., White-Box, White-Box. White-Box.,, White-Box., Maple [11], 2. 1, QE, QE, 1 Redlog [7], QEPCAD [9], SyNRAC [8] 3 QE., 2 Brown White-Box. 3 White-Box

Size: px
Start display at page:

Download "., White-Box, White-Box. White-Box.,, White-Box., Maple [11], 2. 1, QE, QE, 1 Redlog [7], QEPCAD [9], SyNRAC [8] 3 QE., 2 Brown White-Box. 3 White-Box"

Transcription

1 White-Box Takayuki Kunihiro Graduate School of Pure and Applied Sciences, University of Tsukuba Hidenao Iwane ( ) / Fujitsu Laboratories Ltd. / National Institute of Informatics. Yumi Wada Graduate School of Pure and Applied Sciences, University of Tsukuba Akira Terui Faculty of Pure and Applied Sciences, University of Tsukuba 1, (Quantifier Elimination; QE) ([1], [5]). QE. QE, QE. (Virtual Substituition) [10], QE., QE QE. QE,,,,, QE., ([3], [12]). C. W. Brown, A. Strzeboński White-Box [4].,,, hirophirop@gmail.com iwane@jp.fujitsu.com wada.yumi.ww@alumni.tsukuba.ac.jp terui@math.tsukuba.ac.jp 1

2 ., White-Box, White-Box. White-Box.,, White-Box., Maple [11], 2. 1, QE, QE, 1 Redlog [7], QEPCAD [9], SyNRAC [8] 3 QE., 2 Brown White-Box. 3 White-Box, 4 White-Box. 2 White-Box, Brown and Strzeboński [4] White-Box., Brown White-Box,. 2.1 White-Box,,. 1 ( ) p, φ(p), φ(p) {p = 0, p 0, p < 0, p 0, p > 0, p 0, true, false}., true, false, 0 = 0, true, false,,. 2 ( OP) OP 8. R, { true, false }. 1. NOOP(x) false. 2. LTOP(x) true if x < 0, else false. 3. LEOP(x) true if x 0, else false. 4. GTOP(x) true if x > 0, else false. 5. GEOP(x) true if x 0, else false. 6. EQOP(x) true if x = 0, else false. 7. NEOP(x) true if x 0, else false. 8. ALOP(x) true., x > 0 GTOP(x 2 + 1). Q Z[x 1,..., x n ] α : Q OP, x. α(q)(q(x)).., { LTOP (q = x + y) Q = {x + y, x y}, α(q) = GEOP (q = x y), x + y < 0 x y 0., OP. q Q 2

3 3 (OP ) OP +,, : OP OP OP. (α + β)(z) true if x, y [z = x + y α(x) β(y)], else false. (αβ)(z) true if x, y [z = xy α(x) β(y)], else false. (α β)(z) true if [α(z) β(z)], else false., S Q : OP OP. S Q(α)(z) true if x[z = x 2 α(x)], else false. 4 ( OP) sgn: R OP. LTOP (x < 0) sgn(x) EQOP (x = 0) GTOP (x > 0) 5 (PP(x 1,..., x n )) Z[x 1,..., x n ] *2, *3 PP(x 1,... x n ). 6 ( ) a OP, b OP, x[a(x) b(x)], a b. 2.2 White-Box. 1 y 2 x + 1 > 0 2x 1 < 0. y 2 x + 1 > 0 2x 1 < 0 y x 1 > 0 2x 1 < 0 2 2x 1 < 0 ϕ 1 y 2 x + 1 > 0, ϕ 2 2x 1 < 0., ϕ 1 2, 3 2x 1 2 ϕ y , ϕ 2 ϕ 1, ϕ 1 ϕ 2 ϕ 2. White-Box,, 1. 2x 1 < 0 y 2 x + 1. White-Box. White-Box 2.,, PolynomialSign, Algorithm 2. PolynomialSign, Algorithm 1, MonomialSign., 2 p, q, q, p, DeduceSign, Algorithm 4. DeduceSign, Algorithm 3, FindInterval. *2 1 *3 Cox, Little and O Shea [6, 2, 3]., x 1,..., x n a, b,..., y, z x 1 > x 2 > > x n, a > b > > y > z. 3

4 Algorithm 1 MonomialSign [4, Algorithm 2] Input: M = x e xe n n :, α 1,..., α n OP Output: β OP s.t. α 1 (x 1 ) α n (x n ) β(m) 1: β GTOP 2: for 1 i n do 3: if e i : even then β S Q(α i ) β else β α i β end if 4: end for 5: return β Algorithm 2 PolynomialSign [4, Algorithm3] Input: p = a 1 M a k M k Z[x 1,..., x n ] (M i x 1,..., x n ), α 1,..., α n OP Output: β OP s.t. α 1 (x 1 ) α n (x n ) β(p) 1: β EQOP 2: for 1 i k do 3: β sgn(a i ) MonomialSign(M i ; α 1,..., α n ) + β 4: end for 5: return β 2 1, p = y 2 x + 1, q = 2x 1, α(x) = ALOP, α(y) = ALOP, β = LTOP DeduceSign., 2x 1 < 0 y 2 x FindIntervals I 1 = { 1 2}, I2 =, strict = true. ( p q > 0. ) 2. β = LTOP I 1 R +, DeduceSign 3, 4, γ = GTOP. 2x 1 < 0, y 2 x + 1 > 0. 1, 1 DeduceSign,, 1 DeduceAll, Algorithm 5. DeduceAll,,, DeduceAllSigns, Algorithm White-Box, Brown White-Box Algorithm 7., White-Box P PP(x 1,..., x n ), σ: P OP p P σ p (p). White-Box 5. 1., (1 10 ) 2.,. (12 15 ) 3. 2, 2 (11, 16 ) 4., () (17 31 ) 5. (32 36 )

5 Algorithm 3 FindIntervals [4, Algorithm 4] Input: p = a 1 M a k M k, q = b 1 M b k M k Z[x 1,..., x n ], α 1,..., α n OP Output: I 1, I 2 : R, strict { true, false } s.t., strict = true α 1 (x 1 ) α n (x n ) t I 1 [p + tq 0] t I 2 [p + tq 0], α 1 (x 1 ) α n (x n ) t int(i 1 )[p + tq > 0] t int(i 2 )[p + tq < 0]., int(i 1 ), int(i 2 ) I 1, I 2. 1: I 1 R, I 2 R, strict false 2: for 1 i k do 3: s MonomialSign(M i ; α 1,..., α n ) 4: if s = NOOP then I 1 end if 5: if s = LEOP s = LTOP then 6: if s = LTOP then strict true end if 7: if = 0 a i < 0 then I 2 8: else if = 0 a i > 0 then I 1 9: else if < 0 then I 1 I 1 [ a i, ), I 2 I 2 (, a i ] 10: else if > 0 then I 1 I 1 (, a i ], I 2 I 2 [ a i, ) 11: end if 12: else if s = GEOP s = GTOP then 13: if s = GTOP then strict true end if 14: if = 0 a i < 0 then I 1 15: else if = 0 a i > 0 then I 2 16: else if < 0 then I 1 I 1 (, a i ], I 2 I 2 [ a i, ) 17: else if > 0 then I 1 I 1 [ a i, ), I 2 I 2 (, a i ] 18: end if 19: else if s = NEOP s = ALOP then 20: if = 0 a i 0 then I 1, I 2, else I 1 I 1 { a i }, I 2 I 2 { a i } end if 21: end if 22: end for 23: return I 1, I 2, strict 1. p q, q 0 p p PolynomialSign. 3. p DeduceAll.,,. White-Box. 3 White-Box White-Box., White-Box 3.,, 5

