untitled

Size: px
Start display at page:

Download "untitled"

Transcription

1

2 ω y F() ω y F() 2

3 ω y F() ω y F() 3

4 ω y F() ω y F() 4

5 ω y F() ω y F() 5

6 ω y F() ω y F() 6

7 ω y F() ω y F() 7

8 ω y F() ω y F() 8

9 ωy F() ωy F() 9

10 ωy F() ωy F() 10

11 Gabor Gabor Gabor Gabor

12 Gabor Exp[-x*x/2] Gabor Cos[2P*x] Exp[-x*x/2]*Cos[2P*x] -1 Mathematca Gabor Gabor Plot [ {Exp[-x*x/2]}, {x,-3.0,3.0} ] Plot [ {Cos[2P*x]}, {x,-3.0,3.0} ] Plot [ {Exp[-x*x/2]* Cos[2P*x]}, {x,-3.0,3.0} ] DenstyPlot [ {Exp[-(x*x+y*y)/2]}, {x,-3.0, 3.0}, {y,-3.0,3.0}, PlotRange->{-1,1}, PlotPonts ->100, Mesh -> False] DenstyPlot [ {Cos[2P*x]}, {x,-3.0,3.0},{y,-3.0,3.0}, PlotRange->{-1,1}, PlotPonts ->100, Mesh -> False] DenstyPlot[{Exp[-(x*x+y*y)/2]* Cos[2P*x]},{x,-3.0,3.0}, {y,-3.0,3.0}, PlotRange->{-1,1}, PlotPonts ->100, Mesh -> False] 12

13 13

14 14 Gabor Gabor

15 Mathematca member/yosh/ouec_lecture/mage_recognton/ member/yosh/lecture.html Gabor gabor_xx_yyy.pgm (xx yyy) MAC MAC /Users/w/Desktop/ Desktop/./bar_data0.txt MAC Termnal Mathematca Mathematca Gabor Gabor 15

16 Gabor Gabor g = Import[ d:/presen/oecu_game_lecture/gabor_mages/gabor_ 08_120.pgm ]; gabor08120 = g[[1,1]]-100; LstDenstyPlot[gabor08120, Mesh->False, PlotRange->All]; LstPlot3D[gabor08120, PlotRange->All]; Gabor fgabor08120 = Fourer[gabor08120]; LstDenstyPlot[Abs[fgabor08120], Mesh->False, PlotRange->All]; LstPlot3D[Abs[fgabor08120], PlotRange->All]; Gabor ωy F() 16

17 Gabor ωy F() Gabor ωy F() 17

18 Gabor ωy F() Gabor ωy F() 18

19 Gabor ωy F() Gabor ωy F() Gabor 19

20 ωy F() ωy F() 20

21 ωy F() ωy F() 21

22 Mathematca Gabor gabor_08_000.pgm gabor_08_015.pgm gabor_08_030.pgm gabor_08_045.pgm gabor_08_060.pgm gabor_08_075.pgm gabor_08_090.pgm gabor_08_105.pgm gabor_08_120.pgm gabor_08_135.pgm gabor_08_150.pgm gabor_08_165.pgm cgabor_08 Gabor cgabor08 = gabor gabor gabor gabor gabor08165 LstDenstyPlot[cgabor08, Mesh->False, PlotRange->All]; LstPlot3D[cgabor08, PlotRange->All]; fcgabor08 = Fourer[cgabor08]; LstDenstyPlot[Abs[fcgabor08], Mesh->False, PlotRange->All]; LstPlot3D[Abs[fcgabor08], PlotRange->All]; 22

