Application Note

Size: px
Start display at page:

Download "Application Note"

Transcription

1 Application ote A-00 Revision: Issue Date: repared by: Ingo Staudt Key Words: 3L, C, TC, C, MC, Multilevel, Loss Calculation, SemiSel 3 レベル C と TC 概要... レベルと 3 レベルの違い... 3 レベルコンバータのスイッチングパターン... 3 転流と転流経路 レベルコンバータ... 6 モジュールの検討... 6 標準 レベルモジュールを使用した構成 レベル用モジュール... 7 セミクロン 3 レベルモジュール レベル素子のドライブ... 8 標準動作... 8 非常停止... 8 オーバーシュート電圧に対する 3 レベル素子の保護... 9 アクティブクランプ レベル損失計算... 9 SemiSel... 使用されている記号と用語... 参考文献... 3 このアプリケーションノートは つの 3 レベル回路 3 レベル C(3L C; 中点クランプ と 3 レベル TC(3L TC;T 型中点クランプ について記述しています 読者は 3 レベル素子の動作の基本 メリット デメリットについて理解することができます また 3 レベルモジュールの構成 配置に関するヒントも記述しています しかしながら 記述した情報は完全ではない為 ユーザー固有の設計に対して責任は負いかねます 概要 3 レベル C 又は 3 レベル TC 回路を使用する利点の つは 電流の全高調波歪みが低い為 フィルターを低減できる事です ( 必要な銅の低減 フィルターの低損失 3 レベル C の主なメリットは 実際の DC リンク電圧よりも低い定格電圧を有する IGBT 及びダイオードの使用が可能な事です 低い阻止電圧の素子は損失が低い為 効率が向上します レベル用途における阻止電圧と同じものを使用する事によって 高い DC リンク電圧を実現できます / 3

2 レベルの 相に対し 3 レベル C モジュールは 4 個の半導体 (Fig. の代わりに 0 個の半導体 :4 個の IGBT( 4 個のフリーホイールダイオード (FWD; 及び 個のクランプダイオード (CD; で構成されています Fig. : 緑で囲まれた回路 :3 レベル C の 相 C 3 レベル TC の 相 (Fig. は 8 個の半導体のみ 4 個の IGBT( と 4 個の逆並列フリーホイールダイオード (FWD; で構成されています 3 レベル C の様に TC は分割された DC リンク 及び に接続されています 4 番目の主端子は 出力を供給します 3 レベル TC 回路では定格電圧が異なる半導体が使用されます 及び ( 外側のスイッチ は全 DC リンク電圧に耐えなければなりません 内側のスイッチ ( 及び 3 は と中点に接続され DC リンク電圧の半分に耐えなければなりません 3 レベル TC 回路の導通経路は 個の阻止電圧が高い半導体 ( 外側スイッチ 又は 個直列の阻止電圧が低い素子 ( 内側スイッチ です Fig. 及び Fig. で命名された半導体は 3L C 及び 3L TC 回路に対し 全く同じスイッチングパターンが使用される利点を有します C レベルと 3 レベルの違い モジュールの 4 つの主端子が DC リンク : 及び ( 中点 に接続されています DC リンクは 個直列で 対称的に分割して接続され 上半分は と へ 下半分は と に接続されています 3 レベル回路では全ての導通経路は直列の 個の半導体で構成され 高い DC リンク電圧 又は レベル回路よりも低い阻止電圧のスイッチを適用出来ます レベルと 3 レベルの差は半導体素子の数だけではありません よく知られている レベルコンバータは 又は と 端子をスイッチしますが (Fig. 3 3 レベルは と 又は ( 中点 を接続します ( 中点 は と 間の中間点電圧で 3 レベル回路の基になっている第 3 番目の電圧レベルを形成しています Fig. 3: レベルの電圧 電流波形 3 レベル TC の利点は 3 レベル C におけるスイッチング方式の制限がない事です ( 特に非常停止時 Fig. : 緑で囲まれた回路 :3 レベル TC の 相 C - -DC DC 0 Output voltage (line to line Output current Fig. 4: 3 レベルの電圧 電流波形 C - -DC DC 0 Output voltage (line to line Output current / 3

3 第三の電圧レベルを設ける事によって 出力電圧波形は望ましい正弦波に近くなり 電流の全高調波歪みが低減します 従って グリッドの品質 ( グリッドに供給時 に関する強い要求を容易に満たす事が出来ます レベルと 3 レベル C/TC との比較 C と TC C TC 同じ電流の全高調波歪みに対し 3 レベル回路ではスイッチング周波数の低減が可能で スイッチング損失が減少します スイッチング周波数が同じ場合 ある動作領域を境に 3 レベル回路の電流の全高調波歪みは レベル回路よりも低くなります 3 レベル応用では レベル応用と比較して スイッチング周波数の低減が可能で また全高調波歪みを改善し フィルターが減少します IGBT の数量は 個から 4 個に またゲートドライバーも増加します 補助損失も制御装置の数と共に増加します 3 レベル回路では電流経路におけるスイッチの数は倍になるので 導通損失は増加します 3 レベル応用では阻止電圧が低い半導体の使用が可能です 例 :DC リンク電圧 750 に対し 00 レベルが 又は レベルモジュールが適用出来ます ( それぞれのスイッチは 375 を阻止する必要があります 阻止電圧が低い素子の低損失は 電流経路で増加した素子数による追加損失を補償します 650 の半導体を使用した場合 最大 DC リンク電圧は 800DC 00 の半導体では 500DC 700 の半導体では 400DC になります 3 レベル回路では電流経路におけるスイッチの数は レベル ( 外側スイッチ に等しく 同一損失を生じるか 又は 倍 ( 低い阻止電圧 ; 内側スイッチ で 導通損失は大きいがスイッチング損失は小さくなります 最大 DC リンク電圧は レベルモジュールに適用される様に 650 の半導体を使用した場合 400DC 00 の半導体では 800DC 700 の半導体では 00DC になります 3 レベル応用は レベルよりも高度な制御です レベルのスイッチングパターンは極めて単純ですが ( トップ及びボトム IGBT が常に逆にスイッチする 3 レベルでは複雑で 特定のスイッチ ( 即ち と は長期間 cosφ の値に依存しスイッチします (cosφ= の場合 半周期 可能なスイッチング状態の数は レベルにおける 4( トップ / ボトム :0/0 0/ /0 / から 6 に増加します 3 レベル C では許容 破壊の可能性及び破壊の状態に区別されています (Fig. 5 Fig. 5: C のスイッチング状態 state allowed potentially destructive destructive 許容状態 全ての IGBT がオフ状態で コンバータはオフ 又は が単独でオン それぞれ隣接した 個の IGBT がオン (/ / / 破壊の可能性がある状態 又は が単独 又は同時にオン 隣接していない IGBT がオン (/ / 結果は他の相のモジュールのスイッチングパターンに依存します 破壊状態 3 個の隣接した IGBT がオン (// DC リンクの上半分が短絡 // DC リンクの下半分が短絡 3 個の隣接しない IGBT がオン (// 全 DC リンク電圧が に印加 // 全 DC リンク電圧が に印加 4 個の IGBT がオン 及び が短絡 3 レベル TC では許容 破壊のみの状態に区別されています (Fig. 6 3 レベルコンバータのスイッチングパターン 3 / 3