6 Algorithm 4 DeduceSign [4, Algorithm 5] Input: p = a 1 M a k M k, q = b 1 M b k M k Z[x 1,..., x n ], α 1,..., α n, β OP Output: γ OP s.t. α 1 (x 1 ) α n (x n ) β(q) γ(p) 1: γ ALOP, (I 1, I 2, strict) FindIntervals(p; q; α 1,..., α n ) 2: if β = LTOP then 3: if I 1 R + then γ GTOP else if 0 I 1 then γ GEOP end if 4: if I 2 R then γ γ LTOP else if 0 I 2 then γ γ LEOP end if 5: else if β = LEOP then 6: if strict and int(i 1 ) R + then γ GTOP else if I 1 (R + {0}) then γ GEOP end if 7: if strict and int(i 2 ) R then γ γ LTOP else if I 2 (R {0}) then γ γ LEOP end if 8: else if β = GTOP then 9: if I 1 R then γ GTOP else if 0 I 1 then γ GEOP end if 10: if I 2 R + then γ γ LTOP else if 0 I 2 then γ γ LEOP end if 11: else if β = GEOP then 12: if strict and int(i 1 ) R then γ GTOP else if I 1 (R {0}) then γ GEOP end if 13: if strict and int(i 2 ) R + then γ γ LTOP else if I 2 (R + {0}) then γ γ LEOP end if 14: else if β = EQOP then 15: if strict and int(i 1 ) then γ GTOP else if I 1 then γ GEOP end if 16: if strict and int(i 2 ) then γ γ LTOP else if I 2 then γ γ LEOP end if 17: end if 18: return γ Algorithm 5 DeduceAll [4, Algorithm 6] Input: p = a 1 M a k M k, Q Z[x 1,..., x n ], α 1,..., α n OP, β : Q q β q OP Output: γ OP s.t. α 1 (x 1 ) α n (x n ) q Q β q (q) γ(p) 1: γ ALOP 2: for all q Q do 3: if β q NEOP β q ALOP then 4: γ γ DeduceSign(p; q; α 1,..., α n ; β q ) 5: if γ = NOOP then return NOOP end if 6: end if 7: end for 8: return γ White-Box (Algorithm 7) AndSimplify., ψ Ψ ψ (Ψ: ), ϕ Φ ϕ (Φ: ).,. 3.1 AndSimplify.. (), () 6

7 Algorithm 6 DeduceAllSigns [4, Algorithm 7] Input: P, Q Z[x 1,..., x n ], α 1,..., α n OP, β : P p β p OP, γ : Q q γ q OP Output: α 1,..., α n OP, β : P p β p OP, unsat {true, false} s.t. if unsat = true, F false, else F α 1 (x 1 ) α n (x n ) p P β p (p) q Q γ q (q) (F α 1 (x 1 ) α n (x n ) p P β p (p) q Q γ q (q)) 1: unsat false, R P Q. for 1 i n do α i α i end for. for all p P do β p β p end for. 2: for all r R do 3: if r P then δ r β r else δ r γ r end if 4: end for 5: for all 1 i n do 6: α i α i DeduceAll(x i ; R; α 1,..., α n ; δ) 7: if α i = NOOP then unsat true end if 8: end for 9: for all p P do 10: R R \ {p}, δ δ R, β p β p DeduceAll(p; R; α 1,..., α n ; δ) 11: if β p = NOOP then unsat true end if 12: end for 13: return α 1,..., α n, β, unsat, AndSimplify. Input = φ(p) p P φ(p) p P ψ(p), ψ(p), AndSimplify φ(p) p P p P p P ψ(p) = Output. p P (1) OrSimplify. OrSimplify OP. 7 (OP ) NEG : OP OP NEG(op)(x) true if (op(x)), else false., op OP. OrSimplify Algorithm 8., OrSimplify P PP(x 1,..., x n ), σ: P OP p P σ p (p)., unsat AndSimplify. unsat = true, AndSimplify false, OrSimplify true. 3 ψ y 2 x x 1 0 OrSimplify. (1), ψ y 2 x x 1 0 (y 2 x + 1 > 0 2x 1 < 0) (2x 1 < 0) ( 1) 2x 1 0, ψ. 7

8 Algorithm 7 White-Box (AndSimplify) [4, Algorithm 8] Input: P PP(x 1,..., x n ), σ : P p σ p OP Output: Q PP(x 1,..., x n ), τ : Q q τ q OP, unsat {true, false} s.t. if unsat = true, p P σ p (p) false, else p P σ p (p) q Q τ q (q) 1: Q P, τ σ, unsat false, P 1 P, P 2 P 1 \ {x 1,..., x n }, P 3 P \ P 1 2: for 1 i n do 3: if x i P then α i σ xi else α i ALOP end if 4: end for 5: for all p P 2 do 6: if p P then β p σ p else β p ALOP end if 7: β p β p PolynomialSign(p; α 1,..., α n ) 8: if β p = NOOP then unsat true, return Q, τ, unsat end if 9: end for 10: for all p P 3 do γ p σ p end for 11: repeat 12: changed false 13: (α 1,..., α n ), β, unsat DeduceAllSigns(P 2 ; P 3 ; α 1,..., α n ; β; γ) 14: if unsat = true then return Q, τ, unsat end if 15: if (α 1,..., α n ) (α 1,..., α n ) β β then (α 1,..., α n ) (α 1,..., α n ), β β, changed true end if 16: until changed = false 17: for all p P 2 do 18: if β p = NEOP p q P 3 γ q {LTOP, GTOP, NEOP} then β p ALOP end if 19: if β p ALOP β p = PolynomialSign(p; α 1,..., α n ) then β p ALOP end if 20: if β p ALOP then 21: R (P 2 \ {p}) P 3, ρ (β P 2 \ {p}) γ 22: if β p = DeduceAll(p; R; α 1,..., α n ; ρ) then β p ALOP end if 23: end if 24: end for 25: for all p P 3 do 26: if γ p ALOP γ p = PolynomialSign(p; α 1,..., α n ) then γ p ALOP end if 27: if γ p ALOP then 28: R P 2 (P 3 \ {p}), ρ β (γ P 3 \ {p}) 29: if γ p = DeduceAll(p; R; α 1,..., α n ; ρ) then γ p ALOP end if 30: end if 31: end for 32: Q 1 {x i α i ALOP}, Q 2 {p P 2 β p ALOP}, Q 3 {p P 3 γ p ALOP} Q Q 1 Q 2 Q 3 33: for all x i Q 1 do τ xi α i end for 34: for all p Q 2 do τ p β p end for 35: for all p Q 3 do τ p γ p end for 36: return Q, τ, unsat 8

9 Algorithm 8 OrSimplify Input: P PP(x 1,..., x n ), σ : P p σ p OP Output: Q PP(x 1,..., x n ), τ : Q q τ q OP, unsat { true, false } s.t. if unsat = true, p P σ p (p) true, else p P σ p (p) q Q τ q (q) 1: for all p P do σ p NEG(σ p ) end for 2: Q, τ, unsat AndSimplify(P; σ) 3: for all q Q do τ q NEG(τ q ) end for 4: return Q, τ, unsat 3.2 AndSimplify., AndSimplify. (p i, q j Z[x 1,..., x n ], φ(p i ), φ(q j ). ) t φ(q j ) (φ(p 1 ) φ(p s )) (2) j=1 t t (( φ(q j ) φ(p 1 )) ( φ(q j ) φ(p s ))) (3) j=1 j=1 j=1 t t (( φ(q j ) φ (p 1 )) ( φ(q j ) φ (p s ))) (4) j=1 t φ(q j ) (φ (p 1 ) φ (p s )). (5) j=1 (2), t j=1 φ(q j ) φ(p i ) ( (3)). (3) t j=1 φ(q j ) φ(p i ) DeduceAll. tj=1 φ(q j ) p i,. (4) ψ (p i ) ψ(p i )., t j=1 φ(q j ), φ(p i ) ( (5)). OrNestedSimplify, Algorithm 9., OrNestedSimplify P, Q PP(x 1,..., x n ), σ: P OP, τ: Q OP q Q τ q (q) p P σ p (p), 1, 2 P, σ, 3, 4 Q, τ. 4 φ 2x 1 < 0 (y 2 x z + 1 > 0) OrNestedSimplify. (2) (5), φ 2x 1 < 0 (y 2 x z + 1 > 0) (2x 1 < 0 y 2 x + 1 0) (2x 1 < 0 z + 1 > 0) (2x 1 < 0 false) (2x 1 < 0 z + 1 > 0) 2x 1 < 0 (false z + 1 > 0). false 2x 1 < 0 z + 1 > 0. 9