23 Gabor Gaborpgm g = Import[ / / / /gabor_08_120.pgm ]; gabor08120 = g[[1,1]]100; fgabor08120 = Fourer[gabor08120]; 12 gabor_08_000.pgm(gabor08000), gabor_08_015.pgm(gabor08015), gabor_08_030.pgm(gabor08030),., gabor_08_150.pgm(gabor08150), gabor_08_165.pgm(gabor08165) Gabor cgabor08 = gabor gabor gabor gabor gabor08165 fcgabor08 = Fourer[cgabor08]; LstDenstyPlot[Abs[fcgabor08], Mesh->False, PlotRange->All]; LstPlot3D[Abs[fcgabor08], PlotRange->All]; Gabor Gaborpgm g = Import[ / / / /gabor_08_000.pgm ]; gabor08000 = g[[1,1]]100; g = Import[ / / / /gabor_08_015.pgm ]; gabor08015 = g[[1,1]]100; g = Import[ / / / /gabor_08_030.pgm ]; gabor08030 = g[[1,1]]100; : g = Import[ / / / /gabor_08_150.pgm ]; gabor08150 = g[[1,1]]100; g = Import[ / / / /gabor_08_165.pgm ]; gabor08165 = g[[1,1]]100; cgabor08 = gabor gabor gabor gabor gabor08165 fcgabor08 = Fourer[cgabor08]; LstDenstyPlot[Abs[fcgabor08], Mesh->False, PlotRange->All]; LstPlot3D[Abs[fcgabor08], PlotRange->All]; 23

24 Gabor 04, 08, 16, 32 Gabor cgabor04.pgm cgabor08.pgm cgabor16.pgm cgabor32.pgm Mathematca member/yosh/ouec_lecture/mage_recognton/ member/yosh/lecture.html mglne_xx_yy_zz_p.pgm (xx,yy,zz ) MAC MAC /Users/w/Desktop/ Desktop/./bar_data0.txt MAC Termnal Mathematca 24

25 Mathematca mglne_xx_yy_zz_p.pgm (xx,yy,zz ) 01_02_04 01_04_16 02_04_08 04_08_16 p1 p2 p3 Mathematca mglne_xx_yy_zz_p.pgm (xx,yy,zz ) cgabor08 mglne_01_02_04_p1 cgabor16 cgabor32 25

26 Mathematca mglne_01_02_04_p1.pgm mglne_02_04_08_p1.pgm 04, 08, 16, 32 Gabor cgabor04.pgm cgabor08.pgm cgabor16.pgm cgabor32.pgm Mathematca mglne_01_02_04_p1.pgm g = Import[ /./././mglne_01_02_04_p1.pgm ]; lne = g[[1,1]]; LstDenstyPlot[lne, Mesh->False,PlotRange->All]; flne = Fourer[lne]; LstDenstyPlot[Abs[flne], Mesh->False,PlotRange->All]; 26

27 Mathematca Gabor cgabor08.pgm fcgabor08 = Fourer[cgabor08]; gflne = flne*abs[fcgabor08]]/(8*8); glne = InverseFourer[gflne]; LstDenstyPlot[Abs[gflne], Mesh->False,PlotRange->All]; LstDenstyPlot[Abs[glne], Mesh->False, PlotRange->{40,50}]; Mathematca Gabor g = Import[ /./././mglne_01_02_04_p1.pgm ]; lne = g[[1,1]]; LstDenstyPlot[lne, Mesh->False,PlotRange->All]; flne = Fourer[lne]; LstDenstyPlot[Abs[flne], Mesh->False,PlotRange->All]; fcgabor08 = Fourer[cgabor08]; gflne = flne*abs[fcgabor08]]/(8*8); glne = InverseFourer[gflne]; LstDenstyPlot[Abs[gflne], Mesh->False,PlotRange->All]; LstDenstyPlot[Abs[glne], Mesh->False, PlotRange->{40,50}]; 27

28 Mathematca cgabor08 lne Gabor cgabor08 F(ω) fcgabor08 = Fourer[cgabor08]; flne=fourer[lne] ω Gabor gflne = flne*abs[fcgabor08]]/(8*8) Abs[InverseFourer[gflne]] Mathematca Gabor cgabor16.pgm fcgabor16 = Fourer[cgabor16]; gflne = flne*abs[fcgabor16]]/(16*16); glne = InverseFourer[gflne]; LstDenstyPlot[Abs[gflne], Mesh->False,PlotRange->All]; LstDenstyPlot[Abs[glne], Mesh->False, PlotRange->{40,50}]; 28

29 Mathematca cgabor16 lne Gabor cgabor08 F(ω) fcgabor16 = Fourer[cgabor16]; flne=fourer[lne] ω Gabor gflne = flne*abs[fcgabor16]]/(16*16) Abs[InverseFourer[gflne]] Mathematca Gabor Gabor 29

