カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて)

Size: px
Start display at page:

Download "カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて)"

Transcription

1 Annihilation and reincamation of Karan s vortex street (Hiroshi Al anine) (Jiro Mizushima) (Shunsuke Ohashi) (Kakeru Sugita) $h$ 100 B\ enard[1] $a$ $a/h>0.366$ Kirm$4n[2]$ Sato and Kuriki[5] ( ) 1959 Taneda[3] 2 $A\searrow$ 100 ( 2 1 $50d\sim 100d$ Durgin and $100d$ Karlsson[4] Cimbala, Taneda Nagib and Rosho[6] Cimbala et al Karasudani and Funakoshi[7] Taneda Durgin and Karlsson[4] Durgin and Karllson $\backslash$ $A$,

2 $\frac{\partial^{2}\psi}{\partial x^{2}}=0$, $A$ 2 1 Mat ui and Okude[8] $\backslash$ $A$ $U$ [6] $w$, $d$ 1 2 $A=w/d$ $O$ $x$ $y$ (1). 2 s Takemoto and $\psi(x,y, t)$ $\omega(x,y,t)$ $\psi$ $\omega$ Mizushima[9] $d$ $U$ $\frac{\partial\omega}{\partial t}=j(\psi,\omega)+\frac{1}{{\rm Re}}\Delta\omega$, (1) $J(f,g)$ $\Delta\psi=-\omega$, $\frac{\partial f}{\partial x}\frac{\partial g}{\partial $=$ (2) y}-\frac{\partial f\partial g}{\partial y\partial x}$, ( 100 $\Delta$ ) $=$ $( \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}})$ ${\rm Re}\equiv Ud/\nu$ Inasawa and Asai [10] $\nu$ $u=\frac{\partial\psi}{\partial $v=- \frac{\partial\psi}{\partial x}=0$ y}=0$, (3) $w$, $d$ $A=w/d$ 1 $U$ $A=0.4$ $A$ $(x$ $)$ $\frac{\partial\omega}{\partial x}=0$ (4)

3 $J(\overline{\psi},\overline{\omega})$ $\Delta\overline{\psi}$ $(\overline{\psi},\overline{\omega})$ : $(\{\psi\rangle,$ $(\omega))$ 1 2 $P_{1}((x,y)=(20,0))$ P2 $((x,y)=(100,0))$ $T_{1}$ 1 2 $T_{1}$ $T$ 5 $(\overline{\psi},\overline{\omega})$ $\overline{\psi}(x, -y)=-\overline{\psi}(x, y)$ 2.4 $\overline{\omega}(x, -y)=-\overline{\omega}(x, y)$ (1) $+$ $\frac{1}{r\epsilon}\delta\overline{\omega}=0$, (5) $\omega $ $-\overline{\omega}$ $\psi $ $=$ (6) $\omega=\overline{\omega}+\omega $ $\psi=\overline{\psi}+\psi $ 2 (1) (2) ${\rm Re}=50$ $-10\leq$ (5) (6) $(\psi,\omega )$ $x\leq 40$ $-10\leq y\leq 10$ $(\psi,\omega )$ $({\rm Re}=50)$ 3.$0d$ $\frac{\partial\omega }{\partial t}=j(\psi,\overline{\omega})+j(\overline{\psi},\omega )+\frac{1}{{\rm Re}}\Delta\omega $, (7) $(\langle\psi\rangle, \langle\omega\rangle)$ $(\langle\psi\rangle,$ $(\omega\rangle)$ $\Delta\psi =-\omega^{l}$ (8) 2: ( ). $Rae=50$. $(\overline{\psi},\overline{\omega})$ $((\psi\rangle, \langle\omega\rangle)$ $\psi =$ $\psi(x,y)\exp(\lambda t)$ $,$ $\omega =\hat{\omega}(x,y)\exp(\lambda t)$