10 Algorithm 9 OrNestedSimplify Input: P PP(x 1,..., x n ), σ : P p σ p OP, Q PP(x 1,..., x n ), τ : Q q τ q OP (F q Q τ q (q) p P σ p (p). ) Output: R PP(x 1,..., x n ), σ : R r σ r OP. unsat { true, false } s.t. if unsat = true, F false, else F q Q τ q (q) (R r R σ r (r)) 1: R P, σ σ, unsat false 2: for 1 i n do 3: if x i Q then α i τ xi else α i ALOP end if 4: end for 5: for all r R do 6: for 1 i n do 7: if r = x i then α i σ r else α i α i end if 8: end for 9: if DeduceAll(r; Q; α 1,..., α n ; τ) σ r then R, σ, return R, σ, unsat 10: else σ r σ r DeduceAll(r; Q; α 1,..., α n ; τ) 11: end if 12: end for 13: if all σ r = NOOP then unsat true, return R, σ, unsat end if 14: R {r R σ r NOOP} 15: return R, σ, unsat OrNestedSimplify,, AndSimplify, OrSimplify. 4, AndSimplify OrSimplify, y 2 x + 1 0, z + 1 > 0, OrSimplify., y 2 x + 1 > 0., OrNestedSimplify, OrSimplify z + 1 > 0, 2x 1 < 0., OrNestedSimplify,,. 3.3., OrSimplify,, OrNestedSimplify. Input = ϕ ϕ Φ ϕ ϕ Φ ψ, ψ,ornestedsimplify ϕ ψ Ψ ψ Ψ ϕ Φ ψ = Output. ψ Ψ Algorithm 10 AndNestedSimplify., AndNestedSimplify P, Q PP(x 1,..., x n ), σ: P OP, τ: Q OP q Q τ q (q) p P σ p (p). 10

11 Algorithm 10 AndNestedSimplify Input: P PP(x 1,..., x n ), σ : P p σ p OP, Q PP(x 1,..., x n ), τ : Q q τ q OP (F q Q τ q (q) p P σ p (p). ) Output: R PP(x 1,..., x n ), σ : R r σ r OP. unsat { true, false } s.t. if unsat = true, F true, else F q Q τ q (q) (R r R σ r (r)) 1: for all p P do σ p NEG(σ p ) end for 2: for all q Q do τ q NEG(τ q ) end for 3: R, σ, unsat OrNestedSimplify(P; σ; Q; τ) 4: for all r R do σ r NEG(σ r ) end for 5: return R, σ, unsat, unsat OrNestedSimplify. unsat = true, OrNestedSimplify false, AndNestedSimplify true. 3.4 White-Box White-Box (AndSimplify), 3 (OrSimplify, OrNestedSimplify, AndNested- Simplify), White-Box (ExtendedWhite-Box) Algorithm 11. Algorithm 11,,, ϕ Φ ϕ ψ Ψ ψ (ϕ:, ψ: ), ϕ Φ ϕ ψ Ψ ψ (ϕ:, ψ: )., ϕ, ( ) ψ χ. ( ) ψ ( ) ω, Algorithm 11 (5, 23 ),, Algorithm 11 ω. 4 White-Box Maple, 2. 1 (QE ) SyNRAC QE, QE White-Box, QE White-Box ( White-Box + QE) 2. 2 ( QE ), Redlog (rlsimpl), QEPCAD (slfq), SyNRAC (synsimpl), White-Box 4,.. 11

12 Algorithm 11 ExtendedWhite-Box Input: F: Output: F : s.t. F F 1: if F = ϕ Φ ϕ ψ Ψ ψ (ϕ:, ψ: ) then 2: /* ψ ψ = χ X χ ω Ω ω (χ:, ω: ). */ 3: Φ Φ, Ψ Ψ 4: if Ψ then 5: ψ Ψ ψ ExtendedWhite-Box( ψ Ψ ψ) 6: /* ψ ψ = χ X χ ω Ω ω (χ :, ω : ) ψ Ψ ψ ψ Ψ ψ. */ 7: if ψ Ψ ψ : then Φ Φ { ψ Ψ ψ }, Ψ end if 8: end if 9: for all ψ Ψ do 10: /* P PP(x 1,..., x n ) σ: P p σ p OP p P σ p (p) = ϕ Φ ϕ. */ 11: /* Q PP(x 1,..., x n ) τ: Q q τ q OP q Q τ q (q) = χ X χ. */ 12: Q, τ, unsat AndNestedSimplify(Q; τ; P; σ) 13: if unsat = true Ω = then ψ true else ψ q Q τ q(q) ω Ω ω end if 14: end for 15: P, σ, unsat OrSimplify(P; σ) 16: if unsat = true then return true end if 17: Φ {σ p (p) p P, σ : P p σ p OP} 18: F ϕ Φ ϕ ψ Ψ ψ 19: else if F = ϕ Φ ϕ ψ Ψ ψ (ϕ:, ψ: ) then 20: /* ψ ψ = χ X χ ω Ω ω (χ:, ω: ). */ 21: Φ Φ, Ψ Ψ 22: if Ψ then 23: ψ Ψ ψ ExtendedWhite-Box( ψ Ψ ψ) 24: /* ψ ψ = χ X χ ω Ω ω (χ :, ω : ) ψ Ψ ψ ψ Ψ ψ. */ 25: if ψ Ψ ψ : then Φ Φ { ψ Ψ ψ }, Ψ end if 26: end if 27: for all ψ Ψ do 28: /* P PP(x 1,..., x n ) σ: P p σ p OP p P σ p (p) = ϕ Φ ϕ. */ 29: /* Q PP(x 1,..., x n ) τ: Q q τ q OP q Q τ q (q) = χ X χ. */ 30: Q, τ, unsat OrNestedSimplify(Q; τ; P; σ) 31: if unsat = true Ω = then ψ false else ψ q Q τ q(q) ω Ω ω end if 32: end for 33: P, σ, unsat AndSimplify(P; σ) 34: if unsat = true then return false end if 35: Φ {σ p (p) p P, σ : P p σ p OP} 36: F ϕ Φ ϕ ψ Ψ ψ 37: end if 38: return F 12

13 OS CPU: Intel Core i5-4300u 1.90GHz RAM: 8GB OS: Windows 8.1 Pro : VMware Player OS RAM: 4GB OS: Linux SMP 4.1 1: QE 207 QE, QE White-Box QE QE White-Box ( White-Box + QE) CAD QE,., 2., 3600 (1 ) ( A ), QE. 8. T 1 T 2 T 1 T 2 T 2 /T ( ) 1., T 1, T 2 QE White-Box QE ( ), QE White-Box ( White-Box + QE) ( ). 2.,. T 1 T 2,, 6 2. A White-Box,, false, White-Box. QE T 2 /T 1.,. ( 1, 3, 4, 5, 8) 13

