k 0 H (6.14) α, β, γ k (6.14) X D Y D Z D Z Ā Z D ( = α XĀ X A Y Ā Ỹ A + β X B X B Y B Ỹ B + γ Z Ā Z A Z B Z B X Ā X B X C = α Y Ā W A + β Y B W B + γ Y C W C (6.15) (6.16) Z B (6.9) 1 Z C X C Y C Z C X C ) Ỹ C Z C X D Y D Z D h 11 x + h 12 y + h 13 = h 31 xx + h 32 xy + h 33 x

70 70 A, B, C, D Ā, B, C, D h 11 x A + h 12 y A + h 13 = h 31 x A x A + h 32 x A y A + h 33 x A h 11 x B + h 12 y B + h 13 = h 31 x B x B + h 32 x B y B + h 33 x B h 11 x C + h 12 y C + h 13 = h 31 x C x C + h 32 x C y C + h 33 x C h 11 x D + h 12 y D + h 13 = h 31 x D x D + h 32 x D y D + h 33 x D (6.9) 2 h 21 x + h 22 y + h 23 = h 31 ȳx + h 32 ȳy + h 33 ȳ A, B, C, D Ā, B, C, D h 21 x A + h 22 y A + h 23 = h 31 ȳ A x A + h 32 ȳ A y A + h 33 ȳ A h 21 x B + h 22 y B + h 23 = h 31 ȳ B x B + h 32 ȳ B y B + h 33 ȳ B h 21 x C + h 22 y C + h 23 = h 31 ȳ C x C + h 32 ȳ C y C + h 33 ȳ C h 21 x D + h 22 y D + h 23 = h 31 ȳ D x D + h 32 ȳ D y D + h 33 ȳ D 1 x A y A x A x A x A y A h 11 x A x B y B x B x B x B y B h 12 x B x C y C x C x C x C y C h 13 x C x D y D x D x D x D y D h x A y A 1 ȳ A x A ȳ A y A h 22 = h 33 x D ȳ A x B y B 1 ȳ B x B ȳ B y B h 23 ȳ B x C y C 1 ȳ C x C ȳ C y C h 31 ȳ C x D y D 1 ȳ D x D ȳ D y D h 32 ȳ D 0 h 11, h 12,..., h 33 h 33 = 1 0 h 33 = 0 0 h 11, h 12,..., h (7.22 J = 2 N N ( ) ( ) a11 a ( 12 xα + a 22 y α α=1 a 21 ( a13 7 a 23 ) ( x α y α a 13 J = 1 N ( ) ( ) a11 a ( 12 xα + a 13 N a 21 a 22 y α = 1 N α=1 ) ( ) ( ) ( ) ( ) a11 a, 12 xα a13 x + α a 21 a 22 y α a 23 y α ) ( a13 N (a 11 x α + a 12 y α + a 13 x α) α=1 a 23 ) ( x α y α ) ( ) 1, ) 0

71 71 a 23 J = 1 N (a 21 x α + a 22 y α + a 23 y a 23 N α) α=1 0 ( ) ( ) a11 a 12 x + a 22 ȳ a 21 ( a13 a 23 ) ( ) ( ) x 0 ȳ = 0 (7.9) (7.9) J J = 2 N N ( a11 a ( 12 α=1 a 21 a 22 ) ( xα x y α ȳ ) a 11 J = 1 N ( a11 a ( 12 a 11 N a 21 a 22 = 1 N α=1 ( x α x y α ȳ ) ( xα x y α ȳ ) ) ( ) ( ) a11 a, 12 xα x a 21 a 22 y α ȳ ( x α x y α ȳ ), ( ( x α x ) ( ) xα x ) y α ȳ N (a 11 (x α x) 2 + a 12 (x α x)(y α ȳ) (x α x )(x α x)) α=1 a 12, a 21, a 12 J a 12 = 1 N J a 21 = 1 N J a 22 = 1 N N (a 11 (x α x)(y α ȳ) + a 12 (y α ȳ) 2 (x α x )(y α ȳ)) α=1 N (a 21 (x α x) 2 + a 22 (x α x)(y α ȳ) (y α ȳ )(x α x)) α=1 N (a 21 (x α x)(y α ȳ) + a 22 (y α ȳ) 2 (y α ȳ )(y α ȳ)) α=1 0 ( ) ( N a11 a 12 α=1 (x α x) 2 ) N /N α=1 (x α x)(y α ȳ)/n a 21 a N 22 α=1 (x N α x)(y α ȳ)/n α=1 (x α x) 2 /N ( N α=1 (x α x )(x α x))/n ) N α=1 (x α x ( ) )(y α ȳ)/n 0 0 N α=1 (y α x )(x α x)/n = N α=1 (y α x )(y α ȳ)/n 0 0 (7.13) y α ȳ 7.2. (x α, y α ), (x α, y α), α = 1,..., N (7.6) x 1 x N a 11 a 12 a 13 x 1 x y 1 y N N = a 21 a 22 a 23 y 1 y N x 1 x x 1 y 1 1 N y 1 y N... = a 11 a 12 a 13 a 21 a 22 a 23 x 1 x N x 1 y 1 1 y 1 y N x N y N x N y N 1 N N α=1 x αx α /N N α=1 x αy α /N x N α=1 y αx α /N N α=1 y αy α /N ȳ = a N 11 a 12 a 13 α=1 a 21 a 22 a 23 x2 α/n N α=1 x αy α /N x N α=1 x ȳ x αy α /N N α=1 y2 αn ȳ x ȳ 1 ) )