30 ωy F() Gabor 30

31 ωy F() ωy F() 31

32 ωy F() Gabor ωy F() Gabor 32

33 ωy F() Gabor ωy F() Gabor 33

34 ωy F() Gabor ωy F() Gabor 34

35 ωy F() Gabor ωy F() Gabor 35

36 ωy F() Gabor ωy F() Gabor Gabor Gabor 36

37 Gabor Gabor f(x,y) g(x,y) Gabor f * g F(,ω y ) G(,ω y ) FG Gabor Gabor f(x,y) g(x,y) Gabor f * g F(,ω y ) G(,ω y ) FG 37

38 Gabor Gabor f(x,y) g(x,y) Gabor f * g F(,ω y ) G(,ω y ) FG Gabor Gabor 38

39 Gabor Gabor Mathematca 1512Gabor 0, 15, 30, 45,.., 135, 150, 165 Gabor Gabor Gabor 39

40 Mathematca Gabor 0, 15, 30, 45,.., 135, 150, 165 Gabor g = Import[ d: :/././. /gabor_08_120.pgm ]; gabor08120 = g[[1,1]]-100; fgabor08120 = Fourer[gabor08120]; LstDenstyPlot[gabor08120, Mesh->False, PlotRange->All]; LstPlot3D[gabor08120, PlotRange->All]; LstDenstyPlot[Abs[fgabor08120], Mesh->False, PlotRange->All]; LstPlot3D[Abs[fgabor08120], PlotRange->All]; Mathematca Gabor Gabor g = Import[ d:/./././glne_02_120.pgm ]; lne = g[[1,1]]; flne = Fourer[lne]; gflne = InverseFourer[flne*Abs[fgabor08120]]/(8*8); LstDenstyPlot[lne, Mesh->False,PlotRange->All]; LstDenstyPlot[Abs[gflne], Mesh->False,PlotRange->All]; glne_02_110 glne_02_100 glne_02_090 glne_02_080 40

41 Mathematca Gabor g = Import[ d:/./././mglne_02_p2.pgm ]; lne = g[[1,1]]; flne = Fourer[lne]; gflne = InverseFourer[flne*Abs[fgabor08120]]/(8*8); LstDenstyPlot[lne, Mesh->False,PlotRange->{0,20}]; LstDenstyPlot[Abs[gflne], Mesh->False,PlotRange->{0.20}]; fgabor08000, fgabor08015, fgabor08030, fgabor08045,, fgabor08150, gfabor08165 mglne_02_p1 mglne_02_p3 Mathematca Gabor Gabor g = Import[ d:/./././glne_02_110.pgm ]; lne = g[[1,1]]; flne = Fourer[lne]; gflne = flne*abs[fgabor08120] /(8*8); a120 = Norm[Flatten[gflne]]; Prnt[a120]; LstPlot[{a000,a015,a030,.,a165},PlotJoned->True}] fgabor08000, fgabor08015, fgabor08030, fgabor08045,, fgabor08150, gfabor08165 a000, a015, a030, a045,., a150, a165 41

42 Mathematca Gabor 110Gabor ω y Mathematca Gabor 110Gabor ω y 42

43 Mathematca Gabor 110Gabor ω y Mathematca ω y xx M M n = 1 n xx xy M = w x M = w x xy = 1 n M = w yy = 1 2 y y 2 M M xy yy 43

44 Mathematca 0 a000 ω y x y ω Cos(180 o ) Sn(180 o x x Cos(0 o y ) ) Sn(0 o ) Mathematca 15 a015 ω y x y Cos(15 o ) Sn(195 o ) x Cos(15 o y ) Sn(15 o ) 44

45 Mathematca 30 a030 x y Cos(210 o ) Sn(210 o ) ω y x Cos(30 o y ) Sn(30 o ) Mathematca 60 a060 ω y Cos(60 o ) Sn(60 o ) Cos(240 o ) Sn(240 o ) 45

46 Mathematca Cos(120 o )Sn(120 o ) ω y 120 a120 Cos(300 o ) Sn(300 o ) Mathematca 150 a150 Cos(150 o )Sn(150 o ) ω y Cos(330 o ) Sn(330 o ) 46