14 4.2 2:,,. A. White-Box QE. 1 8 White-Box QE, White-Box. Redlog, SyNRAC, White-Box. QEPCAD 8, QEPCAD White-Box,. White-Box, QEPCAD 9 ( A ). White-Box,,., QEPCAD, QEPCAD, CAD [2].. 9 QEPCAD. 5, White-Box,. White-Box,,, QE., QE, Redlog, SyNRAC, White-Box., QEPCAD, White-Box.. 1, White-Box 4 (AndSimplify, OrSimplify, OrNestedSimplify, AndNestedSimplify). 2,, 1 White-Box. x + 1 > 0 y + 1 > 0 x + y + 2 > 0, x + 1 > 0, y + 1 > 0 x + y + 2 > 0,. A : 1 x 1 ((x 2 < 0 2x1 2 2x 1 1 0) (x 2 < 0 2x x 1 1 0) ( x1 2 x 1 1 x1 2 x 1 1) ( x1 2 + x 1 1 x1 2 + x 1 1) (2x1 2 2x 1 1 = 0 2x x 1 1 = 0) x 1 < 2 x 1 < 4 4x1 2 3 x2 1 x x1 2 + x x1 4 13x2 1 1 = 0) White-Box x 1 (0 < x 1 2 x 1 < 4 0 4x x4 1 13x2 1 1 = 0 2x2 1 2x 1 1 = 0 (x 2 < 0 2x1 2 2x 1 1 0)) Redlog x 1 (x 1 4 < 0 x 1 2 > 0 x1 2 x > 0 4x x4 1 13x2 1 1 = 0 (x 2 < 0 2x1 2 2x 1 1 0) (x 2 < 0 2x x 1 1 0) (2x1 2 2x 1 1 = 0 2x x 1 1 = 0)) 14

15 QEPCAD false SyNRAC 2 x 2 (( x x2 2 x2 1 x2 2 2)( x 2x 1 < 2 2x 2 2 x2 1 +x2 2 4x 2x 1 < 4)( x 2 x 1 < 2 x 4 2 8x3 2 x 1 8x 2 2 x2 1 8x2 2 < 16) (x 2 x 1 < 2 2x 2 2 x2 1 x2 2 4x 2x 1 < 4) (x 2 x 1 < 2 x x3 2 x 1 8x 2 2 x2 1 8x2 2 < 16) ( 6x2 2 x x x 4 2 x4 1 32x4 2 x2 1 +9x x2 2 x2 1 24x2 2 16)(6x2 2 x2 1 5x x4 2 x x4 2 x2 1 9x4 2 40x2 2 x x2 2 16) (6x2 2x2 1 3x x8 2 48x6 2 x x4 2 x4 1 48x x4 2 x x x2 2 x x )( 2x2 2x2 1 +x2 2 4x 2x 1 < 4 x2 4+8x3 2 x 1+8x2 2x2 1 +8x2 2 < 16)(2x2 2 x2 1 x2 2 4x 2x 1 < 4 x2 4 8x3 2 x 1+8x2 2x2 1 +8x2 2 < 16)( 48x 4 2 x x4 2 x2 1 19x4 2 56x2 2 x x x4 2 x x4 2 x x4 2 x x2 2 x4 1 9x x2 2 x x x )(24x4 2 x4 1 24x4 2 x2 1 +3x x2 2 x2 1 8x x8 2 48x6 2 x x4 2 x4 1 48x x4 2 x x x 2 2 x x ) (48x4 2 x4 1 64x4 2 x x x2 2 x2 1 32x x4 2 x x4 2 x4 1 90x4 2 x x 2 2 x x x2 2 x2 1 24x2 2 96x2 1 16) ( 6x2 2 x x2 2 < 4 24x4 2 x x4 2 x2 1 3x4 2 40x2 2 x x2 2 < 16 9x x6 2 x x4 2 x4 1 48x x4 2 x x x2 2 x x )(6x2 2 x2 1 3x2 2 < 4 24x4 2 x4 1 24x2 4x x x2 2 x2 1 8x2 2 < 16 9x8 2 48x6 2 x x4 2 x4 1 48x x4 2 x x x2 2 x x ) x 1 < 0 x 2 < 0 x2 2 2 x2 2 x2 1 + x x8 2 x x8 2 x x6 2 x x x6 2 x x4 2 x x x4 2 x x x2 2 x x = 0) White-Box Redlog false QEPCAD x 2 (x 2 > 0 x x 1 < 0 x 2 1 x2 2 x x4 1 x x4 1 x x4 1 x x2 1 x x2 1 x x 2 1 x x2 1 x x x x x = 0 (x2 2 2 = 0 x2 1 x2 2 x = 0) (x 1x > 0 2x 2 1 x x 1x 2 x > 0) (x 1x > 0 8x 2 1 x x 1x x x > 0) (2x2 1 x2 2 4x 1x 2 x < 0 8x 2 1 x2 2 8x 1x 3 2 +x4 2 +8x < 0)(2x2 1 x2 2 +4x 1x 2 x > 0 8x2 1 x2 2 +8x 1x 3 2 +x4 2 +8x < 0)(6x2 1 x2 2 5x x 4 1 x4 2 32x2 1 x x2 1 x2 2 +9x4 2 24x )(6x2 1 x2 2 5x x4 1 x4 2 32x2 1 x x2 1 x2 2 +9x4 2 24x ) (6x1 2x2 2 3x x4 1 x4 2 48x2 1 x x2 1 x x2 1 x x8 2 48x x x ) (6x1 2x2 2 3x < 0 24x4 1 x4 2 24x2 1 x x2 1 x x4 2 8x < 0 576x4 1 x4 2 48x2 1 x x2 1 x x 2 1 x2 2 +9x8 2 48x x x )(6x2 1 x2 2 3x > 0 24x4 1 x4 2 24x2 1 x x2 1 x2 2 +3x4 2 8x > 0 576x 4 1 x4 2 48x2 1 x x2 1 x x2 1 x2 2 +9x8 2 48x x x )(24x4 1 x4 2 24x2 1 x x2 1 x2 2 +3x4 2 8x x4 1 x4 2 48x2 1 x x2 1 x x2 1 x2 2 +9x8 2 48x x x )(48x4 1 x4 2 64x2 1 x x 2 1 x x4 2 32x x6 1 x x4 1 x x4 1 x x2 1 x x2 1 x x2 1 9x x )(48x4 1 x4 2 64x1 2x x2 1 x x4 2 32x x6 1 x x4 1 x x4 1 x x2 1 x x2 1 x x2 1 9x x )) false SyNRAC x 2 (( x x2 2 x2 1 x2 2 2)( x 2x 1 < 2 2x 2 2 x2 1 +x2 2 4x 2x 1 < 4)( x 2 x 1 < 2 x 4 2 8x3 2 x 1 8x 2 2 x2 1 8x2 2 < 16) (x 2 x 1 < 2 2x 2 2 x2 1 x2 2 4x 2x 1 < 4) (x 2 x 1 < 2 x x3 2 x 1 8x 2 2 x2 1 8x2 2 < 16) (9x4 1 6x x x ) ( 6x2 2 x x x4 2 x4 1 32x4 2 x x x2 2 x2 1 24x2 2 16) (6x2 2 x2 1 5x x 4 2 x x4 2 x2 1 9x4 2 40x2 2 x x2 2 16) ( 2x2 2 x2 1 + x2 2 4x 2x 1 < 4 x x3 2 x 1 + 8x 2 2 x x2 2 < 16)(2x 2 2 x2 1 x2 2 4x 2x 1 < 4 x 4 2 8x3 2 x 1 +8x 2 2 x2 1 +8x2 2 < 16)( 48x4 2 x x4 2 x2 1 19x4 2 56x2 2 x x x 4 2 x x4 2 x x4 2 x x2 2 x4 1 9x x2 2 x x x2 1 16)(48x4 2 x4 1 64x4 2 x x x2 2 x2 1 32x2 2 15