4 $(\overline{\psi},\overline{\omega})$ $\lambda_{r}$ $\lambda_{i}$ 37 $\lambda$ $\delta t=$ $\delta x=\delta y=0.1$ ( ) $\delta x=\delta y=0.05$ (7) (8) $\psi(x,y)$ 2% $\omega$ $(X, y)$ $\lambda\omega \text{^{}}=j(\psi,\overline{\omega})+j(\overline{\psi},\omega$ $)+ \frac{1}{{\rm Re}}\Delta\hat{\omega}$, (9) $\Delta\psi=-\omega \text{_{}}$ (10) (9) (10) $\psi =0$ $\omega =0$ $(\psi,\omega )$ $(\psi$ $)$ $,\omega$ : $u=\frac{\partial\psi^{l}}{\partial y}=0$, $v=- \frac{\partial\psi }{\partial x}=0$ (11) (7) (8) (1) (2) (1) (2) $(\psi,\omega)$ $(\overline{\psi},\overline{\omega})$ 3.2 $\psi =\omega =0$ (5) (6) 2 SOR SOR $\frac{\partial^{2}\psi}{\partial x^{2}}=0$ $\frac{\partial\omega }{\partial, x}=0$ (12) $(\hat{\psi},\omega$ $)$ $k-1$ $\psi_{i,j}^{(k-1)}$ (11) $k$ $\psi_{i,j}^{(k)}$ (12) $(\psi,\omega )$ $(\psi,\omega)\text{_{}}$ $10^{-8}$ $(\langle\psi\rangle, (\omega))$ Inasawa and Asai [10] (1) (2) $x$ $y$ ( $\delta x$ $\delta y$ $(\delta x=\delta y)$ $)$ $A=w/d$ 1 (1) (2) 2 SOR (Succsessive Over Relaxafion Method) 3 ${\rm Re}=80$ $A=0.5$ $A=1$ $(i\delta x,j\delta y)$ ( ) $x=-10$ $n\delta t$ $\psi(i\delta x,j\delta y,n\delta t)$ $x=100$ 3(a) $k-1$ $\psi_{i,j}^{n(k-1)}$ $k$ $\psi_{:,j}^{n(k)}$ $(A=1)$ $10^{-0}$ 3(b) $(A=0.5)$ $40d$

5 38 (a) $A=1$ $A=0.5$ (b) (a) (c) (b) (d) 3: $($ $, {\rm Re}=80)$. (a) $A=1$. (b) $A=0.5$. (e) $A=0.5$ ${\rm Re}=30$ 140 (f) 4 4(a) ${\rm Re}=30$ ( ) $x$ (g) 4(b) $B\epsilon=40$. $($$4(c))$ ( ) 4(d) (h) $R\epsilon=90$ $($$4(e))$ $40d$ $(x=40)$ 4: ( ) ( 4(0 $)$. $A=0.5$. (a), (c), (e), (g) ( ). (b), (d), (f), (h) ( ). (a), (b). ${\rm Re}=30$ (c), (d). ${\rm Re}=40$ $(e),$ $(f){\rm Re}=90$. $(g)$, (h)re $=120$. ${\rm Re}=40$ 90 ${\rm Re}=120$ ${\rm Re}\sim 40$ $($$4(d))$ 2 $($$4(h))$. $20d\sim 30d$

6 39 5: $x_{1}$ 1 2 $x_{2}$ ${\rm Re}_{c}$ $y$ $0$ ${\rm Re}_{c}$ $y$ 90(4(0) 1 $40d\sim 50d$ $x_{2}$ $v_{2}$ $a_{2}$ 1 ${\rm Re}_{c}$ $60d$ ($x$ ) ${\rm Re}>{\rm Re}_{c}$ $a_{2}$ ${\rm Re}=120$ 1 ${\rm Re}=90$ ${\rm Re}$ ${\rm Re}\sim 90$ 2 1 $a_{2}$ $0$ $x_{2}=100$ Durgin and Karlsson[4] Karasudani and Funakoshi [7] ${\rm Re}\sim 100$ $a_{2}$ ${\rm Re}_{c}=39.7$ a ${\rm Re}_{c}\sim 40$ ${\rm Re}\sim 40$ $x=100$ ${\rm Re}=100$ $B\epsilon\sim 100$ $A=0.5$ $x$ $x_{1}=20$ $x_{2}=100$ $y$ $v_{1}$ $v_{2}$ $a_{1}$ $a_{2}$ $x_{1}$ 1 $x_{2}$ 2 ${\rm Re}$ $a_{1}$ $a_{2}$ 6 $x_{1}=20$ $v_{1}$ $a_{1*}$ $x_{2}=100$ $v_{2}$ $a_{1}\propto({\rm Re}-{\rm Re}_{c})^{1/2},$ $({\rm $a_{2}$ Re}_{c}=39.7)$