47 Mathematca 165 a165 ω y Cos(165 o ) Sn(165 o ) Cos(345 o ) Sn(345 o ) Mathematca w :, x : x, y : y =1 a000 Cos(0 o ) Sn(0 o ) =2 a015 Cos(15 o ) Sn(15 o ) =3 a030 Cos(30 o ) Sn(30 o ) : : : : =11 a150 Cos(150 o ) Sn(150 o ) =12 a165 Cos(165 o ) Sn(165 o ) =13 a000 Cos(180 o ) Sn(180 o ) =14 a015 Cos(195 o ) Sn(195 o ) : : : : =23 a150 Cos(330 o ) Sn(330 o ) =24 a165 Cos(345 o ) Sn(345 o ) 47

48 Mathematca ω y xy M M n = 1 xx xy yy M = w x M M xy yy n = 1 M = w y y 2 w :, x : x, y : y =1 a000 Cos(0 o ) Sn(0 o ) =2 a015 Cos(15 o ) Sn(15 o ) =3 a030 Cos(30 o ) Sn(30 o ) =24 xx : a165 n M = w x = 1 2 Cos(345 o ) Sn(345 o ) Mathematca M M xx xy M M xy yy n M = w x xy n = 1 yy M = w x n M = w mxx = N[a000*Cos[0 o ] *Cos[0 o ] + a015*cos[15 o ] *Cos[15 o ] +. + a165* Cos[165 o ] *Cos[165 o ] + a000* Cos[180 o ] *Cos[180 o ] + a015* Cos[195 o ] *Cos[195 o ] +. + a165* Cos[345 o ] *Cos[345 o ]] ; xx = 1 2 y = 1 w :, =1 a000 x : x, Cos(0 o ) y : y Sn(0 o ) =2 =3 a015 a030 : Cos(15 o ) Cos(30 o ) Sn(15 o ) Sn(30 o ) =24 a165 Cos(345 o ) Sn(345 o ) y 2 48

49 Mathematca M M xx xy M M xy yy xx n M = w x = 1 xy 2 n = 1 yy M = w x n M = w mxy = N[a000*Cos[0 o ] *Sn[0 o ] + a015*cos[15 o ] *Sn[15 o ] +. + a165* Cos[165 o ] *Sn[165 o ] + a000* Cos[180 o ] *Sn[180 o ] + a015* Cos[195 o ] *Sn[195 o ] +. + a165* Cos[345 o ] *Sn[345 o ] ]; y = 1 w :, =1 a000 x : x, Cos(0 o ) y : y Sn(0 o ) =2 =3 a015 a030 : Cos(15 o ) Cos(30 o ) Sn(15 o ) Sn(30 o ) =24 a165 Cos(345 o ) Sn(345 o ) y 2 Mathematca M M xx xy M M xy yy n M = w x xy n = 1 yy M = w x n M = w myy = N[a000*Sn[0 o ] *Sn[0 o ] + a015*sn[15 o ] *Sn[15 o ] +. + a165* Sn[165 o ] *Sn[165 o ] + a000* Sn[180 o ] *Sn[180 o ] + a015* Sn[195 o ] *Sn[195 o ] +. + a165*sn[345 o ] *Sn[345 o ] ]; xx = 1 2 y = 1 w :, =1 a000 x : x, Cos(0 o ) y : y Sn(0 o ) =2 =3 a015 a030 : Cos(15 o ) Cos(30 o ) Sn(15 o ) Sn(30 o ) =24 a165 Cos(345 o ) Sn(345 o ) y 2 49

50 Mathematca M M xx xy M M xy yy n M = w x xx = 1 xy 2 n = 1 yy M = w x n M = w y = 1 Prnt[mxx]; Prnt[mxy]; Prnt[myy]; mmtx ={{mxx,mxy},{mxy,myy}}; evec = Egenvectors[mmtx]; Prnt[180.0*ArcTan[evec[[1,1]],evec[[1,2]]]/π]; y 2 50

51 strpe1.jpg strpe2.jpg strpe3.jpg strpe4.jpg strpe5.jpg dot1.jpg dot2.jpg dot3.jpg dot4.jpg 51