72 72 N a 11 a 12 a 13 α=1 x αx α /N N α=1 x αy α /N x N a 21 a 22 a 23 = N α= y αx α /N α=1 N x2 α/n N α=1 x αy α /N x α=1 y αy α /N ȳ N α=1 x αy α /N N α=1 y2 αn ȳ x ȳ 1 x ȳ J = 2 N x α y α a 11 a 12 a 13 a 21 a 22 a 23 x α y α 2 N α= (x α, y α ), (x α, y α) (7.19) 1 h 11 x α +h 12 y α +h 13 = h 31 x αx α +h 32 x α y α +h 33 x α, h 21 x α +h 22 y α +h 23 = h 31 y αx α +h 32 y αy α +h 33 y α α = 1,... N 1 x 1 y x 1x 1 x 1y 1 x x N y N x N x N x N y N x N x 1 y 1 1 y 1x 1 y 1y 1 y x N y N 1 y N x N y N y N y N 2 N 1 N h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h = h 11 x 1 x N 0 0 h 12 y 1 y N 0 0 h h x 1 x N h y 1 y N h h 31 x 1x 1 x N h 32 x N y 1x 1 y N x N x 1y 1 x N y N y 1y 1 y N y N h 33 x 1 x N y 1 y N x 1 y x 1x 1 x 1y 1 x h 11 1 h h 13 x N y N x N x N x N y N x h 21 N x 1 y 1 1 y 1x 1 y 1y 1 y 1 h 22 h x N y N 1 y N x N y N y h 31 N y N h 32 h 33 2 ( h 11. h 33, M h 11. h 33 ) ( )

73 73 M N N α=1 x2 α/n α=1 x αy α /N x N α=1 x N αy α /N α=1 y2 α/n ȳ x ȳ M = N α=1 x αx 2 α/n N α=1 x αx α y α /N N α=1 x αx α /N N α=1 x αx α y α /N N α=1 x αyα/n 2 N α=1 x αy α /N N α=1 x αx α /N N α=1 x αy α /N x N N α=1 x2 α/n α=1 x αy α /N x N α=1 x αy α /N N α=1 y2 α/n ȳ x ȳ 1 N α=1 y αx 2 α/n N α=1 y αx α y α /N N N α=1 y αx α y α /N N α=1 y αy 2 α/n N N α=1 y αx α /N N α=1 y αy α /N ȳ α=1 y αx α /N α=1 y αy α /N N α=1 x αx 2 α/n N α=1 x αx α y α /N N α=1 x αx α /N N α=1 x αx α y α /N N α=1 x αy 2 α/n N α=1 x αy α /N N α=1 x αx α /N N α=1 x αy α /N x N α=1 y αx 2 α/n N α=1 y αx α y α /N N α=1 y αx α /N N α=1 y αx α y α /N N α=1 y αyα/n 2 N α=1 y αy α /N N α=1 y αx α /N N α=1 y αy α /N ȳ N α=1 (x α 2 + y α 2 )x 2 α/n N α=1 (x α 2 + y α 2 )x α y α /N N α=1 (x α 2 + y α 2 )x α /N N α=1 (x α 2 + y α 2 )x α y α /N N α=1 (x α 2 + y α 2 )yα/n 2 N α=1 (x α 2 + y α 2 )y α /N N α=1 (x 2 α + y α 2 )x α /N N α=1 (x α 2 + y α 2 )y α /N N α=1 (x α 2 + y α 2 )/N (7.19) {h ij } h h 2 33 = 1 2 ( ) {h ij } M