7 $\omega$ $\lambda$ $\lambda_{r}$ $\omega$ : $a_{1}$ $a_{2}$ ( ). $A=0.5$. : $a_{1}(x_{1}=20)$. : $a_{2}(x_{2}=100)$. ${\rm Re}$ $\lambda_{r}$ 7: Rek $=39.7$ 1 $r=1$ ${\rm Re}\sim 100$ 2 $\psi_{r}$ $\psi_{r}$ 8 8(a) 1 2 ${\rm Re}=40$ ( ) ${\rm Re}=90$ 8(b) 2 $(x\sim 60)$ (5) Durgin and Karlsson[4] ( $(\overline{\psi},\varpi)$ (6) $)$ (9) (10) (11) (12) $\lambda_{i}$ $\lambda_{r}$ 1 7 $\lambda_{r}>0$ 2 $\lambda_{r}<0$ 45 $\lambda_{r}=0$ ${\rm Re}_{c}$ 7 $R\epsilon_{c}=38.2$ ${\rm Re}_{c}=39.7$ $x$ Pl $((x,y)=(20,0))$ 3 Matsui and Okude[8]

8 41 (a) 0.2 (b) $fi,$. 015 $f_{2}01\ovalbox{\tt\small REJECT}$ $o^{o^{o\circ O\circ O}}$ $0:f_{1}(P_{1})$ $:h(p_{2})$ 8: ( ). $\psi$r( ). (a). $(b)b\epsilon=90$. ${\rm Re}=40$ $0_{0}$ : $P_{1}$ $f_{2}$ $fi$ P $O:f_{1}(P_{1}, x_{1}=20)$. $fi$ 9 2 $P_{1}(x_{1}=20)$ P2 $(x_{2}=100)$ $T_{2}$ 2 9 Pl 5 P2 $(\psi,\omega)$ 100 Pl P2 $(\langle\psi\rangle, \langle\omega))$ ${\rm Re}=100$ 2 ${\rm Re}=100$ ${\rm Re}<100$ P2 $a_{2}$ $P_{1}$ $a_{1}$ (7) (8) (11) (12) Pl $(\psi,\omega )$ P2 $f1$ $f_{2}$ 2 1 $(\psi,\omega)$ $(\langle\psi\rangle, \langle\omega\rangle)$ 1 $(\psi,\omega)-((\psi\rangle, \langle\omega\rangle)$ ${\rm Re}=115$ 10(a) $x=90$ 10(a) 4.5 $\blacksquare:f_{2}(p_{2}, x_{2}=100)$. $x=110$ 10(b) (a) ( )

9 42 [8] Matsui, T., Okude, M., In Structure of Complex Turbulent Shear Flow, IUTAM Symposium, Marseille (Springer, Berlin, 1983) pp [9] Takemoto, Y., Mizushima, J., Phys. Rev. E., Vol. 82, (2010), pp (a) [10] Inasawa, A., Asai, M., Private communication (2010). (b) 10: $(Be=115)$. (a) (b) [1] B\ enard, H., C. R. Acad. Sci. Paris, Vol. 147, (1908), pp [2] Von $K4rm\acute{a}n$, Th., Nachr. Ges. Wlss. G\"oningen, Math.-phys. Kl., (1911), pp , (1912), pp [3] Taneda, S., J. Phys. Soc. Japan., Vol. 14, (1959), pp [4] Durgin, W. W., Karlsson, S. K. F., J. Fluid Mech., Vol. 48, (1971), pp [5] Sato, H., Kuriki, K., J. Fluid Mech., Vol. 11, (1961), pp [6] Cimbala, J. M., Nagib, H. M. Roshko, A., J. Fluid Mech., Vol. 190, (1988,) pp [7] Karasudani, T., Funakoshi, $M$, Fluid Dyn. Res., Vol. 14, (1994), pp

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年) 1776 2012 28-42 28 (Yukio Takemoto) (Syunsuke Ohashi) (Hiroshi Akamine) (Jiro Mizushima) Department of Mechanical Engineering, Doshisha University 1 (Theodore von Ka rma n, l881-1963) 1911 100 [1]. 3 (B\

More information

カルマン渦列の消滅と再生成のメカニズム

カルマン渦列の消滅と再生成のメカニズム 1822 2013 97-108 97 (Jiro Mizushima) (Hiroshi Akamine) Department of Mechanical Engineering, Doshisha University 1. [1,2]. Taneda[3] Taneda 100 ( d) $50d\sim 100d$ $100d$ Taneda Durgin and Karlsson[4]