52 52

53 53

54 ( g = Import[ /././strpe1.jpg ]; m = g[[1,1]]; LstDenstyPlot[m[[All,All,2]], Mesh->False,PlotRange->All]; fm = Fourer[m[[All,All,2]]; LstDenstyPlot[Abs[fm], Mesh->False,PlotRange->{0,200}]; tfm1 = Jon[Take[fm,-128,128],Take[fm,128,128]]; tfm2 = Jon[Take[fm,-128,-128],Take[fm,128,-128]]; tfm = Transpose[Jon[Transpose[tfm2],Transpose[tfm1]]]; LstDenstyPlot[Abs[tfm], Mesh->False,PlotRange->{0,200}]; Gabor Mathematca yosh@mage.med.osaka-u.ac.jp Subject 54

yy yy ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ; ; ; ;; ;; ;; ;;; ;;; ;;; ;; ;; ;; ;; ;; ; ; ; ; ; ; ;

More information

untitled

untitled 20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -

More information

untitled

untitled 19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X

More information

QW-3414

QW-3414 MA1312-C P 1 2 3 A E L D E D A A E D A D D D D D E A C A C E D A A A C A C A C E E E D D D A C A C A A A A C A C A C E E C C E D D C C C E C E C C E C C C E D A C A C A C E L B B

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x, 9.. x + y + 0. x,y, x,y, x r cos θ y r sin θ xy x y x,y 0,0 4. x, y 0, 0, r 0. xy x + y r 0 r cos θ sin θ r cos θ sin θ θ 4 y mx x, y 0, 0 x 0. x,y 0,0 x x + y x 0 x x + mx + m m x r cos θ 5 x, y 0, 0,

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

untitled

untitled yoshi@image.med.osaka-u.ac.jp http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

corega UPS 250 取扱説明書

corega UPS 250 取扱説明書 2 3 4 5 6 7 8 9 10 11 12 13 10 A MP ON 1234 1234 14 15 16 17 18 19 20 21 10 A MP 10 A MP ON 1234 1234 ON 1234 1234 22 10 A MP ON 1234 1234 OUT IN 23 24 25 26 27 28 ON 1 2 3 4 29 ON 1 2 3 4 30 31 32 33

More information

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5-

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5- 45 5 5.1 Y 3.2 Eq. (3) 1 R [s -1 ] ideal [s -1 ] Y [-] Y [-] ideal * [-] S [-] 3 R * ( ω S ) = ω Y = ω 3-1a ideal ideal X X R X R (X > X ) ideal * X S Eq. (3-1a) ( X X ) = Y ( X ) R > > θ ω ideal X θ =

More information

3 - { } / f ( ) e nπ + f( ) = Cne n= nπ / Eucld r e (= N) j = j e e = δj, δj = 0 j r e ( =, < N) r r r { } ε ε = r r r = Ce = r r r e ε = = C = r C r e + CC e j e j e = = ε = r ( r e ) + r e C C 0 r e =

More information

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp ( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

) Binary Cubic Forms / 25

) Binary Cubic Forms / 25 2016 5 2 ) Binary Cubic Forms 2016 5 2 1 / 25 1 2 2 2 3 2 3 ) Binary Cubic Forms 2016 5 2 2 / 25 1.1 ( ) 4 2 12 = 5+7, 16 = 5+11, 36 = 7+29, 1.2 ( ) p p+2 3 5 5 7 11 13 17 19, 29 31 41 43 ) Binary Cubic

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp + P (x)y = Q(x) (1) = P (x)y + Q(x) P (x), Q(x) y Q(x) 0 homogeneous = P (x)y 1 y = P (x) log y = P (x) + C y = C exp{ P (x) } = C e R P (x) 5.1 + P (x)y = 0 (2) y = C exp{ P (x) } = Ce R P (x) (3) αy

More information

untitled

untitled 2420356585600 YY 3470336523101425240338047071 1481103367002314 8 40336700237 Y 1340091311 03587831510358783152 103001322513 0356435751 0356435759 1320022212103655644836560959 1320033 3 1 1 0336566111

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

振動工学に基礎

振動工学に基礎 Ky Words. ω. ω.3 osω snω.4 ω snω ω osω.5 .6 ω osω snω.7 ω ω ( sn( ω φ.7 ( ω os( ω φ.8 ω ( ω sn( ω φ.9 ω anφ / ω ω φ ω T ω T s π T π. ω Hz ω. T π π rad/s π ω π T. T ω φ 6. 6. 4. 4... -... -. -4. -4. -6.