4 Fig. 6: TC のスイッチング状態 state allowed destructive この 4 つの動作範囲において 動作するスイッチ及び転流は以下の通りです. 電圧 電流が 0 よりも大 (>0 I>0: L: T TO D BOT 3L C: / / ( 短い転流経路 3L TC: 許容状態 全ての IGBT がオフ状態で コンバータはオフ 何れかの IGBT が単独でオン それぞれ隣接した 個の IGBT がオン (/ / 又は / 破壊状態 個の隣接しない IGBT がオン (/ DC リンクの上半分が短絡 DC リンクの下半分が短絡 / が短絡 3 個の隣接しない IGBT がオン ( 上記と同じ結果 : 上半分又は下半分又は全 DC リンクが短絡 4 個の IGBT がオン 及び が短絡 転流と転流経路 C と TC Fig. 7 は誘導負荷における正弦波電圧 ( 青線 及びそれに伴う電流 ( 赤線 を示しています インバータ動作は 4 つの動作領域に分ける事が出来ます cosφ= ( 位相差なし の場合 電圧 電流波形は同相で動作範囲 及び 3 のみで動作します cosφ=- の場合 動作範囲 及び 4 のみで動作します Fig. 7: 動作領域 C. 電圧が 0 よりも小 電流が 0 よりも大 (<0 I>0: L: T TO D BOT 3L C: / /( 長い転流経路 3L TC: / 3. 電圧 電流が 0 よりも小 (<0 I<0: L: T BOT D TO 3L C: / / ( 短い転流経路 3L TC: / 4. 電圧が 0 よりも大 電流が 0 よりも小 (>0 I<0: L: T BOT D TO 3L C: / /( 長い転流経路 3L TC: / 短い転流経路における転流は 導通している 個のスイッチの 個に作用し ( 例 : 他の 個は変化しません ( 例 : 長い転流経路 ( 例 :/ / では 両方の素子に作用します 短い / 長い転流経路 は転流の幾何学的な長さを示します 短い転流は 3 レベルモジュールのトップ側又はボトム側半分において生じ 長い転流では電流がトップ側からボトム側半分 ( 又はこの逆 に変化します Fig. 8: 動作領域 の短い転流経路 0.9 j. oltage Current I i( t u( t I I t 3 cosφ が - と + 間の任意の値に対し 位相が変化し 4 つの動作範囲に時分割します 4 / 3

5 モジュールのトップ側半分 ( 素子 5 における短い転流 (Fig. 8 は 動作領域 (Fig. 9 で動作しています 電圧 電流は共に正です 転流は - 間で行き来します 電流は がオン状態の間 から を通り 端子に流れます がオフすると 電流はクランプダイオード に転流します 電流は から を通り に流れます はその間ずっとオンしています モジュールのボトム側半分におけるもう一方の短い転流は 動作領域 3 で動作しています (Fig. Fig. 3 出力電流 電圧は負です Fig. : 動作領域 3 の短い転流経路 3. Fig. 9: 動作領域 0.9 oltage Current I i U( ( tx I ( x u ( t I I 0.9 x 0 転流は t - 間で行き来します 電流は がオン 正の出力電流に対する長い転流 (Fig. 0 は モジュールトップ側半分の / とボトム側半分全体の / 間を行き来します 状態の間 端子から を通り に流れます がオフすると 電流はクランプダイオード に転流します 新たな導通経路は から を通り に流れます はその間ずっとオンしています 3 3 Fig. 0: 動作領域 の長い転流経路 Fig. 3: 動作領域 3 I. 0.9 i ( t u ( t I oltage Current I t 0 x 全素子にわたるこの転流は 動作領域 (Fig. において出力電圧が負の間 正の電流 (DC リンクから負荷に向かう が流れる事によります Fig. : 動作領域 負電流に対する長い転流経路 (Fig. 4 はモジュールボトム側半分の / とトップ側半分全体の / 間を行き来します Fig. 4: 動作領域 4 の長い転流経路 4. oltage Current I U I ( x ( x > I I 0 t 3 5 / 3