16 x 4 2 x x4 2 x4 1 90x4 2 x x2 2 x4 1 +9x x2 2 x2 1 24x2 2 96x2 1 16)( 6x2 2 x2 1 +3x2 2 < 4 24x4 2 x x2 4x2 1 3x4 2 40x2 2 x x2 2 < 16 9x8 2 48x6 2 x x4 2 x4 1 48x x4 2 x x x2 2 x x )(6x2 2x2 1 3x2 2 < 4 24x4 2 x4 1 24x4 2 x2 1 +3x x2 2 x2 1 8x2 2 < 16 9x8 2 48x6 2 x x4 2 x4 1 48x x4 2 x x x2 2 x x ) ( 64512x x x2 2 x x x x x2 2x x x2 2 x x x x x4 2 x2 1 +9x x2 2 x x4 1 24x x x x x2 2 x x x x ) x 1 < 0 x 2 < 0 x x2 2 x2 1 + x x 8 2 x x8 2 x x6 2 x x x6 2 x x4 2 x x x4 2 x x x2 2 x2 1 76x = 0) x 1 x 2 ( x 2 < 0 x 1 < 1 x x2 2 1 x2 1 x2 2 + x 1 0 x 2 1 x x 1 + 2x 2 1)) White-Box Redlog QEPCAD x 1 x 2 (0 < x 2 x 1 < 1 x x x2 1 + x2 2 2x 1 2x 2 + 1) x 1 x 2 (x 2 > 0 x < 0 x x x2 1 2x 1 + x 2 2 2x ) false SyNRAC 4 x 2 (x 2 < 0 x 1 + x 2 < 0 2x 1 x 2 + x x 1x 2 + x 2 2 < 1 x2 1 x 1x 2 + x 2 2 < 1 2x2 1 2x 1x 2 + 3x x x7 1 x x 6 1 x2 2 72x5 1 x x4 1 x4 2 72x3 1 x x2 1 x6 2 36x 1x x x6 1 24x5 1 x x 4 1 x2 2 96x 3 1 x x2 1 x x 1x x6 2 5x4 1 24x3 1 x x 2 1 x x 1x x x2 1 36x 1x x 2 2 < 9)) White-Box Redlog QEPCAD x 2 (x 2 < 0 0 < x 1 x 2 2x 2 1 2x 1x 2 + 3x x8 1 36x7 1 x x 6 1 x2 2 72x5 1 x x4 1 x4 2 72x3 1 x x 2 1 x6 2 36x 1x x x6 1 24x5 1 x x 4 1 x2 2 96x3 1 x x2 1 x x 1x x6 2 5x4 1 24x3 1 x x 2 1 x x 1 x x x2 1 36x 1x x 2 2 < 9) false SyNRAC 5 x 2 (x 2 < 2 x 2 2 x 1 0 4x x 1 2x 2 < 0 x x 1 4x 2 < 8 5x 2 2 4x 1 + 4x 2 4) White-Box Redlog false QEPCAD 16

17 false SyNRAC 6 x 4 ( x 4 < 0 x2 2x x 1x 2 x 3 + x2 2x 4 + x x 1x 4 0 x2 2x x 1x 2 x x2 2 x2 3 x 4 + x1 2x x 1x 2 x 3 x 4 2x 1 x3 2x 4 + 2x1 2x 4 < 0 x2 2x2 3 4x 2x x x 1x 2 x 3 4x 1 x3 2 + x2 2 x 4 4x 2 x 3 x 4 + 4x3 2x 4 + x1 2 2x 1x 4 0 x2 2x x 2x 5 3 x6 3 2x 1x 2 x x 1x3 4 x2 2 x2 3 x 4 + 2x 2 x 3 3 x 4 x3 4x 4 x1 2x2 3 4x 1x 2 x 3 x 4 + 4x 1 x3 2x 4 2x1 2x 4 < 0 x2 2x4 3 2x 2x x x 1x 2 x 3 3 2x 1x3 4 + x2 2 x2 3 x 4 2x 2 x 3 3 x 4 + 2x3 4x 4 + x1 2x x 1x 2 x 3 x 4 4x 1 x3 2x 4 + 2x1 2x 4 < 0 x2 4x4 3 +4x3 2 x5 3 8x2 2 x6 3 +8x 2x3 7 4x8 3 4x 1x 3 2 x x 1x2 2x4 3 16x 1x 2 x x 1x 6 3 2x4 2 x2 3 x 4 +8x 3 2 x3 3 x 4 16x2 2x4 3 x x 2 x 5 3 x 4 8x 6 3 x 4 6x1 2x2 2 x x2 1 x 2x 3 3 8x2 1 x4 3 4x 1x 3 2 x 3x 4 +12x 1 x2 2x2 3 x 4 24x 1 x 2 x 3 3 x 4+16x 1 x3 4x 4 x2 4x2 4 +4x3 2 x 3x4 2 8x2 2x2 3 x2 4 +8x 2x 3 3 x2 4 4x4 3 x2 4 4x3 1 x 2x 3 +4x 3 1 x2 3 2x2 1 x2 2 x 4+4x1 2x 2x 3 x 4 8x1 2x2 3 x 4 8x 1 x 2 x 3 x4 2+8x 1x3 2x2 4 x4 1 4x2 1 x2 4 0) White-Box false Redlog QEPCAD false SyNRAC 7 x 2 ((3x x x2 2 x 1 0) (15x2 2 x x x 1 0) (7x2 2 16x 2 5x 1 < 0 25x x x 1 < 64) (7x2 2 16x 2 5x 1 < 0 15x x2 2 5x 2x 1 40x 1 < 0) ( 5x x 2 + 3x 1 < 5 9x x x4 2 x x 3 2 x x2 2x x 2x x3 1 < 0) (5x2 2 10x 2 3x 1 < 5 198x x x3 2 x x2 2x x 2 x x2 1 < 0) (25x2 2 80x 2 15x 1 < 64 15x x2 2 5x 2x 1 40x 1 < 0) ( 198x x x3 2 x x2 2x x 2 x x2 1 < 0 9x x x4 2 x x 3 2 x x2 2x x 2x x3 1 < 0) ( 25x x x2 2 x 1 180x2 2 60x 2x 1 9x x x 1 < x x x5 2 x 1 216x x4 2 x x 3 2 x x3 2 x 1 375x2 2x x 2x x 2x x3 1 < 0) (25x x3 2 30x2 2 x x x 2x 1 + 9x x 2 12x 1 < x x x6 2 x 1 216x x5 2 x x2 4x x4 2 x x 3 2 x x2 2 x x2 2 x x 2x x x3 1 < 0)( 108x x x5 2 x 1 216x x4 2 x x 3 2 x x3 2 x 1 375x2 2x x 2x x 2x x3 1 < 0 135x x x6 2 x 1 216x x5 2 x x2 4x x4 2 x x 3 2 x x2 2 x x2 2 x x 2 x x x3 1 < 0)( 33x2 2 5x 1 < 0 3x2 2 +7x 1 < 0 15x2 2 x 1 0)( 3x2 2 7x 1 < 0 15x2 2 x x x 1 < 0) x 2 < 0 5x x 1 < 0 3x2 2 5x 1 < 0 x2 2 x 1 < 0 3x2 2 5x 1 < 0)) White-Box x 2 (0 < x 2 0 < 5x2 2 3x 1 x2 2 x 1 < 0(7x2 2 16x 2 5x 1 < 0 0 < 25x2 2 80x 2 15x 1 +64)(7x2 2 16x 2 5x 1 < 0 15x x2 2 5x 2x 1 40x 1 < 0)(0 < 5x2 2 10x 2 3x < 9x 6 2 9x x4 2 x 1 150x 3 2 x 1 25x2 2x x 2x1 2 25x 3 1 )(5x2 2 10x 2 3x 1 < 5 0 < 198x x x3 2 x 1 750x2 2x 1 250x 2 x x2 1 )(25x2 2 80x 2 15x 1 < 64 15x x2 2 5x 2x 1 40x 1 < 0) (0 < 198x x x3 2 x 1 750x2 2x 1 250x 2 x x2 1 0 < 9x 6 2 9x x4 2 x 1 150x 3 2 x 1 25x2 2x x 2x1 2 25x3 1 )(0 < 25x x3 2 30x2 2 x 1+180x2 2+60x 2x 1 +9x x 2 17