More information

Title 渦度場の特異性 ( 流体力学におけるトポロジーの問題 ) Author(s) 福湯, 章夫 Citation 数理解析研究所講究録 (1992), 817: Issue Date URL R

Title 渦度場の特異性 ( 流体力学におけるトポロジーの問題 ) Author(s) 福湯, 章夫 Citation 数理解析研究所講究録 (1992), 817: Issue Date URL   R Title 渦度場の特異性 ( 流体力学におけるトポロジーの問題 ) Author(s) 福湯, 章夫 Citation 数理解析研究所講究録 (1992), 817: 114-125 Issue Date 1992-12 URL http://hdl.handle.net/2433/83117 Right Type Departmental Bulletin Paper Textversion publisher

More information

(Hiroshi Okamoto) (Jiro Mizushima) (Hiroshi Yamaguchi) 1,.,,,,.,,.,.,,,.. $-$,,. -i.,,..,, Fearn, Mullin&Cliffe (1990),,.,,.,, $E

(Hiroshi Okamoto) (Jiro Mizushima) (Hiroshi Yamaguchi) 1,.,,,,.,,.,.,,,.. $-$,,. -i.,,..,, Fearn, Mullin&Cliffe (1990),,.,,.,, $E 949 1996 128-138 128 (Hiroshi Okamoto) (Jiro Mizushima) (Hiroshi Yamaguchi) 1 $-$ -i Fearn Mullin&Cliffe (1990) $E=3$ $Re_{C}=4045\pm 015\%$ ( $Re=U_{\max}h/2\nu$ $U_{\max}$ $h$ ) $-t$ Ghaddar Korczak&Mikic

More information

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川 正行 Citation 数理解析研究所講究録 (1993) 830: 244-253 Issue Date 1993-04 URL http://hdlhandlenet/2433/83338 Right Type Departmental Bulletin Paper

More information

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math $\mathrm{r}\mathrm{m}\mathrm{s}$ 1226 2001 76-85 76 1 (Mamoru Tanahashi) (Shiki Iwase) (Toru Ymagawa) (Toshio Miyauchi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology

More information

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$ 1075 1999 127-142 127 (Shintaro Yamashita) 7 (Takashi Watanabe) $\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{m}\mathrm{u}\mathrm{f}\mathrm{a}\rangle$ (Ikuo 1 1 $90^{\mathrm{o}}$ ( 1 ) ( / \rangle (

More information

1 1 Emmons (1) 2 (2) 102

1 1 Emmons (1) 2 (2) 102 1075 1999 101-116 101 (Yutaka Miyake) 1. ( ) 1 1 Emmons (1) 2 (2) 102 103 1 2 ( ) : $w/r\omega$ $\text{ }$ 104 (3) $ $ $=-$ 2- - $\mathrm{n}$ 2. $\xi_{1}(=\xi),$ $\xi 2(=\eta),$ $\xi 3(=()$ $x,$ $y,$ $z$

More information

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t 1601 2008 19-27 19 (Kentaro Kanatani) (Takeshi Ogasawara) (Sadayoshi Toh) Graduate School of Science, Kyoto University 1 ( ) $2 $ [1, ( ) 2 2 [3, 4] 1 $dt$ $dp$ $dp= \frac{dt}{\tau(r)}=(\frac{r_{0}}{r})^{\beta}\frac{dt}{\tau_{0}}$

More information

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\ 1081 1999 84-99 84 \mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ) - $\text{ }$ 2 2 ( ) $\mathrm{c}$ 85 $\text{ }$ 3 ( 4 )

More information

~ ~.86 ~.02 ~.08 ~.01 ~.01 ~.1 6 ~.1 3 ~.01 ~.ω ~.09 ~.1 7 ~.05 ~.03 ~.01 ~.23 ~.1 6 ~.01 ~.1 2 ~.03 ~.04 ~.01 ~.1 0 ~.1 5 ~.ω ~.02 ~.29 ~.01 ~.01 ~.11 ~.03 ~.02 ~.ω 本 ~.02 ~.1 7 ~.1 4 ~.02 ~.21 ~.I