6 動作領域 4(Fig. 4 の長い転流は負の出力電流 ( 端子から DC リンクに流れる 正の電圧で動作します Fig. 7: 動作領域 の転流経路. Fig. 5: 動作領域 oltage Current I i ( t u ( t I I 0.9 x 3 TC 0 t TC 回路では 短い又は長い転流経路は存在しません 全ての経路は幾何学的長さが同一で 個の外側スイッチ ( 又は 4 IGBT 又はダイオード と 個の内側スイッチ ( と 又は と を通ります 通常動作では 転流は常に 個の外側スイッチと 個の内側スイッチに作用します 非常停止発生時を除き / と / 間の転流は存在しません Fig. 8 は動作領域 3 の導通経路を示しています 電流は と内側スイッチ / 間で転流します 電流は 端子から DC リンクへ流れ 電流 電圧は負です (Fig. 3 参照 はずっとオンしています がオンしている間 ダイオード は電圧を阻止し DC リンクのボトム側半分の短絡を回避します Fig. 8: 動作領域 3 の転流経路 3. 3 動作領域 (Fig. 6 Fig. 9 では 出力電圧 電流は正で 電流は 端子に流れます 転流は と / 間で行き来します 電流は がオン状態の間 から を通り 端子へ流れます がオフすると 電流は内側のスイッチ / に転流します 電流は から を通り へ流れます はその間ずっとオンしています がオンするとダイオード は電圧を阻止し DC リンクのトップ側半分の短絡を回避します Fig. 6: 動作領域 の転流経路 I 動作領域 4 では 電圧は正で出力電流は負です (Fig. 5 電流は内側スイッチ / とダイオード 間で行き来します I I. 動作領域 (Fig. 7 では 電圧が負の間も 出力電流は正です (Fig. 転流は内側スイッチ / とダイオード 間で行き来します I Fig. 9: 動作領域 4 の転流経路 4. I I 3 レベルコンバータ モジュールの検討 6 / 3

7 3 レベルモジュールを設計する場合 特に転流経路について考慮します 長い転流経路は大きな浮遊インダクタンスを伴います 大きな浮遊インダクタンスが存在する導通経路で 負荷電流がオフすると高いオーバーシュート電圧が発生します 半導体の破壊を防ぐ為 オーバーシュート電圧はその阻止電圧以下にする必要があります それは最大許容 DC リンク電圧を下げ 高いオーバーシュート電圧を許容するか 又は浮遊インダクタンスを減らし オーバーシュート電圧を下げる事によって達成されます 無論 目的は浮遊インンダクタンスを減らし 高い DC リンク電圧を実現する事です ( これによって 出力電圧 モジュールの出力を増大させます TC Fig. : 3 レベル TC モジュールを構成する レベル回路 GM GB 標準 レベルモジュールを使用した構成 理論的に 3 レベル回路は 既存の レベルモジュールを使用して構成出来ます (Fig. 0 Fig. 組付けは拡張可能で モジュールをバスバーで接続します C 実際 レベルモジュールを使用した C の構成 (Fig. 0 は 特にモジュール間にわたる転流に対し 常に非常に長い導通経路を伴います ( これが長い転流経路の為 さらに悪化します 浮遊インダクタンスによって この長い転流経路で非常に高いオーバーシュート電圧が生じる為 レベル設計に対しこの構成は優位性がありません Fig. 0: 3 レベル C モジュールを構成する レベル回路 3 レベル用モジュール レベルモジュールを使用した 3 レベル回路は最適なソリューションではない為 3 レベル回路に対し新規設計モジュールが特別に要求されました まずは モジュールの大きさとパワーに関して選択しなければなりません モジュールが大きいと チップ面積が広がり大きなパワーを供給出来ます 残念ながら大きなモジュールは浮遊インダクタンスが大きく スイッチング時のオーバーシュート電圧が高く 最大電流を制限します 大電力は 個の大型モジュール 又は複数の小型モジュールの並列によって実現出来ます 後者のソリューションは 同様にドライブユニットを並列にする必要があります ( 既知の問題点 : コスト スペース ドライバーのジッター 並列ドライバー使用時の補償電流 セミクロン 3 レベルモジュール GB GB GB R GB L セミクロンは特別に再設計し 浮遊インダクタンスを最小化した多くの 3 レベルモジュールを提供します SEMITO モジュールでチップの定格電流 0A- 50A MiniSKii で 75A-00A SKiM で定格電流 00A-600A です SEMITO と MiniSKii は DC リンク電圧 およそ 800 まで SKiM モジュールは 500 まで適用可能です 出力範囲は 50kA まで達しています (Fig. さらなる大電力が必要な場合 数個のモジュールを並列接続します レベルモジュールを使用した TC の構成 (Fig. では あらゆる転流経路はモジュール間にわたります C の構成と同様に 浮遊インダクタンスは高いオーバーシュート電圧の原因となり この構成は優位性がありません 7 / 3

8 Fig. : セミクロン 3 レベルモジュールのラインアップ SEMITO 3 & 4 0 A 50A MiniSKii & 3 75A 00A TC コンバータでは 必須のスイッチング動作順序は存在しません 半導体 個にその阻止電圧より高い電圧が印加される危険性が存在しない為 何時でもどの IGBT もオン オフが可能です C と TC: と ( と のそれぞれ のゲート信号は逆になります 一方の IGBT は他方の IGBT がオンする前に 確実にオフしていなければなりません SKiM 4 00A 600A [ka] 00C モジュールの主な利点は 500DC リンクで最大 000 の 出力電圧を実現出来る事です それによって 一方では低電圧指令 ( 整合規格の適用 内にとどまり 他方では 出力電力は変更なくコンバータ電流を減らす事が可能です 3 レベル素子のドライブ 標準動作 C 全ての素子がオフ状態で C コンバータが動作を開始する時 最初に内側 IGBT の 個がオンしなければなりません 出力電圧が正の場合 それは になります 短時間後 ( が完全にオン状態になった時 をオンします オフする時の順序は逆にしなければなりません 確実に がターンオフする前に が完全にオフするようにします これは にターンオフ信号が印加された後 短時間 (~3μs に をオフする事により達成出来ます このデッドタイムは セミクロンの レベルゲートドライバーのトップ側とボトム側スイッチ間のインターロック時間として知られています 内側の IGBT( 又は が これに対応する外側の IGBT( 又は よりも前にオフすると 内側のスイッチは全 DC リンク電圧を負う事になります この場合 電圧はその半導体の阻止電圧よりも高くなり 半導体は破壊します Fig. 4 に示す様に破壊の為 許容されないスイッチングパターンがあります 素子が破壊しなくても この状態は回避しなければなりません 非常停止 レベル応用では 半導体を保護するドライバーによって 緊急オフに至る事象があります 以下の事象が考えられます - 熱的過負荷 - 過電流又は - 非飽和 この場合 3 レベル応用においても直ちににオフしなければなりません C しかし オフは確実に正しい順序で行わなければなりません ブレークダウン電圧による破壊を避ける為 外側の IGBT( 又は が最初に 次は内側の IGBT ( 又は です 熱的過負荷又は緩やかな電流上昇は TC/TC や電流センサーでモニターが可能で 適切な時間内に監視制御装置が反応する為の時間があります 非飽和ではオフする迄 最大 0μs あります 外側のスイッチ ( 又は が非飽和の場合 ドライバーによって直ちにオフされます ~3μs 後 これに対応する内側の IGBT もオフされます 内側のスイッチ ( 又は が非飽和になった時は さらに複雑になります この事象がモニターされると ドライバーはこれに対応する外側のスイッチはオン状態かどうかの情報が必要です オン状態の場合 ゲートドライバーは直ちに外側の IGBT をオフし ~3μs 後 次に内側の IGBT もオフします 外側の IGBT がオン状態ではない場合 ドライバーは直ちに内側の IGBT をオフしなければなりません いかなる場合も 制御装置はコンバータの他方の素子を停止し 安全な状態を確立出来る様にエラー信号を出します TC TC 回路ではスイッチオフの順序を持続する必要はない為 はるかに容易です TC 8 / 3