18 12x < 108x x x5 2 x x x4 2 x 1 300x 3 2 x x3 2 x x2 2x x 2x x 2x x 3 1 ) (25x x3 2 30x2 2 x x x 2x 1 + 9x x 2 12x 1 < 64 0 < 135x x x6 2 x x x5 2 x x2 4x x4 2 x x 3 2 x x2 2 x x2 2 x x 2x x x3 1 ) (0 < 108x x x5 2 x x x4 2 x 1 300x 3 2 x x3 2 x x2 2x x 2x x 2x x3 1 0 < 135x x x6 2 x x x5 2 x x2 4x x4 2 x x 3 2 x x2 2 x x2 2 x x 2 x x x3 1 )) Redlog QEPCAD 10x 2 13 > 0 3x 1 5x x 2 5 < 0 15x 1 25x x 2 64 > 0 x 1 x2 2 > 0 SyNRAC x 2 ((x 1 0 x2 2 0)(x x2 2 x 1 0)(7x2 2 16x 2 5x 1 < 0 25x x 2 +15x 1 < 64)(7x2 2 16x 2 5x 1 < 0 15x x2 2 5x 2x 1 40x 1 < 0) ( 5x x 2 + 3x 1 < 5 9x x x4 2 x x 3 2 x x2 2x x 2 x1 2+25x3 1 < 0)(5x2 2 10x 2 3x 1 < 5 198x x x3 2 x 1+750x2 2x 1+250x 2 x x2 1 < 0)(25x2 2 80x 2 15x 1 < 64 15x x2 2 5x 2x 1 40x 1 < 0)( 198x x x3 2 x x2 2x x 2 x x2 1 < 0 9x x x4 2 x x 3 2 x 1 +25x2 2x x 2x x3 1 < 0)( 25x x x2 2 x 1 180x2 2 60x 2x 1 9x x 2+12x 1 < x x x5 2 x 1 216x x4 2 x 1+300x 3 2 x x3 2 x 1 375x2 2x x 2x x 2 x x3 1 < 0) (25x x3 2 30x2 2 x x x 2x 1 + 9x x 2 12x 1 < x x x 6 2 x 1 216x x5 2 x x2 4x x4 2 x x 3 2 x x2 2 x x2 2 x x 2x x x3 1 < 0)( 108x x x5 2 x 1 216x x4 2 x x 3 2 x x3 2 x 1 375x2 2x x 2x x 2x x3 1 < 0 135x x x6 2 x 1 216x x5 2 x x2 4x x4 2 x x 3 2 x x2 2 x x2 2 x x 2 x x x3 1 < 0) x 2 < 0 5x x 1 < 0 3x2 2 5x 1 < 0 x2 2 x 1 < 0 3x2 2 5x 1 < 0) 8 x 1 ( x 1 < 0 x 1 1 x2 2 + x 1 < 14x x2 2 4x 2 + x 1 < 116x2 4 +8x3 2 16x2 2 x 1 15x x2 1 8x 2 + x 1 1 0) White-Box x 1 (0 < x 1 x2 2 + x 1 < 1 4x x2 2 4x 2 + x 1 < 1 16x x3 2 16x2 2 x 1 15x x2 1 8x 2 + x 1 1 0) Redlog QEPCAD x 1 (0 < x 1 x2 2 + x 1 < 1 4x x2 2 4x 2 + x 1 < 1 16x x3 2 16x2 2 x 1 15x x2 1 8x 2 + x 1 1 0) SyNRAC 9 x 1 > 0 x 30 > 0 x x 30 > 0 White-Box x 1 > 0 x 30 > 0 ( ) Redlog x 1 > 0 x 30 > 0 ( ) QEPCAD 18

19 SyNRAC time out ( 3600 ) ( ) [1],. QE., [2] C. W. Brown. QEPCAD B: A program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bulletin, 37(4), pp , [3] C. W. Brown. Fast simplifications for Tarski formulas based on monomial inequalities. J. Symbolic Comput, 47, pp , [4] C. W. Brown and A. Strzeboński. Black-Box/White-Box Simplification and Applications to Quantifier Elimination. Proc. ISSAC, ACM, pp , [5] B. F. Caviness and J. R. Johnson (Eds.). Quantifier Elimination and Cylindrical Algebraic Decomposition (Texts and Monographs in Symbolic Computation), Springer, [6] D. Cox, J, Little, D. O Shea. Ideals, Varieties, and Algorithms An Introduction to Computational Algebraic Geometry and Commutative Algebra (Third Edition), Springer, [7] A. Dolzmann, T. Sturm. Redlog [Computer software], /01/14. [8]. SyNRAC [Computer software], /12/04. [9] Hoon Hong, C. W. Brown. QEPCAD B [Computer software], QEPCAD.html, 2016/01/14. [10] R. Loos and V. Weispfenning. Applying linear quantifier elimination, The Computer Journal, 36(5), pp , [11] Maple, a division of Waterloo Maple Inc. Maple 18 [Computer software], Waterloo, Ontario, Canada. [12] T. Strum and A. Dolzmann. Simplification of quantifier-free formulae over ordered fields, J. Symbolic Comput, 24, pp ,

数式処理によるパラメトリック多項式最適化手法 (最適化手法の深化と広がり)

数式処理によるパラメトリック多項式最適化手法 (最適化手法の深化と広がり) http: 1773 2012 96-106 96 \star ( ) HIDENAO IWANE FUJITSU LABORATORIES LTD AKIFUMI KIRA KYUSHU UNIVERSITY \ddagger ( ) / HIROKAZU ANAI FUJITSU LABORATORIES LTD/KYUSHU UNIVERSITY \dagger 1 2 Maple Mathematica,

More information

2 2 ( M2) ( )

2 2 ( M2) ( ) 2 2 ( M2) ( ) 2007 3 3 1 2 P. Gaudry and R. Harley, 2000 Schoof 63bit 2 8 P. Gaudry and É. Schost, 2004 80bit 1 / 2 16 2 10 2 p: F p 2 C : Y 2 =F (X), F F p [X] : monic, deg F = 5, J C (F p ) F F p p Frobenius

More information

0. Introduction (Computer Algebra) Z, Q ( ), 1960, LISP, ( ) ( ) 2

0. Introduction (Computer Algebra) Z, Q ( ), 1960, LISP, ( ) ( ) 2 ( ) 1 0. Introduction (Computer Algebra) Z, Q ( ), 1960, LISP, ( ) ( ) 2 ,, 32bit ( 0 n 2 32 1 2 31 n 2 31 1, mod2 32 ) 64 bit Z (bignum; GNU gmp ) n Z n = ±(b l 1 B l 1 + + b 0 B 0 ) (B = 2 32, 0 b i

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原 A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原, 辰次 Citation 数理解析研究所講究録 (2004), 1395: 231-237 Issue

More information

(I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2

(I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2 sdmp Maple - (Ver.2) ( ) September 27, 2011 1 (I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2 (II) Nehalem CPU GotoBLAS Intel CPU Nehalem CPU, GotoBLAS, Hyper-Thread technology

More information

2,., ,. 8.,,,..,.,, ,....,..,... 4.,..

2,., ,. 8.,,,..,.,, ,....,..,... 4.,.. Contents 1. 1 2. 2 3. 2 4. 2 5. 3 6. 3 7. 3 8. 4 9. 5 10. 6 11. 8 12. 9 13. - 10 14. 12 15. 13 16. 14 17. 14 18. 15 19. 15 20. 16 21. 16 References 16 1......, 1 2,.,. 4. 2. 2.,. 8.,,,..,.,,... 3....,....,..,...