More information

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m} 1209 2001 223-232 223 (Kazuo Iida) (Youichi Murakami) 1 ( ) ( ) ( ) (Taylor $)$ [1] $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}\mathrm{m}$ $02\mathrm{m}\mathrm{m}$ Whitehead and Luther[3] $\mathrm{a}1[2]$

More information

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539 43-50 Issue Date 2007-02 URL http//hdlhandlenet/2433/59070 Right Type Departmental

More information

数理解析研究所講究録 第1940巻

数理解析研究所講究録 第1940巻 1940 2015 101-109 101 Formation mechanism and dynamics of localized bioconvection by photosensitive microorganisms $A$, $A$ Erika Shoji, Nobuhiko $Suematsu^{A}$, Shunsuke Izumi, Hiraku Nishimori, Akinori

More information

2009 Aida et al. Caries Res 2006;40 2000 100 % 78.7 88.0 96.6 98.8 98.8 98.8 100.0 100.0 100 75 69.4 50 75.3 74.8 73.3 73.1 73.0 72.4 71.8 71.7 51.7 40.2 69.4 68.8 73.6 25 22.3 32.8 21.9 22.9 22.1

More information

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析) 1748 2011 48-57 48 (Hiroshi Iwasaki) Faculty of Mathematics and Physics Kanazawa University quasi-static Biot 1 : ( ) (coup iniury) (contrecoup injury) 49 [9]. 2 2.1 Navier-Stokes $\rho(\frac{\partial

More information

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$ 1051 1998 59-69 59 Reynolds (SUSUMU GOTO) (SHIGEO KIDA) Navier-Stokes $\langle$ Reynolds 2 1 (direct-interaction approximation DIA) Kraichnan [1] (\S 31 ) Navier-Stokes Navier-Stokes [2] 2 Navier-Stokes

More information

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2]. 1483 2006 112-121 112 (Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science Osaka University 1 [1] 30 (Rott) [2] $-1/2$ [3] [4] -\mbox{\boldmath $\pi$}/4 - \mbox{\boldmath $\pi$}/2

More information

(Yoshimoto Onishi) 1. Knudsen $Kn$ ) Knudsen 1-4 ( 3,4 ) $O(1)$ $O(1)$ $\epsilon$ BGK Boltzmann $\epsilon^{k}\ll Kn^{N}

(Yoshimoto Onishi) 1. Knudsen $Kn$ ) Knudsen 1-4 ( 3,4 ) $O(1)$ $O(1)$ $\epsilon$ BGK Boltzmann $\epsilon^{k}\ll Kn^{N} 745 1991 220-231 220 - - (Yoshimoto Onishi) 1. Knudsen $Kn$ ) Knudsen 1-4 ( 34 ) $O(1)$ $O(1)$ 5 6 7 $\epsilon$ BGK Boltzmann $\epsilon^{k}\ll Kn^{N}$ ( $N$ ) ( Reynolds $Re$ ) Knudsen (1) ( Stokes ) ;(2)

More information

untitled

untitled 20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -

More information

untitled

untitled 19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X

More information

高密度荷電粒子ビームの自己組織化と安定性

高密度荷電粒子ビームの自己組織化と安定性 1885 2014 1-11 1 1 Hiromi Okamoto Graduate School of Advanced Sciences ofmatter, Hiroshima University ( ( ) $)$ ( ) ( ) [1],, $*1$ 2 ( $m,$ q) $*1$ ; $\kappa_{x}$ $\kappa_{y}$ 2 $H_{t}=c\sqrt{(p-qA)^{2}+m^{2}c^{2}}+q\Phi$

More information

6 1873 6 6 6 2

6 1873 6 6 6 2 140 2012 12 12 140 140 140 140 140 1 6 1873 6 6 6 2 3 4 6 6 19 10 39 5 140 7 262 24 6 50 140 7 13 =1880 8 40 9 108 31 7 1904 20 140 30 10 39 =1906 3 =1914 11 6 12 20 1945.3.10 16 1941 71 13 B29 10 14 14

More information

$\Downarrow$ $\Downarrow$ Cahn-Hilliard (Daisuke Furihata) (Tomohiko Onda) 1 (Masatake Mori) Cahn-Hilliard Cahn-Hilliard ( ) $[1]^{1