9 過熱 過電流又は非飽和状態が発生した場合でも コンバータは直ちにスイッチオフ出来ます オーバーシュート電圧に対する 3 レベル素子の保護 電流経路が遮断されると (IGBT 又はダイオードをオフ オフした素子の両端の電圧は上昇を開始します このオーバーシュート電圧は 電流経路の磁界で蓄積したエネルギーによって生じます エネルギーは浮遊インダクタンス LS (E=0.5*LS*i の上昇によって 直線的に増加します 例 : 倍の浮遊インダクタンス LS は 倍のエネルギー E をもたらします オーバーシュート電圧 (=LS*di/dt は DC リンク電圧に加わります 破壊する場合があるので 加算された電圧は半導体の阻止電圧を超えてはなりません 3 レベルモジュールは レベル素子よりも大きく 導通経路に 個のスイッチがある為 電流経路は長く 従って浮遊インダクタンスは高くなります 特に長い転流経路 (C 回路 / / 又は / / はモジュール設計時 注意が必要です 優れた設計によって低浮遊インダクタンスが実現出来ますが ( 例 SKiM4 MLI:8nH/ スイッチ 長い転流経路に対し約 60nH レベルモジュールを使用して低インダクタンスの 3 レベル回路を構成する事は不可能です 長い転流経路は少なくとも C 回路の 3 個のモジュール (Fig. 0 参照 又は TC 回路の 3 個のモジュールの内 個 (Fig. 参照 を通り 浮遊インダクタンスは約 00nH になります これは 3 レベル用モジュールの 3 倍以上です di/dt が同じ場合 この構成において オーバーシュート電圧は 3 倍になります この為 セミクロンは 3 レベル用モジュールの使用を推奨します スナバー回路 スナバーコンデンサは と 間 及び と 間にそれぞれ接続します 出来る限りモジュールに近い位置に置く事が必要で セミクロンのアプリケーションノート A-7006 の手引きに従って選択出来ます アクティブクランプ 他に悪影響を及ぼす電圧を扱う方法は IGBT でアクティブクランプ回路を使用します (Fig. 3 この回路は直列接続された数個の過渡電圧抑制ダイオード (TS で構成されていて IGBT のブレークダウン電圧よりも僅かに低い電圧でブレークダウンします クランプ回路は保護する素子のコレクタ - ゲート間に接続します スイッチがターンオフし 電圧が上昇して TS ダイオードのブレークダウン電圧を越えると IGBT のゲートに電流が流れ IGBT も通電を開始します 磁界のエネルギーが使い果たされると 素子にブレークダウン電圧が印加されます TS ダイオードは再び素子状態になり IGBT はオフします Fig. 3: 単純なアクティブクランプ回路 Gate driver TS 根本的原因 ( ある特定の位置で 半導体間の接続をより短くする事が不可能 で オーバーシュート電圧の低減が不可能な場合 半導体を保護する対策をとります 3 レベル損失計算 特定の応用に最適な 3 レベルモジュールを選択する場合 異なる半導体に発生する損失を計算する必要があります 以下に 3 レベル C 及び 3 レベル TC における損失計算式を示します C 3 レベル C 回路における 0 個の半導体の損失は 以下に従って計算出来ます : 9 / 3

10 M jcos( j sin( j r cos( j 3ce0 ce K cos( j GI f E I : 3M j cos( j sin( j r 3 M cos( j ce0 ce K cos( j GI f E I : ˆ 3M j cos( j sin( j r I 3 4M cos ( f 0 f j K cos( j GI f E I : M 3 j cos( j sin( j r cos( j f 0 f K cos( j GI f E I : M 0 3 j cos( j sin( j r cos( j f 0 f TC 3 レベル TC 回路における 8 個の半導体の損失は 3 レベル C のそれとは異なり 以下の様に計算出来ます : M 3 jcos( j sin( j r cos( j ce0 ce 0 / 3

11 K cos( j GI f E I : ˆ 6M j cos( j sin( j 3M cos( j r I 3 4M cos ( ce0 ce j K cos( j GI f E I : ˆ 3M j cos( j sin( j 3M cos( j r I 3 4M cos ( f 0 ce j K cos( j GI f E I : M 3 j cos( j sin( j r cos( j f 0 f K cos( j GI f E I C と TC 式は M = 0~ に対し有効です 変調率 M は DC リンク電圧と RMS 電圧に関連します M 3 RMS DC セミクロンモジュールの K 及び G I の標準値を Fig. 6 に示します Fig. 6: セミクロンモジュールの標準 K 及び G I IGBT Diode K G I.5 SemiSel SemiSel は顧客固有の応用における パワー半導体の損失及び温度を計算する為のオンラインシミュレーションツールです 冷却 ( 例 : ヒートシンクのタイプと特性 周囲温度 及び電気的パラメーター ( 例 : 入出力電圧 スイッチング周波数 負荷電流 その他 の具体的な値から SemiSel は全ての IGBT とダイオードの損失及び接合温度を数秒で計算します いくつかのパラメーターを変えて 最適な設定 ( モジュールのタイプ スイッチング周波数 を容易に見つけられます SemiSel 4.0 は レベル設計と同様に便利な方法で 3 レベル C 回路の計算が出来る様に拡張されました / 3