More information

.....Z...^.[.......\..

.....Z...^.[.......\.. 15 10 16 42 55 55 56 60 62 199310 1995 134 10 8 15 1 13 1311 a s d f 141412 2 g h j 376104 3 104102 232 4 5 51 30 53 27 36 6 Y 7 8 9 10 8686 86 11 1310 15 12 Z 13 14 15 16 102193 23 1712 60 27 17 18 Z

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx 1 1 1 1 1. U(x, t) U(x, t) + c t x c, κ. (1). κ U(x, t) x. (1) 1, f(x).. U(x, t) U(x, t) + c κ U(x, t), t x x : U(, t) U(1, t) ( x 1), () : U(x, ) f(x). (3) U(x, t). [ U(x, t) Re u k (t) exp(πkx). (4)

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

GraphicsWithPlotFull.nb Plot[{( 1), ( ),...}, {( ), ( ), ( )}] Plot Plot Cos x Sin x, x, 5 Π, 5 Π, AxesLabel x, y x 1 Plot AxesLabel

GraphicsWithPlotFull.nb Plot[{( 1), ( ),...}, {( ), ( ), ( )}] Plot Plot Cos x Sin x, x, 5 Π, 5 Π, AxesLabel x, y x 1 Plot AxesLabel http://yktlab.cis.k.hosei.ac.jp/wiki/ 1(Plot) f x x x 1 1 x x ( )[( 1)_, ( )_, ( 3)_,...]=( ) Plot Plot f x, x, 5, 3 15 10 5 Plot[( ), {( ), ( ), ( )}] D g x x 3 x 3 Plot f x, g x, x, 10, 8 00 100 10 5

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

=

= 2. 2.1 2.2 kuri@ice.uec.ac.jp ( 2007/10/30/16:46) 1 . 1. 1 + 2 = 5. 2. 180. 3. 3 3. 4.. 5.. 2 2.1 1.,,,,. 2., ( ) ( ).,,,, 3.,. 4.,,,. 3 1.,. 1. 1 + 2 = 5. (, ) 2. 180. (, ) 3. 3, 3. (, ) 4.. (, ) 5..

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14 B p.1/14 f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14 f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) f(x 1,...,x n ) (x 1 x 0,...,x n 0), (x 1,...,x n ) i x i f xi

More information

05Mar2001_tune.dvi

05Mar2001_tune.dvi 2001 3 5 COD 1 1.1 u d2 u + ku =0 (1) dt2 u = a exp(pt) (2) p = ± k (3) k>0k = ω 2 exp(±iωt) (4) k

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

. p.1/14

. p.1/14 . p.1/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y). p.2/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y) (x,y) h. p.2/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y) (x,y) h h { F 2 (x+ h,y) F 2 2(x h,y) F 2 1(x,y+ h)+f 2 1(x,y

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

2.2 Sage I 11 factor Sage Sage exit quit 1 sage : exit 2 Exiting Sage ( CPU time 0m0.06s, Wall time 2m8.71 s). 2.2 Sage Python Sage 1. Sage.sage 2. sa

2.2 Sage I 11 factor Sage Sage exit quit 1 sage : exit 2 Exiting Sage ( CPU time 0m0.06s, Wall time 2m8.71 s). 2.2 Sage Python Sage 1. Sage.sage 2. sa I 2017 11 1 SageMath SageMath( Sage ) Sage Python Sage Python Sage Maxima Maxima Sage Sage Sage Linux, Mac, Windows *1 2 Sage Sage 4 1. ( sage CUI) 2. Sage ( sage.sage ) 3. Sage ( notebook() ) 4. Sage

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

untitled

untitled COM 6 20040920 (Mathematica-1) iijima COM 6 Mathematica (iijima@ae.keio.ac.jp) 1 COM 6 20040920 (Mathematica-1) iijima 1. Mathematica 1.1 1.2 1.3 1.4 2 COM 6 20040920 (Mathematica-1) iijima 1.1 3 COM 6