$\Downarrow$ $\Downarrow$ Cahn-Hilliard (Daisuke Furihata) (Tomohiko Onda) 1 (Masatake Mori) Cahn-Hilliard Cahn-Hilliard ( ) $[1]^{1 $\Downarrow$ $\Downarrow$ 812 1992 67-93 67 Cahn-Hilliard (Daisuke Furihata (Tomohiko Onda 1 (Masatake Mori Cahn-Hilliard Cahn-Hilliard ( $[1]^{1}$ reduce ( Cahn-Hilliard ( Cahn- Hilliard Cahn-Hilliard

More information

01

01 2 0 0 7 0 3 2 2 i n d e x 0 7. 0 2. 0 3. 0 4. 0 8. 0 9. 1 0. 1 1. 0 5. 1 2. 1 3. 1 4. 1 5. 1 6. 1 7. 1 8. 1 9. 2 0. 2 1. 2 3. 2 4. 2 5. 2 6. O k h o t s k H a m a n a s u B e e f 0 2 http://clione-beef.n43.jp

More information

Taro13-第6章(まとめ).PDF

Taro13-第6章(まとめ).PDF % % % % % % % % 31 NO 1 52,422 10,431 19.9 10,431 19.9 1,380 2.6 1,039 2.0 33,859 64.6 5,713 10.9 2 8,292 1,591 19.2 1,591 19.2 1,827 22.0 1,782 21.5 1,431 17.3 1,661 20.0 3 1,948 1,541 79.1 1,541 79.1

More information

4 2016 3 8 2.,. 2. Arakawa Jacobin., 2 Adams-Bashforth. Re = 80, 90, 100.. h l, h/l, Kármán, h/l 0.28,, h/l.., (2010), 46.2., t = 100 t = 2000 46.2 < Re 46.5. 1 1 4 2 6 2.1............................

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,, 836 1993 132-146 132 Navier-Stokes Numerical Simulations for the Navier-Stokes Equations in Incompressible Viscous Fluid Flows (Nobuyoshi Tosaka) (Kazuhiko Kakuda) SUMMARY A coupling approach of the boundary

More information

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:- 1413 2005 60-69 60 (Namiko Mitarai) Frontier Research System, RIKEN (Hiizu Nakanishi) Department of Physics, Faculty of Science, Kyushu University 1 : [1] $[2, 3]$ 1 $[3, 4]$.$\text{ }$ [5] 2 (collisional

More information

89 91 93 95 97 99 101 103 105 107 109 111 113 115 H 117 119 l l 121 l l 123 125 127 129 l l l l 131 kl kl kl kl 133 135 137 139 141 143 145 147 149 151 153 155 157 159

More information

株式会社日清製粉グループ本社 第158期中間事業報告書

株式会社日清製粉グループ本社 第158期中間事業報告書 C O N T E N T S...1...3...5...7...9...11...12...13...14 1 2 3 4 3.7% 5.8% 8.5% 70,100kL 81.2% 0.8% 25 20 15 10 5 0 9.18 9.54 9.74 9.62 9.65 9.71 21.04 21.97 22.44 22.23 8.54 22.31 22.45 20.41 15 12 9 6

More information

20169 3 4 5003 n=3,000 61.8% 38.2% n=3,000 20 7.3% 30 21.3% 40 34.8% 50 36.6% n=3,000 3.0% 2.0% 1.5% 12.1% 14.0% 41.4% 25.9% n=3,000 37.7% % 24.8% 28.8% 1.9% 3.1% 0.2% n=3,000 500 64.0% 500 1,000 31.3%

More information

RX501NC_LTE Mobile Router取説.indb

RX501NC_LTE Mobile Router取説.indb 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 19 20 21 22 1 1 23 1 24 25 1 1 26 A 1 B C 27 D 1 E F 28 1 29 1 A A 30 31 2 A B C D E F 32 G 2 H A B C D 33 E 2 F 34 A B C D 2 E 35 2 A B C D 36

More information

112 Landau Table 1 Poiseuille Rayleigh-Benard Rayleigh-Benard Figure 1; 3 19 Poiseuille $R_{c}^{-1}-R^{-1}$ $ z ^{2}$ 3 $\epsilon^{2}=r_{\mathrm{c}}^{

112 Landau Table 1 Poiseuille Rayleigh-Benard Rayleigh-Benard Figure 1; 3 19 Poiseuille $R_{c}^{-1}-R^{-1}$ $ z ^{2}$ 3 $\epsilon^{2}=r_{\mathrm{c}}^{ 1454 2005 111-124 111 Rayleigh-Benard (Kaoru Fujimura) Department of Appiied Mathematics and Physics Tottori University 1 Euclid Rayleigh-B\ enard Marangoni 6 4 6 4 ( ) 3 Boussinesq 1 Rayleigh-Benard Boussinesq