12 使用されている記号と用語 記号 用語 L レベル 3L 3 レベル CD クランプダイオード cos j 力率 CS IGBT のコレクターセンス DC 電源の正の電位 ( 端子 DC 電源の負の電位 ( 端子 di/dt Rate of rise and fall of current E 電気的エネルギー E SW f SW FWD L R GB G I ターンオン及びターンオフ時間に発生するエネルギーの合計スイッチング周波数フリーホイールダイオードシングルスイッチチョッパー ボトム側 IGBT チョッパー トップ側 IGBT ハーフブリッジ非線形半導体特性に適用する係数 GM 逆直列スイッチ ハーフブリッジ (IGBT 及び逆並列ダイオード i 時間に対する電流値 Î ピーク電流値 I C,OM IGBT I peak I I RMS j K L S M C TC SW TC Q r CE 標準コレクター電流絶縁ゲート型バイポーラートランジスタピーク電流値スイッチング損失測定の基準電流値 端子電流導通角スイッチング損失の電流依存に対する指数スイッチング損失の電圧依存に対する指数寄生インダクタンス / 浮遊インダクタンス変調率 DC 電源の中性点 ( 端子 : と 間の中間点クランプされた中性点負の温度係数を有する温度センサー有効電力導通損失スイッチング損失正の温度係数を有する温度センサー無効電力オン状態傾斜抵抗 (IGBT r f 順特性傾斜抵抗 ( ダイオード RMS 二乗平均平方根 R th S t THD T j TC TS 熱抵抗皮相電力時間全高調波歪み接合温度 T タイプのクランプされた中性点過渡電圧抑制ダイオード電圧コレクタ エミッタ間供給電圧 / 3

13 CE ce0 コレクタ エミッタ間電圧順方向閾値電圧 (IGBT f0 コレクタ エミッタ間閾値電圧 ( ダイオード CEsat DC RMS コレクタ エミッタ間飽和電圧全供給電圧 (- スイッチング損失測定の基準電圧値 端子電圧 参考文献 [] [] A. Wintrich, U. icolai, W. Tursky, T. Reimann, Application Manual ower Semiuctors, ISLE erlag 0, ISB [3] J. Lamp, "IGBT eak oltage Measurement and Snubber Capacitor Specification", Application ote A-7006, SEMIKRO [4] I. Staudt et al, umerical loss calculation and simulation tool for 3L C converter design, CIM uremberg, 0 [5] M. Sprenger et al, Characterization of a new.k IGBT 3L-C phase-leg module for low voltage applications, EE 0 免責事項 セミクロンは信頼性 機能や設計改善の為 予告なしに本資料を変更する権利を有します 本資料で提供される情報は正確で信頼出来るものです しかしながら 保証するものではなく 情報の正確さや使用に関し責任を負いません セミクロンはアプリケーション 又は本資料中の製品や回路から生じる責任を負いません さらに この技術資料は素子の特性を保証するものではありません 納入 性能や適合性について保証 又は意味するものではありません 本資料は以前に提供された情報の全てに優先し 置換えます 又 予告なしに更新する事があります セミクロン製品の生命維持装置及びシステムへの使用は セミクロンの承認文書なしでは認可されません. SEMIKRO ITERATIOAL GmbH.O. Box ürnberg Deutschland Tel: Fax: sales.skd@semikron.com 3 / 3

RMS(Root Mean Square value 実効値 ) 実効値は AC の電圧と電流両方の値を規定する 最も一般的で便利な値です AC 波形の実効値はその波形から得られる パワーのレベルを示すものであり AC 信号の最も重要な属性となります 実効値の計算は AC の電流波形と それによって

RMS(Root Mean Square value 実効値 ) 実効値は AC の電圧と電流両方の値を規定する 最も一般的で便利な値です AC 波形の実効値はその波形から得られる パワーのレベルを示すものであり AC 信号の最も重要な属性となります 実効値の計算は AC の電流波形と それによって 入門書 最近の数多くの AC 電源アプリケーションに伴う複雑な電流 / 電圧波形のため さまざまな測定上の課題が発生しています このような問題に対処する場合 基本的な測定 使用される用語 それらの関係について理解することが重要になります このアプリケーションノートではパワー測定の基本的な考え方やパワー測定において重要な 以下の用語の明確に定義します RMS(Root Mean Square value

More information

<1>

<1> アプリケーション ノート :AN-941 パワー MOSFET の並列接続 目次ページ 要約 :... 1 概要... 2 回路レイアウトによるアンバランス... 2 ゲート発振... 4 定常状態動作における電流アンバランス... 5 ターン オン時の動的シェアリング... 5 ターン オフ時の動的シェアリング... 8 まとめ... 10 付録 - 定常状態時のアンバランスの分析... 11 要約

More information

Microsoft PowerPoint - ›žŠpfidŠÍŁÏ−·“H−w5›ñŒÚ.ppt

Microsoft PowerPoint - ›žŠpfidŠÍŁÏ−·“H−w5›ñŒÚ.ppt 応用電力変換工学舟木剛 第 5 回本日のテーマ交流 - 直流変換半端整流回路 平成 6 年 月 7 日 整流器 (cfr) とは 交流を直流に変換する 半波整流器は 交直変換半波整流回路 小電力用途 入力電源側の平均電流が零にならない あんまり使われていない 全波整流回路の基本回路 変圧器が直流偏磁しやすい 変圧器の負荷電流に直流分を含むと その直流分により 鉄心が一方向に磁化する これにより 鉄心の磁束密度の増大

More information

降圧コンバータIC のスナバ回路 : パワーマネジメント

降圧コンバータIC のスナバ回路 : パワーマネジメント スイッチングレギュレータシリーズ 降圧コンバータ IC では スイッチノードで多くの高周波ノイズが発生します これらの高調波ノイズを除去する手段の一つとしてスナバ回路があります このアプリケーションノートでは RC スナバ回路の設定方法について説明しています RC スナバ回路 スイッチングの 1 サイクルで合計 の損失が抵抗で発生し スイッチングの回数だけ損失が発生するので 発生する損失は となります