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

ContourPlot[{x^+y^==,(x-)^+y^==}, {x,-,}, {y,-,}, AspectRatio -> Automatic].. ContourPlot Plot AspectRatio->Automatic.. x a + y = ( ). b ContourPlot[x

ContourPlot[{x^+y^==,(x-)^+y^==}, {x,-,}, {y,-,}, AspectRatio -> Automatic].. ContourPlot Plot AspectRatio->Automatic.. x a + y = ( ). b ContourPlot[x 3. Mathematica., : f(x) sin x Plot f(x, y) = x + y = ContourPlot f(x, y) > x 4 + (x y ) > RegionPlot (x(t), y(t)) (t sin t, cos t) ParametricPlot r = f(θ) r = sin 4θ PolarPlot.,.. x + y = (x, y). x, y.

More information

画像工学特論

画像工学特論 .? (x i, y i )? (x(t), y(t))? (x(t)) (X(ω)) Wiener-Khintchine 35/97 . : x(t) = X(ω)e jωt dω () π X(ω) = x(t)e jωt dt () X(ω) S(ω) = lim (3) ω S(ω)dω X(ω) : F of x : [X] [ = ] [x t] Power spectral density

More information

極限

極限 si θ = ) θ 0 θ cos θ θ 0 θ = ) P T θ H A, 0) θ, 0 < θ < π ) AP, P H A P T PH < AP < AT si θ < θ < ta θ si θ < θ < si θ cos θ θ cos θ < si θ θ < θ < 0 θ = h θ 0 cos θ =, θ 0 si θ θ =. θ 0 cos θ θ θ 0 cos

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

untitled

untitled . x2.0 0.5 0 0.5.0 x 2 t= 0: : x α ij β j O x2 u I = α x j ij i i= 0 y j = + exp( u ) j v J = β y j= 0 j j o = + exp( v ) 0 0 e x p e x p J j I j ij i i o x β α = = = + +.. 2 3 8 x 75 58 28 36 x2 3 3 4

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

( ) kadai4, kadai4.zip.,. 3 cos x [ π, π] Python. ( 100 ), x cos x ( ). (, ). def print cos(): print cos()

( ) kadai4, kadai4.zip.,. 3 cos x [ π, π] Python. ( 100 ), x cos x ( ). (, ). def print cos(): print cos() 4 2010.6 1 :, HP.. HP 4 (, PGM/PPM )., python,,, 2, kadai4,.,,, ( )., ( ) N, exn.py ( 3 ex3.py ). N 3.., ( )., ( ) N, (exn.txt).. 1 ( ) kadai4, kadai4.zip.,. 3 cos x [ π, π] Python. ( 100 ), x cos x (

More information

6

6 000 (N =000) 50 ( N(N ) / = 499500) μm.5 g cm -3.5g cm 3 ( 0 6 µm) 3 / ( g mo ) ( 6.0 0 3 mo ) =.3 0 0 0 5 (0 6 ) 0 6 0 6 ~ 0 000 000 ( 0 6 ) ~ 0 9 q R q, R q q E = 4πε 0 R R (6.) -6 (a) (b) (c) (a) (b)

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

I: 2 : 3 +

I: 2 : 3 + I: 1 I: 2008 I: 2 : 3 + I: 3, 3700. (ISBN4-00-010352-0) H.P.Barendregt, The lambda calculus: its syntax and semantics, Studies in logic and the foundations of mathematics, v.103, North-Holland, 1984. (ISBN

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

chap03.dvi

chap03.dvi 99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ 100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1)

More information

34号 目 次

34号 目 次 1932 35 1939 π 36 37 1937 12 28 1998 2002 1937 20 ª 1937 2004 1937 12 º 1937 38 11 Ω 1937 1943 1941 39 æ 1936 1936 1936 10 1938 25 35 40 2004 4800 40 ø 41 1936 17 1935 1936 1938 1937 15 2003 28 42 1857

More information

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 (1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