More information

Title 傾斜スロットにおける多重分岐 ( 乱流の発生と統計法則 ) Author(s) 藤村, 薫 ; ケリー, R.E. Citation 数理解析研究所講究録 (1992), 800: Issue Date URL

Title 傾斜スロットにおける多重分岐 ( 乱流の発生と統計法則 ) Author(s) 藤村, 薫 ; ケリー, R.E. Citation 数理解析研究所講究録 (1992), 800: Issue Date URL Title 傾斜スロットにおける多重分岐 ( 乱流の発生と統計法則 ) Author(s) 藤村 薫 ; ケリー R.E. Citation 数理解析研究所講究録 (1992) 800: 26-35 Issue Date 1992-08 URL http://hdl.handle.net/2433/82850 Right Type Departmental Bulletin Paper Textversion

More information

日経テレコン料金表(2016年4月)

日経テレコン料金表(2016年4月) 1 2 3 4 8,000 15,000 22,000 29,000 5 6 7 8 36,000 42,000 48,000 54,000 9 10 20 30 60,000 66,000 126,000 166,000 50 100 246,000 396,000 1 25 8,000 7,000 620 2150 6,000 4,000 51100 101200 3,000 1,000 201

More information

73 p.1 22 16 2004p.152

73 p.1 22 16 2004p.152 1987 p.80 72 73 p.1 22 16 2004p.152 281895 1930 1931 12 28 1930 10 27 12 134 74 75 10 27 47.6 1910 1925 10 10 76 10 11 12 139 p.287 p.10 11 pp.3-4 1917 p.284 77 78 10 13 10 p.6 1936 79 15 15 30 80 pp.499-501

More information

122011pp.139174 18501933

122011pp.139174 18501933 122011pp.139174 18501933 122011 1850 3 187912 3 1850 8 1933 84 4 1871 12 1879 5 2 1 9 15 1 1 5 3 3 3 6 19 9 9 6 28 7 7 4 1140 9 4 3 5750 58 4 3 1 57 2 122011 3 4 134,500,000 4,020,000 11,600,000 5 2 678.00m

More information

2 2 3 4 5 5 2 7 3 4 6 1 3 4 7 4 2 2 2 4 2 3 3 4 5 1932 A p. 40. 1893 A p. 224, p. 226. 1893 B pp. 1 2. p. 3.

2 2 3 4 5 5 2 7 3 4 6 1 3 4 7 4 2 2 2 4 2 3 3 4 5 1932 A p. 40. 1893 A p. 224, p. 226. 1893 B pp. 1 2. p. 3. 1 73 72 1 1844 11 9 1844 12 18 5 1916 1 11 72 1 73 2 1862 3 1870 2 1862 6 1873 1 3 4 3 4 7 2 3 4 5 3 5 4 2007 p. 117. 2 2 3 4 5 5 2 7 3 4 6 1 3 4 7 4 2 2 2 4 2 3 3 4 5 1932 A p. 40. 1893 A p. 224, p. 226.

More information

29 2011 3 4 1 19 5 2 21 6 21 2 21 7 2 23 21 8 21 1 20 21 1 22 20 p.61 21 1 21 21 1 23

29 2011 3 4 1 19 5 2 21 6 21 2 21 7 2 23 21 8 21 1 20 21 1 22 20 p.61 21 1 21 21 1 23 29 2011 3 pp.55 86 19 1886 2 13 1 1 21 1888 1 13 2 3,500 3 5 5 50 4 1959 6 p.241 21 1 13 2 p.14 1988 p.2 21 1 15 29 2011 3 4 1 19 5 2 21 6 21 2 21 7 2 23 21 8 21 1 20 21 1 22 20 p.61 21 1 21 21 1 23 1

More information

Microsoft Word - 映画『東京裁判』を観て.doc

Microsoft Word - 映画『東京裁判』を観て.doc 1 2 3 4 5 6 7 1 2008. 2 2010, 3 2010. p.1 4 2008 p.202 5 2008. p.228 6 2011. 7 / 2008. pp.3-4 1 8 1 9 10 11 8 2008, p.7 9 2011. p.41 10.51 11 2009. p. 2 12 13 14 12 2008. p.4 13 2008, p.7-8 14 2008. p.126