74 74 Albert Einstein, 22 affine geometry, 53 affine space, 36 affine combination, 36 affine transformation, 37, 52 group of affine transformations, 53, 22 topology, 32 general position, 36 moving frame, 19 motion, 50 Erlangen program, 59 overfitting, 60 outer product, 18 group of rotations, 59 Gaussian curvature, 22 virtual reality, 48 image mosaicing, 45 catastorophy, 25 AIC geometric AIC, 60 MDL geometric MDL, 60 geometric algebra, 15, 19 BIC geometric BIC, 60 geometric model selection, 60 descriptor, 48 Josiah Willard Gibbs, 19 covariance matrix, 55 Felix Christian Klein: , 59 Hermann Günter Grassmann, 18 Grassmann algebra, 18 Cramer s formula, 34 join, 19 Jan Johan Koenderink, 22, 25 meet, 19 calibration, 44 rigid motion, 50 congruent, 50 congruence transformation, 50 computer vision, 40 maximum likelihood estimation, 55 residual, D texture, D reconstruction, 40 quaternion, 18 SIFT SIFT operator, 48 projective geometry, 57 projective space, 32 projective transformation, homography, 40, 56 projection transformation matrix, homography matrix, 40 group of projective transformations, 57

75 75 oblique coordinate system, 53 barycentric coordinates, 34 degree of freedom, 60 binormal, 19 smooth shading, 40 total curvature, 22 1 bilinear interpolation, 39 correlation matrix, 55 similar, 51 similar geometry, 51 similar transformation, 51 group of similar transformations, 51 dual line, 19 duality theorem, 19 dual point, 19 dual plane, 19 reciprocal system, 40 solid texture, 47 simplex, 36 hyperplane, 36 orthogonal coordinate system, 53 Cartesian coordinate sytem, 53 texture mapping, 38 tensor calculus, 22 statistical geometry, 22 homogeneous coordinate, 32 moving frame, 19 singular value, 56 singular value decomposition, 56 feature point, 48 convex conbination, 36 convex set, 36 convex hull, 36 René Frédéric Thom, 25 binormal, 19 penalty term, 60 Sir William Rowan Hamilton, 18 Harris operator, 48 video mapping, 48 differential geometry, 22 cross ratio, 57 subspace, 36 invariance, 59 invariant, 59 flat, 36 projection mapping, 44 group of translations, 59 vector calculus, 19 versor, 15 David Orlin Hestenes, 19 penalty term, 60 transformation, 49 group of transformation, 49 voxel, 47 volume data, 47 linet at infinity, 32 point at infinity, 32 planet at infinity, 32 area coordinages, 35

76 76 mosaicing, 45 model selection criterion, 60 Euclidean geometry, 50 Euclidean reconstruction, 52 Euclidean transformation, 49 group of Euclidean transformations, 50 likelihood, 55 RANSAC, 48 rendering, 39 Benjamin Olinde Rodrigues, 19 Rodrigues formula, 19 Rodrigues formula, 19

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

IPSJ SIG Technical Report Vol.2010-MPS-77 No /3/5 VR SIFT Virtual View Generation in Hallway of Cybercity Buildings from Video Sequen

IPSJ SIG Technical Report Vol.2010-MPS-77 No /3/5 VR SIFT Virtual View Generation in Hallway of Cybercity Buildings from Video Sequen VR 1 1 1 1 1 SIFT Virtual View Generation in Hallway of Cybercity Buildings from Video Sequences Sachiyo Yoshida, 1 Masami Takata 1 and Joe Kaduki 1 Appearance of Three-dimensional (3D) building model

More information

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, [II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail sugaya@iim.ics.tut.ac.jp

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β) 19 7 12 1 t F := t 2 + at + b D := a 2 4b F = 0 a, b 1.1 F = 0 α, β α β a, b /stlasadisc.tex, cusp.tex, toileta.eps, toiletb.eps, fromatob.tex 1 F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx, 1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set

More information

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z + 3 3D 1,a) 1 1 Kinect (X, Y) 3D 3D 1. 2010 Microsoft Kinect for Windows SDK( (Kinect) SDK ) 3D [1], [2] [3] [4] [5] [10] 30fps [10] 3 Kinect 3 Kinect Kinect for Windows SDK 3 Microsoft 3 Kinect for Windows