More information

Microsoft PowerPoint - 2章(和訳ver)_15A版_rev.1.1.ppt

Microsoft PowerPoint - 2章(和訳ver)_15A版_rev.1.1.ppt 第 2 章 端子記号 用語の説明 内容 ページ 1. 端子記号の説明. 2-2 2. 用語の説明 2-3 2-1 1. 端子記号の説明 表 2-1と表 2-2はそれぞれ端子記号と定義について説明しています 表 2-1 端子記号の説明 端子番号 端子名 端子説明 3 VB(U) ハイサイド駆動電源電圧端子 ( 上アームU 相 IGBT 駆動 ) 5 VB(V) ハイサイド駆動電源電圧端子 ( 上アームV

More information

Microsoft Word - TC4011BP_BF_BFT_J_P8_060601_.doc

Microsoft Word - TC4011BP_BF_BFT_J_P8_060601_.doc 東芝 CMOS デジタル集積回路シリコンモノリシック TC4011BP,TC4011BF,TC4011BFT TC4011BP/TC4011BF/TC4011BFT Quad 2 Input NAND Gate は 2 入力の正論理 NAND ゲートです これらのゲートの出力は すべてインバータによるバッファが付加されているため 入出力特性が改善され 負荷容量の増加による伝達時間の変動が最小限に抑えられます

More information

第 5 章 推奨配線及びレイアウト 内容ページ 1. 応用回路例 プリント基板設計における推奨パターン及び注意点 Fuji Electric Co., Ltd. MT6M12343 Rev.1.0 Dec

第 5 章 推奨配線及びレイアウト 内容ページ 1. 応用回路例 プリント基板設計における推奨パターン及び注意点 Fuji Electric Co., Ltd. MT6M12343 Rev.1.0 Dec 第 5 章 推奨配線及びレイアウト 内容ページ 1. 応用回路例. 5-2 2. プリント基板設計における推奨パターン及び注意点.. 5-5 5-1 1. 応用回路例 この章では 推奨配線とレイアウトについて説明しています プリント基板設計時におけるヒントと注意事項については 以下の応用回路例をご参照下さい 図.5-1 と図.5-2 には それぞれ 2 種類の電流検出方法での応用回路例を示しており

More information

絶対最大定格 (T a =25 ) 項目記号定格単位 入力電圧 V IN 消費電力 P D (7805~7810) 35 (7812~7815) 35 (7818~7824) 40 TO-220F 16(T C 70 ) TO (T C 25 ) 1(Ta=25 ) V W 接合部温度

絶対最大定格 (T a =25 ) 項目記号定格単位 入力電圧 V IN 消費電力 P D (7805~7810) 35 (7812~7815) 35 (7818~7824) 40 TO-220F 16(T C 70 ) TO (T C 25 ) 1(Ta=25 ) V W 接合部温度 3 端子正定電圧電源 概要 NJM7800 シリーズは, シリーズレギュレータ回路を,I チップ上に集積した正出力 3 端子レギュレータ ICです 放熱板を付けることにより,1A 以上の出力電流にて使用可能です 外形 特徴 過電流保護回路内蔵 サーマルシャットダウン内蔵 高リップルリジェクション 高出力電流 (1.5A max.) バイポーラ構造 外形 TO-220F, TO-252 NJM7800FA

More information

NJM78L00 3 端子正定電圧電源 概要高利得誤差増幅器, 温度補償回路, 定電圧ダイオードなどにより構成され, さらに内部に電流制限回路, 熱暴走に対する保護回路を有する, 高性能安定化電源用素子で, ツェナーダイオード / 抵抗の組合せ回路に比べ出力インピーダンスが改良され, 無効電流が小さ

NJM78L00 3 端子正定電圧電源 概要高利得誤差増幅器, 温度補償回路, 定電圧ダイオードなどにより構成され, さらに内部に電流制限回路, 熱暴走に対する保護回路を有する, 高性能安定化電源用素子で, ツェナーダイオード / 抵抗の組合せ回路に比べ出力インピーダンスが改良され, 無効電流が小さ 3 端子正定電圧電源 概要高利得誤差増幅器, 温度補償回路, 定電圧ダイオードなどにより構成され, さらに内部に電流制限回路, 熱暴走に対する保護回路を有する, 高性能安定化電源用素子で, ツェナーダイオード / 抵抗の組合せ回路に比べ出力インピーダンスが改良され, 無効電流が小さくなり, さらに雑音特性も改良されています 外形 UA EA (5V,9V,12V のみ ) 特徴 過電流保護回路内蔵

More information

PM300DV1A120

PM300DV1A120 特長 1 第 5 世代フルゲートタイプ CSTBT TM 搭載 3 CSTBT TM のチップ表面温度を検出する過熱保護を採用 IPM の各保護 ( 短絡 過熱 制御電源電圧低下 ) において上下アームからエラー信号出力可能 4 シリーズとのパッケージ互換 IGBT ゲート駆動回路内蔵 短絡 過熱及び制御電源電圧低下の検知 保護 エラー信号出力機能搭載 用途 インバーター サーボ等モータ制御 外形図

More information

第6世代 IGBTモジュール Sシリーズ MPDタイプ CM100DUC-34SA

第6世代 IGBTモジュール Sシリーズ MPDタイプ CM100DUC-34SA 2 素子入り用途インバータ装置, サーボアンプ, 電源装置など外形及び接続図 コレクタ電流 I C... 1 A コレクタ エミッタ間電圧 CES... 1 7 最大接合温度 T jmax... 1 7 5 C フラットベース形 銅ベース板 ( めっきレス ) RoHS 指令対応 UL Recognized under UL1557, File E323585 単位 :mm Tolerance oherwise

More information

TA78L05,06,07,08,09,10,12,15,18,20,24F

TA78L05,06,07,08,09,10,12,15,18,20,24F 東芝バイポーラ形リニア集積回路シリコンモノリシック TA78L05F,TA78L06F,TA78L07F,TA78L08F,TA78L09F,TA78L10F, TA78L12F,TA78L15F,TA78L18F,TA78L20F,TA78L24F 5, 6, 7, 8, 9, 10, 12, 15, 18, 20, 24 3 端子正出力固定定電圧電源 特長 TTL, CMOS の電源に最適です