More information

() L () 20 1

() L () 20 1 () 25 1 10 1 0 0 0 1 2 3 4 5 6 2 3 4 9308510 4432193 L () 20 1 PP 200,000 P13P14 3 0123456 12345 1234561 2 4 5 6 25 1 10 7 1 8 10 / L 10 9 10 11 () ( ) TEL 23 12 7 38 13 14 15 16 17 18 L 19 20 1000123456

More information

308 ( ) p.121

308 ( ) p.121 307 1944 1 1920 1995 2 3 4 5 308 ( ) p.121 309 10 12 310 6 7 ( ) ( ) ( ) 50 311 p.120 p.142 ( ) ( ) p.117 p.124 p.118 312 8 p.125 313 p.121 p.122 p.126 p.128 p.156 p.119 p.122 314 p.153 9 315 p.142 p.153

More information

戦後の補欠選挙

戦後の補欠選挙 1 2 11 3 4, 1968, p.429., pp.140-141. 76 2005.12 20 14 5 2110 25 6 22 7 25 8 4919 9 22 10 11 12 13 58154 14 15 1447 79 2042 21 79 2243 25100 113 2211 71 113 113 29 p.85 2005.12 77 16 29 12 10 10 17 18

More information

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applied Heat Technology Division, Japan Atomic Energy Agency,

More information

Lightブログ_Mikata.qxd

Lightブログ_Mikata.qxd 46 Ω 1 3 2 15 Ω 47 6 4 5 7 5 CONTENTS 4 6 8 1 2 3 4 1 12 14 16 18 20 5 6 7 8 9 10 11 2 22 24 26 28 30 34 36 12 38 40 2 3 4 13 42 20 58 14 44 21 60 15 16 17 18 19 46 48 50 52 54 22 23 24 25 64 66 68 72

More information

可約概均質ベクトル空間の$b$-関数と一般Verma加群

可約概均質ベクトル空間の$b$-関数と一般Verma加群 1825 2013 35-55 35 $b$- Verma (Akihito Wachi) Faculty of Education, Hokkaido University of Education Capelli Capelli 6 1 2009 6 [4] $(1\leq i,j\leq n)$ $\det(a)= A =\sum_{\sigma}$ sgn $(\sigma)a_{\sigma(1)1}\cdots

More information

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4,

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4, Mellor and Yamada1974) The Turbulence Closure Model of Mellor and Yamada 1974) Kitamori Taichi 2004/01/30 ,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), 4 1 4 Mellor and Yamada 1974) 4 2 3, 2

More information

圧縮性LESを用いたエアリード楽器の発音機構の数値解析 (数値解析と数値計算アルゴリズムの最近の展開)

圧縮性LESを用いたエアリード楽器の発音機構の数値解析 (数値解析と数値計算アルゴリズムの最近の展開) 1719 2010 26-36 26 LES Numerical study on sounding mechanism of air-reed instruments (Kin ya Takahashi) * (Masataka Miyamoto) * (Yasunori Ito) * (Toshiya Takami), (Taizo Kobayashi), (Akira Nishida), (Mutsumi

More information

09030549_001.図書館31-1

09030549_001.図書館31-1 vol.31 NO.1 2 3 5 6 10 12 8 1947-1954- 1950-1838-1904 1952-1996 1 913-1954 1981-1958- 1 902-1992 1972-1946- 1 940- 1 2 3 3 5 6 6 8 8 12 8 8 1 2 2 http://library.hokkai-s-u.ac.jp/cgi-bin/tosyokan/index.cgi

More information

VOL a s d f g h

VOL a s d f g h VOL.20013 -- 1937 101939 1940410 1940 1 VOL.20013 2030 193810 19391034 1937 a s d f g h 1995139140161 1998348 1988236 1994577578 1998 1987151 1922 2 VOL.20013 101110 3000500 70 1929 1920 1927 70 4050 30

More information

untitled

untitled 12 3 10 27 1 100 1/10 1/3 2012 24 27 22 23 153 8407 26 28 563 275 26 260 275 120 67 21 15 98 70 8407 7791 616 70.2 19 50 100 300 vol.195 12 10 12 22 11 23 30 0.022 22 11 23 1 9230+0.022 22 11 23 vol.194

More information