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

untitled

untitled . x2.0 0.5 0 0.5.0 x 2 t= 0: : x α ij β j O x2 u I = α x j ij i i= 0 y j = + exp( u ) j v J = β y j= 0 j j o = + exp( v ) 0 0 e x p e x p J j I j ij i i o x β α = = = + +.. 2 3 8 x 75 58 28 36 x2 3 3 4

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta

IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta 1 1 1 1 2 1. Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Takayuki Okatani 1 and Koichiro Deguchi 1 This paper presents a method for recognizing the pose of a wire harness

More information

miru2006_cr.dvi

miru2006_cr.dvi y;yy yy y y;yy yy y;yy y 630 0192 8916 5 yy NEC 630 0101 8916 47 E-mail: yftomoka-s,sei-i,kanbara,yokoyag@is.naist.jp, yyiketani@cp, n-nakajima@ay.jp.nec.com (structure from motion), structure from motion,,,

More information

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 (, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2

More information

光学

光学 Fundamentals of Projector-Camera Systems and Their Calibration Methods Takayuki OKATANI To make the images projected by projector s appear as desired, it is e ective and sometimes an only choice to capture

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

Fig Measurement data combination. 2 Fig. 2. Ray vector. Fig (12) 1 2 R 1 r t 1 3 p 1,i i 2 3 Fig.2 R 2 t 2 p 2,i [u, v] T (1)(2) r R 1 R 2

Fig Measurement data combination. 2 Fig. 2. Ray vector. Fig (12) 1 2 R 1 r t 1 3 p 1,i i 2 3 Fig.2 R 2 t 2 p 2,i [u, v] T (1)(2) r R 1 R 2 IP 06 16 / IIS 06 32 3 3-D Environment Modeling from Images Acquired with an Omni-Directional Camera Mounted on a Mobile Robot Atsushi Yamashita, Tomoaki Harada, Ryosuke Kawanishi, Toru Kaneko (Shizuoka

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

fi¡ŒØ.dvi

fi¡ŒØ.dvi (2001) 49 1 77 107 ( 2000 10 18 2001 1 18 ) * 2 2 3 Structure from motion, 1. 1.1 3 2 2 3 2 3 3 2 1 * 305 8568 1 1 1 2. 78 49 1 2001 3 3 2 2 3 3 2 3 2 2 3 3 2 3 2 3 2 3 3 2 3 3 Image-Based Rendering, Virtualized

More information

agora04.dvi

agora04.dvi Workbook E-mail: kawahira@math.nagoya-u.ac.jp 2004 8 9, 10, 11 1 2 1 2 a n+1 = pa n + q x = px + q a n better 2 a n+1 = aan+b ca n+d 1 (a, b, c, d) =(p, q, 0, 1) 1 = 0 3 2 2 2 f(z) =z 2 + c a n+1 = a 2

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

(MIRU2008) HOG Histograms of Oriented Gradients (HOG) (MIRU2008) 2008 7 HOG - - E-mail: katsu0920@me.cs.scitec.kobe-u.ac.jp, {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human

More information

70 : 20 : A B (20 ) (30 ) 50 1

70 : 20 : A B (20 ) (30 ) 50 1 70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................

More information

yoo_graduation_thesis.dvi

yoo_graduation_thesis.dvi 200 3 A Graduation Thesis of College of Engineering, Chubu University Keypoint Matching of Range Data from Features of Shape and Appearance Yohsuke Murai 1 1 2 2.5D 3 2.1 : : : : : : : : : : : : : : :

More information

R R 16 ( 3 )

R R 16   ( 3 ) (017 ) 9 4 7 ( ) ( 3 ) ( 010 ) 1 (P3) 1 11 (P4) 1 1 (P4) 1 (P15) 1 (P16) (P0) 3 (P18) 3 4 (P3) 4 3 4 31 1 5 3 5 4 6 5 9 51 9 5 9 6 9 61 9 6 α β 9 63 û 11 64 R 1 65 13 66 14 7 14 71 15 7 R R 16 http://wwwecoosaka-uacjp/~tazak/class/017

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem 1 1 1 Posture Esimation by Using 2-D Fourier Transform Yuya Ono, 1 Yoshio Iwai 1 and Hiroshi Ishiguro 1 Recently, research fields of augmented reality and robot navigation are actively investigated. Estimating

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.

More information

27 AR

27 AR 27 AR 28 2 19 12111002 AR AR 1 3 1.1....................... 3 1.1.1...................... 3 1.1.2.................. 4 1.2............................ 4 1.2.1 AR......................... 5 1.2.2......................