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L 1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives

More information

CPU Levels in the memory hierarchy Level 1 Level 2... Increasing distance from the CPU in access time Level n Size of the memory at each level 1: 2.2

CPU Levels in the memory hierarchy Level 1 Level 2... Increasing distance from the CPU in access time Level n Size of the memory at each level 1: 2.2 FFT 1 Fourier fast Fourier transform FFT FFT FFT 1 FFT FFT 2 Fourier 2.1 Fourier FFT Fourier discrete Fourier transform DFT DFT n 1 y k = j=0 x j ω jk n, 0 k n 1 (1) x j y k ω n = e 2πi/n i = 1 (1) n DFT

More information

SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [

SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [ SQUFOF SQUFOF NTT 2003 2 17 16 60 Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) 60 1 1.1 N 62 16 24 UBASIC 50 / 200 [ 01] 4 large prime 943 2 1 (%) 57 146 146 15

More information

kokyuroku.dvi

kokyuroku.dvi On Applications of Rigorous Computing to Dynamical Systems (Zin ARAI) Department of Mathematics, Kyoto University email: arai@math.kyoto-u.ac.jp 1 [12, 13] Lorenz 2 Lorenz 3 4 2 Lorenz 2.1 Lorenz E. Lorenz

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information

Emacs ML let start ::= exp (1) exp ::= (2) fn id exp (3) ::= (4) (5) ::= id (6) const (7) (exp) (8) let val id = exp in

Emacs ML let start ::= exp (1) exp ::= (2) fn id exp (3) ::= (4) (5) ::= id (6) const (7) (exp) (8) let val id = exp in Emacs, {l06050,sasano}@sic.shibaura-it.ac.jp Eclipse Visual Studio Standard ML Haskell Emacs 1 Eclipse Visual Studio variable not found LR(1) let Emacs Emacs Emacs Java Emacs JDEE [3] JDEE Emacs Java 2

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 計算代数幾何学入門 - グレブナー基底とその応用 - 工藤桃成 * * 九州大学大学院数理学府数理学専攻九大整数論セミナー 2017/6/8( 木 ) 6/5/2017 1 目次 : 1. Introduction 2. Gröbner bases 3. Applications 4. How do we study Computational Algebraic Geometry? 6/5/2017

More information

untitled

untitled . 96. 99. ( 000 SIC SIC N88 SIC for Windows95 6 6 3 0 . amano No.008 6. 6.. z σ v σ v γ z (6. σ 0 (a (b 6. (b 0 0 0 6. σ σ v σ σ 0 / v σ v γ z σ σ 0 σ v 0γ z σ / σ ν /( ν, ν ( 0 0.5 0.0 0 v sinφ, φ 0 (6.

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

Int Int 29 print Int fmt tostring 2 2 [19] ML ML [19] ML Emacs Standard ML M M ::= x c λx.m M M let x = M in M end (M) x c λx.

Int Int 29 print Int fmt tostring 2 2 [19] ML ML [19] ML Emacs Standard ML M M ::= x c λx.m M M let x = M in M end (M) x c λx. 1, 2 1 m110057@shibaura-it.ac.jp 2 sasano@sic.shibaura-it.ac.jp Eclipse Visual Studio ML Standard ML Emacs 1 ( IDE ) IDE C C++ Java IDE IDE IDE IDE Eclipse Java IDE Java Standard ML 1 print (Int. 1 Int

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2 1,384,000 2,000,000 1,296,211 1,793,925 38,000 54,500 27,804 43,187 41,000 60,000 31,776 49,017 8,781 18,663 25,000 35,300 3 4 5 6 1,296,211 1,793,925 27,804 43,187 1,275,648 1,753,306 29,387 43,025

More information

Run-Based Trieから構成される 決定木の枝刈り法

Run-Based Trieから構成される  決定木の枝刈り法 Run-Based Trie 2 2 25 6 Run-Based Trie Simple Search Run-Based Trie Network A Network B Packet Router Packet Filtering Policy Rule Network A, K Network B Network C, D Action Permit Deny Permit Network

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

Vol.8 No (July 2015) 2/ [3] stratification / *1 2 J-REIT *2 *1 *2 J-REIT % J-REIT J-REIT 6 J-REIT J-REIT 10 J-REIT *3 J-

Vol.8 No (July 2015) 2/ [3] stratification / *1 2 J-REIT *2 *1 *2 J-REIT % J-REIT J-REIT 6 J-REIT J-REIT 10 J-REIT *3 J- Vol.8 No.2 1 9 (July 2015) 1,a) 2 3 2012 1 5 2012 3 24, 2013 12 12 2 1 2 A Factor Model for Measuring Market Risk in Real Estate Investment Hiroshi Ishijima 1,a) Akira Maeda 2 Tomohiko Taniyama 3 Received:

More information

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation

More information

STC-PC10_Ver1.01

STC-PC10_Ver1.01 JA Windows 1 3 4 5 6 1 8 1 8 1 2 1 3 5 6 2 4 7 1 9 2 3 4 5 Χ 7 8 1 6 2 3 4 5 10 1 2 3 4 5 6 11 12 2 1 2 1 13 3 4 1 2 14 2 1 2 1 15 3 4 16 1 2 17 3 1 18 2 19 2 1 20 3 4 21 5 1 6 2 7 3 8 4 22 2 1 23 3

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

J.JSSAC (2005) Vol. 12, No. 1, pp Risa/Asir (Received 2005/07/31 Revised 2005/08/23) 1 The palindrome name Risa/Asir comes from an abbreviation

J.JSSAC (2005) Vol. 12, No. 1, pp Risa/Asir (Received 2005/07/31 Revised 2005/08/23) 1 The palindrome name Risa/Asir comes from an abbreviation J.JSSAC (2005) Vol. 12, No. 1, pp. 9-22 Risa/Asir (Received 2005/07/31 Revised 2005/08/23) 1 The palindrome name Risa/Asir comes from an abbreviation of Research Instrument for Symbolic Algebra, a computer

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

Copyright c 2006 Zhenjiang Hu, All Right Reserved.

Copyright c 2006 Zhenjiang Hu, All Right Reserved. 1 2006 Copyright c 2006 Zhenjiang Hu, All Right Reserved. 2 ( ) 3 (T 1, T 2 ) T 1 T 2 (17.3, 3) :: (Float, Int) (3, 6) :: (Int, Int) (True, (+)) :: (Bool, Int Int Int) 4 (, ) (, ) :: a b (a, b) (,) x y

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable), .... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov

More information

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4 Simpson H4 BioS. Simpson 3 3 0 x. β α (β α)3 (x α)(x β)dx = () * * x * * ɛ δ y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f()

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

2008 : 80725872 1 2 2 3 2.1.......................................... 3 2.2....................................... 3 2.3......................................... 4 2.4 ()..................................

More information

1949 1902 1872 1886 1873 04 UNIVERSITY OF TSUKUBA 2002 1973 1962 UNIVERSITY OF TSUKUBA 05 06 UNIVERSITY OF TSUKUBA UNIVERSITY OF TSUKUBA 07 10 UNIVERSITY OF TSUKUBA 105 UNIVERSITY OF TSUKUBA 11 1.85%

More information

四変数基本対称式の解放

四変数基本対称式の解放 The second-thought of the Galois-style way to solve a quartic equation Oomori, Yasuhiro in Himeji City, Japan Jan.6, 013 Abstract v ρ (v) Step1.5 l 3 1 6. l 3 7. Step - V v - 3 8. Step1.3 - - groupe groupe

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

振動工学に基礎

振動工学に基礎 Ky Words. ω. ω.3 osω snω.4 ω snω ω osω.5 .6 ω osω snω.7 ω ω ( sn( ω φ.7 ( ω os( ω φ.8 ω ( ω sn( ω φ.9 ω anφ / ω ω φ ω T ω T s π T π. ω Hz ω. T π π rad/s π ω π T. T ω φ 6. 6. 4. 4... -... -. -4. -4. -6.