More information

PM800DV1B060

PM800DV1B060 特長 1 第 5 世代フルゲートタイプ CSTBT TM 搭載 2 CSTBT TM のチップ表面温度を検出する過熱保護を採用 3 IPM の各保護 ( 短絡 過熱 制御電源電圧低下 ) において上下アームからエラー信号出力可能 4 V シリーズのパッケージ互換 IGBT ゲート駆動回路内蔵 短絡 過熱及び制御電源電圧低下の検知 保護 エラー信号出力機能搭載 用途インバーター サーボ等モータ制御外形図

More information

600 V系スーパージャンクション パワーMOSFET TO-247-4Lパッケージのシミュレーションによる解析

600 V系スーパージャンクション パワーMOSFET TO-247-4Lパッケージのシミュレーションによる解析 [17.7 White Paper] 6 V 系スーパージャンクションパワー MOSFET TO-247-4L パッケージのシミュレーションによる解析 MOSFET チップの高速スイッチング性能をより引き出すことができる 4 ピン新パッケージ TO-247-4L 背景 耐圧が 6V 以上の High Voltage(HV) パワー半導体ではオン抵抗と耐圧のトレードオフの改善を行うためスーパージャンクション

More information

TTD1415B_J_

TTD1415B_J_ バイポーラトランジスタ シリコン NPN 三重拡散形 1. 用途 大電力スイッチング用 ハンマードライブ用 2. 特長 (1) 直流電流増幅率が高い : h FE = 2000 ( 最小 ) (V CE = 3 V, I C = 3 A) (2) コレクタエミッタ間飽和電圧が低い : V CE(sat) = 1.5 V ( 最大 ) (I C = 3 A, I B = 6 ma) (3) TTB1020Bとコンプリメンタリ

More information

Microsoft Word - Cover_Story_Optimized Inverter Systems_JP

Microsoft Word - Cover_Story_Optimized Inverter Systems_JP SCALE -2 IGBT ゲートドライバにより最適化された再生可能インバータシステムの設計が容易になる CONCEPT 社の SCALE -2 プラグアンドプレイゲートドライバの 1 つである新型 2SP0325 IGBT ゲートドライバ これにより Mitsubishi 社製の新しい Mega Power Dual IGBT モジュールが 太陽光発電及び風力発電の用途で効率的に駆動するようになります

More information

三端子レギュレータについて 1. 保護回路 (1) 正電圧三端子レギュレータ ( 図 1) (1-1) サーマルシャットダウン回路サーマルシャットダウン回路は チップの接合温度が異常に上昇 (T j =150~200 ) した時 出力電圧を遮断し温度を安全なレベルまで下げる回路です Q 4 は常温で

三端子レギュレータについて 1. 保護回路 (1) 正電圧三端子レギュレータ ( 図 1) (1-1) サーマルシャットダウン回路サーマルシャットダウン回路は チップの接合温度が異常に上昇 (T j =150~200 ) した時 出力電圧を遮断し温度を安全なレベルまで下げる回路です Q 4 は常温で 1. 保護回路 (1) 正電圧三端子レギュレータ ( 図 1) (1-1) サーマルシャットダウン回路サーマルシャットダウン回路は チップの接合温度が異常に上昇 (T j =150~200 ) した時 出力電圧を遮断し温度を安全なレベルまで下げる回路です Q 4 は常温では ON しない程度にバイアスされており 温度上昇による V BE の減少により高温時に Q 4 が ON し Q 6 のベース電流を抜き去り

More information

TLP521-1,TLP521-2,TLP521-4 東芝フォトカプラ赤外 LED + フォトトランジスタ TLP521-1,TLP521-2,TLP521-4 電子計算機の I / O インタフェース システム機器や計測器のノイズカット 各種コントローラ 複写機 自動販売機 電位が異なる回路間の信

TLP521-1,TLP521-2,TLP521-4 東芝フォトカプラ赤外 LED + フォトトランジスタ TLP521-1,TLP521-2,TLP521-4 電子計算機の I / O インタフェース システム機器や計測器のノイズカット 各種コントローラ 複写機 自動販売機 電位が異なる回路間の信 東芝フォトカプラ赤外 LED + フォトトランジスタ 電子計算機の I / O インタフェース システム機器や計測器のノイズカット 各種コントローラ 複写機 自動販売機 電位が異なる回路間の信号伝達 単位 : mm TLP521 シリーズは GaAs 赤外 LED とシリコンフォトトランジスタを組 み合わせた高密度実装タイプのフォトカプラです TLP521 1 DIP 4 ピン 1 回路 TLP521

More information

NJM78L00S 3 端子正定電圧電源 概要 NJM78L00S は Io=100mA の 3 端子正定電圧電源です 既存の NJM78L00 と比較し 出力電圧精度の向上 動作温度範囲の拡大 セラミックコンデンサ対応および 3.3V の出力電圧もラインアップしました 外形図 特長 出力電流 10

NJM78L00S 3 端子正定電圧電源 概要 NJM78L00S は Io=100mA の 3 端子正定電圧電源です 既存の NJM78L00 と比較し 出力電圧精度の向上 動作温度範囲の拡大 セラミックコンデンサ対応および 3.3V の出力電圧もラインアップしました 外形図 特長 出力電流 10 端子正定電圧電源 概要 は Io=mA の 端子正定電圧電源です 既存の NJM78L と比較し 出力電圧精度の向上 動作温度範囲の拡大 セラミックコンデンサ対応および.V の出力電圧もラインアップしました 外形図 特長 出力電流 ma max. 出力電圧精度 V O ±.% 高リップルリジェクション セラミックコンデンサ対応 過電流保護機能内蔵 サーマルシャットダウン回路内蔵 電圧ランク V,.V,

More information

NJM78M00 3 端子正定電圧電源 概要 NJM78M00 シリーズは,NJM78L00 シリーズを更に高性能化した安定化電源用 ICです 出力電流が 500mA と大きいので, 余裕ある回路設計が可能になります 用途はテレビ, ステレオ, 等の民生用機器から通信機, 測定器等の工業用電子機器迄