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q x-means 1 2 2 x-means, x-means k-means Bayesian Information Criterion BIC Watershed x-means Moving Object Extraction Using the Number of Clusters Determined by X-means Clustering Naoki Kubo, 1 Kousuke

More information

Armstrong culture Web

Armstrong culture Web 2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

曲面のパラメタ表示と接線ベクトル

曲面のパラメタ表示と接線ベクトル L11(2011-07-06 Wed) :Time-stamp: 2011-07-06 Wed 13:08 JST hig 1,,. 2. http://hig3.net () (L11) 2011-07-06 Wed 1 / 18 ( ) 1 V = (xy2 ) x + (2y) y = y 2 + 2. 2 V = 4y., D V ds = 2 2 ( ) 4 x 2 4y dy dx =

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 4 2010 9 3 3 4-1 Lucas-Kanade 4-2 Mean Shift 3 4-3 2 c 2013 1/(18) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 -- 4 4--1 2010 9 4--1--1 Optical Flow t t + δt 1 Motion Field

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1 1 1 1 GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1 and Hiroshi Ishiguro 1 Self-location is very informative for wearable systems.

More information

重力方向に基づくコントローラの向き決定方法

重力方向に基づくコントローラの向き決定方法 ( ) 2/Sep 09 1 ( ) ( ) 3 2 X w, Y w, Z w +X w = +Y w = +Z w = 1 X c, Y c, Z c X c, Y c, Z c X w, Y w, Z w Y c Z c X c 1: X c, Y c, Z c Kentaro Yamaguchi@bandainamcogames.co.jp 1 M M v 0, v 1, v 2 v 0 v

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution

Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution Convolutional Neural Network 2014 3 A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolutional Neural Network Fukui Hiroshi 1940 1980 [1] 90 3

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

画像工学特論

画像工学特論 .? (x i, y i )? (x(t), y(t))? (x(t)) (X(ω)) Wiener-Khintchine 35/97 . : x(t) = X(ω)e jωt dω () π X(ω) = x(t)e jωt dt () X(ω) S(ω) = lim (3) ω S(ω)dω X(ω) : F of x : [X] [ = ] [x t] Power spectral density

More information

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2, 1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,θ n ) = exp(i n i=1 θ i F i ) (A.1) F i 2 0 θ 2π 1

More information

IPSJ SIG Technical Report Taubin Ellipse Fitting by Hyperaccurate Least Squares Yuuki Iwamoto, 1 Prasanna Rangarajan 2 and Kenichi Kanatani

IPSJ SIG Technical Report Taubin Ellipse Fitting by Hyperaccurate Least Squares Yuuki Iwamoto, 1 Prasanna Rangarajan 2 and Kenichi Kanatani 1 2 1 2 Taubin Ellipse Fitting by Hyperaccurate Least Squares Yuuki Iwamoto, 1 Prasanna Rangarajan 2 and Kenichi Kanatani 1 This paper presents a new method for fitting an ellipse to a point sequence extracted

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1. R A 1.3 X : (1)X ()X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 (A) f X X f 1 (A) = X f 1 (A) = A a A f f(x) = a x

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

2.2 6).,.,.,. Yang, 7).,,.,,. 2.3 SIFT SIFT (Scale-Invariant Feature Transform) 8).,. SIFT,,. SIFT, Mean-Shift 9)., SIFT,., SIFT,. 3.,.,,,,,.,,,., 1,

2.2 6).,.,.,. Yang, 7).,,.,,. 2.3 SIFT SIFT (Scale-Invariant Feature Transform) 8).,. SIFT,,. SIFT, Mean-Shift 9)., SIFT,., SIFT,. 3.,.,,,,,.,,,., 1, 1 1 2,,.,.,,, SIFT.,,. Pitching Motion Analysis Using Image Processing Shinya Kasahara, 1 Issei Fujishiro 1 and Yoshio Ohno 2 At present, analysis of pitching motion from baseball videos is timeconsuming

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

IPSJ SIG Technical Report iphone iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Proc

IPSJ SIG Technical Report iphone iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Proc iphone 1 1 1 iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Processing Unit)., AR Realtime Natural Feature Tracking Library for iphone Makoto

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A ( ) (, ) arxiv: 1510.02269 hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a 1 + + N 0 a n Z A (β; p) = Au=β,u N n 0 A-. u! = n i=1 u i!, p u = n i=1 pu i i. Z = Z A Au

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information