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a + 1 1 22 1 x 3 (mod ) 2 2.1 ( )., b, m Z b m b (mod m) b m 2.2 (Z/mZ). = {x x (mod m)} Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} + b = + b, b = b Z/mZ 1 1 Z Q R Z/Z 2.3 ( ). m {x 0, x 1,..., x m 1 } modm 2.4

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

Title 円内接多角形における面積公式 半径公式 統合公式について ( 数式処理とその周辺分野の研究 ) Author(s) 森継, 修一 Citation 数理解析研究所講究録 (2015), 1955: Issue Date URL

Title 円内接多角形における面積公式 半径公式 統合公式について ( 数式処理とその周辺分野の研究 ) Author(s) 森継, 修一 Citation 数理解析研究所講究録 (2015), 1955: Issue Date URL Title 円内接多角形における面積公式 半径公式 統合公式について ( 数式処理とその周辺分野の研究 ) Author(s) 森継, 修一 Citation 数理解析研究所講究録 (2015), 1955: 91-101 Issue Date 2015-07 URL http://hdl.handle.net/2433/224039 Right Type Departmental Bulletin

More information

ERATO100913

ERATO100913 ERATO September 13, 2010, DC2 1/25 1. 2 2. 2/25 3/25 3/25 2 3/25 2 3/25 1 1 0.5 0.5 0 0 0.5 1 0 0 0.5 1 4/25 1 1 0.5 0.5 0 0 0.5 1 (0, 0) 0 0 0.5 1 4/25 1 1 0.5 0.5 0 0 0.5 1 (0, 0) ( 1, 0) 0 0 0.5 1 4/25

More information

2012 M

2012 M 2012 M0109218 2012 : M0109218 36 1 1 1.1............................. 1 1.2................................. 5 2 6 2.1................... 6 2.2................ 8 2.3............ 12 3 15 3.1...................

More information

1. 2. (Rowthorn, 2014) / 39 1

1. 2. (Rowthorn, 2014) / 39 1 ,, 43 ( ) 2015 7 18 ( ) E-mail: sasaki@econ.kyoto-u.ac.jp 1 / 39 1. 2. (Rowthorn, 2014) 3. 4. 5. 6. 7. 2 / 39 1 ( 1). ( 2). = +. 1. g. r. r > g ( 3).. 3 / 39 2 50% Figure I.1. Income inequality in the

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A B f : A B 4 (i) f (ii) f (iii) C 2 g, h: C A f g = f h g = h (iv) C 2 g, h: B C g f = h f g = h 4 (1) (i) (iii) (2) (iii) (i) (3) (ii) (iv) (4)

More information

三石貴志.indd

三石貴志.indd 流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

#2 (IISEC)

#2 (IISEC) #2 (IISEC) 2007 10 6 E Y 2 = F (X) E(F p ) E : Y 2 = F (X) = X 3 + AX + B, A, B F p E(F p ) = {(x, y) F 2 p y2 = F (x)} {P } P : E(F p ) E F p - Given: E/F p : EC, P E(F p ), Q P Find: x Z/NZ s.t. Q =

More information

2014 x n 1 : : :

2014 x n 1 : : : 2014 x n 1 : : 2015 1 30 : 5510113 1 x n 1 n x 2 1 = (x 1)(x+1) x 3 1 = (x 1)(x 2 +x+1) x 4 1 = (x 1)(x + 1)(x 2 + 1) x 5 1 = (x 1)(x 4 + x 3 + x 2 + x + 1) 1, 1,0 n = 105 2 1 n x n 1 Maple 1, 1,0 n 2

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter ,a),2,3 3,4 CG 2 2 2 An Interpolation Method of Different Flow Fields using Polar Interpolation Syuhei Sato,a) Yoshinori Dobashi,2,3 Tsuyoshi Yamamoto Tomoyuki Nishita 3,4 Abstract: Recently, realistic

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate School of Economics and Institute of Economic Research

More information

2.2 Sage I 11 factor Sage Sage exit quit 1 sage : exit 2 Exiting Sage ( CPU time 0m0.06s, Wall time 2m8.71 s). 2.2 Sage Python Sage 1. Sage.sage 2. sa

2.2 Sage I 11 factor Sage Sage exit quit 1 sage : exit 2 Exiting Sage ( CPU time 0m0.06s, Wall time 2m8.71 s). 2.2 Sage Python Sage 1. Sage.sage 2. sa I 2017 11 1 SageMath SageMath( Sage ) Sage Python Sage Python Sage Maxima Maxima Sage Sage Sage Linux, Mac, Windows *1 2 Sage Sage 4 1. ( sage CUI) 2. Sage ( sage.sage ) 3. Sage ( notebook() ) 4. Sage

More information

Lecture 12. Properties of Expanders

Lecture 12. Properties of Expanders Lecture 12. Properties of Expanders M2 Mitsuru Kusumoto Kyoto University 2013/10/29 Preliminalies G = (V, E) L G : A G : 0 = λ 1 λ 2 λ n : L G ψ 1,..., ψ n : L G µ 1 µ 2 µ n : A G ϕ 1,..., ϕ n : A G (Lecture

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

四変数基本対称式の解放

四変数基本対称式の解放 Solving the simultaneous equation of the symmetric tetravariate polynomials and The roots of a quartic equation Oomori, Yasuhiro in Himeji City, Japan Dec.1, 2011 Abstract 1. S 4 2. 1. {α, β, γ, δ} (1)

More information

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 4 2010 9 3 3 4-1 Lucas-Kanade 4-2 Mean Shift 3 4-3 2 c 2013 1/(18) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 -- 4 4--1 2010 9 4--1--1 Optical Flow t t + δt 1 Motion Field

More information

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G Semi-unmixed 1 K S K n K[X 1,..., X n ] G G G 2 G V (G) E(G) S G V (G) = {1,..., n} I(G) G S square-free I(G) = (X i X j {i, j} E(G)) I(G) G (edge ideal) 1990 Villarreal [11] S/I(G) Cohen Macaulay G 2005

More information

2 R K/S K/S K/S K/S K/S K/S K/SR R K/S K/S K/S K S R K/S K/S K/S K/S K/S K/S

2 R K/S K/S K/S K/S K/S K/S K/SR R K/S K/S K/S K S R K/S K/S K/S K/S K/S K/S Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama 240 8501 Faculty of Education and Human Sciences, Yokohama National University, Yokohama 240 8501 Keywords:

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 5 3. 4. 5. A0 (1) A, B A B f K K A ϕ 1, ϕ 2 f ϕ 1 = f ϕ 2 ϕ 1 = ϕ 2 (2) N A 1, A 2, A 3,... N A n X N n X N, A n N n=1 1 A1 d (d 2) A (, k A k = O), A O. f

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

[I486S] 暗号プロトコル理論

[I486S]  暗号プロトコル理論 [I486S] 2018 5 1 (JAIST) 2018 5 1 1 / 22 : I486S I URL:https://wwwjaistacjp/~fujisaki/i486S (Tuesdays) 5 17:10 18:50 4/17, 4/24, 5/1, 5/15, 5/22, 5/29, 6/5, 6/19, 6/26, 7/3, 7/10, 7/17, 7/24, 7/31 (JAIST)

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055 1 1 1 2 DCRA 1. 1.1 1) 1 Tactile Interface with Air Jets for Floating Images Aya Higuchi, 1 Nomin, 1 Sandor Markon 1 and Satoshi Maekawa 2 The new optical device DCRA can display floating images in free

More information