2

2 D 1 2 3 XX XY ( ) 4 5 GID ( ) ( ) ( ) ( ) WHO( ) ( ) ( ) WHO ( ) WHO ( ) 6 7 8 9 X Y XX XY XO XXY XXXY Y Y SRY Y SRY X XX XY SRY XY XX Y Y X Y Y DNA DNA 10 XY XY 11 12 13 F M T 14 U H R 15 K N F 16 M T

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

Ł½’¬24flNfix+3mm-‡½‡¹724

Ł½’¬24flNfix+3mm-‡½‡¹724 571 0.0 31,583 2.0 139,335 8.9 310,727 19.7 1,576,352 100.0 820 0.1 160,247 10.2 38,5012.4 5,7830.4 9,5020.6 41,7592.7 77,8174.9 46,425 2.9 381,410 24.2 1,576,352 100.0 219,332 13.9 132,444 8.4 173,450

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 32, n a n {a n } {a n } 2. a n = 10n + 1 {a n } lim an

More information

ML λ λ 1 λ 1.1 λ λ λ e (λ ) ::= x ( ) λx.e (λ ) e 1 e 2 ( ) ML λx.e Objective Caml fun x -> e x e let 1

ML λ λ 1 λ 1.1 λ λ λ e (λ ) ::= x ( ) λx.e (λ ) e 1 e 2 ( ) ML λx.e Objective Caml fun x -> e x e let 1 2005 sumii@ecei.tohoku.ac.jp 2005 6 24 ML λ λ 1 λ 1.1 λ λ λ e (λ ) ::= x ( ) λx.e (λ ) e 1 e 2 ( ) ML λx.e Objective Caml fun x -> e x e let 1 let λ 1 let x = e1 in e2 (λx.e 2 )e 1 e 1 x e 2 λ 3 λx.(λy.e)

More information

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n 3 () 3,,C = a, C = a, C = b, C = θ(0 < θ < π) cos θ = a + (a) b (a) = 5a b 4a b = 5a 4a cos θ b = a 5 4 cos θ a ( b > 0) C C l = a + a + a 5 4 cos θ = a(3 + 5 4 cos θ) C a l = 3 + 5 4 cos θ < cos θ < 4

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (, [ ], IC 0. A, B, C (, 0, 0), (0,, 0), (,, ) () CA CB ACBD D () ACB θ cos θ (3) ABC (4) ABC ( 9) ( s090304) 0. 3, O(0, 0, 0), A(,, 3), B( 3,, ),. () AOB () AOB ( 8) ( s8066) 0.3 O xyz, P x Q, OP = P Q =

More information

ContourPlot[{x^+y^==,(x-)^+y^==}, {x,-,}, {y,-,}, AspectRatio -> Automatic].5. ContourPlot Plot AspectRatio->Automatic.. x a + y = ( ). b ContourPlot[

ContourPlot[{x^+y^==,(x-)^+y^==}, {x,-,}, {y,-,}, AspectRatio -> Automatic].5. ContourPlot Plot AspectRatio->Automatic.. x a + y = ( ). b ContourPlot[ 5 3. Mathematica., : f(x) sin x Plot f(x, y) = x + y = ContourPlot f(x, y) > x 4 + (x y ) > RegionPlot (x(t), y(t)) (t sin t, cos t) ParametricPlot r = f(θ) r = sin 4θ PolarPlot.,. 5. x + y = (x, y). x,

More information

2/ UFJ HD / / % 2/ / % 2/ / % 2/ / % 2/ /

2/ UFJ HD / / % 2/ / % 2/ / % 2/ / % 2/ / 2002 12 12/3 1 6765 105 1/21 225 114% 12/4 1 6753 1220 3/4 1317 8% 12/4 2 5852 460 2/17 685 49% 12/5 2715 1080 1/24 1460 35% 12/5 1 4183 492 1/14 557 13% 12/6 1 5541 73 3/4 168 130% 12/9 1 4091 363 12/10

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

I

I I io@hiroshima-u.ac.jp 27 6 A A. /a δx = lim a + a exp π x2 a 2 = lim a + a = lim a + a exp a 2 π 2 x 2 + a 2 2 x a x = lim a + a Sic a x = lim a + a Rect a Gaussia Loretzia Bilateral expoetial Normalized

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information