NJM78M00 3 端子正定電圧電源 概要 NJM78M00 シリーズは,NJM78L00 シリーズを更に高性能化した安定化電源用 ICです 出力電流が 500mA と大きいので, 余裕ある回路設計が可能になります 用途はテレビ, ステレオ, 等の民生用機器から通信機, 測定器等の工業用電子機器迄 3 端子正定電圧電源 概要 シリーズは,NJM78L00 シリーズを更に高性能化した安定化電源用 ICです 出力電流が 500mA と大きいので, 余裕ある回路設計が可能になります 用途はテレビ, ステレオ, 等の民生用機器から通信機, 測定器等の工業用電子機器迄広くご利用頂けます 外形 特徴 過電流保護回路内蔵 サーマルシャットダウン内蔵 高リップルリジェクション 高出力電流 (500mA max.)

More information

Microsoft PowerPoint - m54583fp_j.ppt

Microsoft PowerPoint - m54583fp_j.ppt M8FP 8-UNIT ma DARLINGTON TRANSISTOR ARRAY 概要 M8FP は PNP トランジスタと NPN トランジスタで構成された 8 回路のコレクタ電流シンク形のダーリントントランジスタアレイであり 微小入力電流で大電流駆動のできる半導体集積回路です ピン接続図 ( 上面図 ) NC IN IN NC 9 O 8 O IN O 特長 高耐圧 (BCEO ) 大電流駆動

More information

Microsoft Word - f203f5da7f8dcb79bcf8f7b2efb0390d406bccf30303b doc

Microsoft Word - f203f5da7f8dcb79bcf8f7b2efb0390d406bccf30303b doc 東芝バイポーラ形リニア集積回路シリコンモノリシック TA,,5,3,33,5F/S TAF, TAF, TA5F, TA3F, TA33F, TA5F, TAS, TAS, TA5S, TA3S, TA33S, TA5S.,,.5, 3, 3.3, 5 A 三端子正出力ロードロップアウトレギュレータ TA**F/S シリーズは 出力段に -PNP トランジスタを使用した出力電流 A ( 最大 ) の固定正出力ロードロップアウトレギュレータです

More information

GT60PR21_J_

GT60PR21_J_ ディスクリート IGBT シリコン N チャネル IGBT 1. 用途 電圧共振インバータスイッチング専用 注意 : 本資料に掲載されている製品を上記以外の用途に使用しないでください 2. 特長 (1) 第 6.5 世代品 (2) RC 構造によるダイオード内蔵 (3) 取り扱いが簡単なエンハンスメントタイプ (4) スイッチング時間が速い : IGBT t f = 0.16 µs ( 標準 ) (I

More information

Microsoft Word - NJM7800_DSWJ.doc

Microsoft Word - NJM7800_DSWJ.doc 3 端子正定電圧電源 概要 シリーズは, シリーズレギュレータ回路を,I チップ上に集積した正出力 3 端子レギュレータ IC です 放熱板を付けることにより,1A 以上の出力電流にて使用可能です 外形 特徴 過電流保護回路内蔵 サーマルシャットダウン内蔵 高リップルリジェクション 高出力電流 (1.5A max.) バイポーラ構造 外形, FA 1. IN 2. GND 3. OUT DL1A 1.

More information

第5世代 IGBTモジュール stdタイプ CM100DY-34A

第5世代 IGBTモジュール stdタイプ CM100DY-34A 用途 2 素子入 インバータ装置, サーボアンプ, 電源装置など 外形及び接続図 コレクタ電流 I C... A コレクタ エミッタ間電圧 CES... 7 最大接合温度 T jmax... 5 C フラットベース形 銅ベース板 RoHS 指令対応 UL Recognized under UL557, File E323585 単位 :mm Tolerance oherwise

More information

2STB240PP(AM-2S-G-005)_02

2STB240PP(AM-2S-G-005)_02 項目記号定格単位 電源 1 印加電圧電源 2 印加電圧入力電圧 (1 8) 出力電圧 ( ) 出力電流 ( ) 許容損失動作周囲温度保存周囲温度 S CC I o Io Pd Topr Tstg 24.0 7.0 0.3 S+0.3 0.3 CC+0.3 0.7 +75 45 +5 (1)S= 系項目 記号 定格 単位 電源 1(I/F 入力側 ) 電源 2(I/F 出力側 ) I/F 入力負荷抵抗

More information

2SC5200N_J_

2SC5200N_J_ バイポーラトランジスタ シリコン NPN 三重拡散形 1. 用途 電力増幅用 2. 特長 (1) 高耐圧です : V CEO = 230 V ( 最小 ) (2) 2SA1943Nとコンプリメンタリになります (3) 100Wハイファイオーディオアンプ出力段に最適です 3. 外観と内部回路構成図 1. ベース 2. コレクタ ( 放熱板 ) 3. エミッタ TO-3P(N) 4. 絶対最大定格 (

More information

Microsoft PowerPoint - パワエレH20第4回.ppt

Microsoft PowerPoint - パワエレH20第4回.ppt パワーエレトクロニクス ( 舟木担当分 ) 第 4 回 サイリスタ変換器 ( 相ブリッジ ) 自励式変換器 平成 年 7 月 7 日月曜日 限目 位相制御単相全波整流回路 転流重なり角 これまでの解析は交流電源の内部インピーダンスを無視 考慮したらどうなるか? 電源インピーダンスを含まない回路図 点弧時に交流電流は瞬時に反転» 概念図 電源インピーダンスを含んだ回路図 点弧時に交流電流は瞬時に反転できない»

More information

Microsoft PowerPoint - m54562fp_j.ppt

Microsoft PowerPoint - m54562fp_j.ppt 8-UNIT DARLINGTON TRANSISTOR ARRAY WITH CLAMP DIODE 概要 は PNP トランジスタと NPN トランジスタで構成された 8 回路の出力ソース形ダーリントントランジスタアレイであり 微小入力電流で大電流駆動のできる半導体集積回路です ピン接続図 ( 上面図 ) NC IN NC 9 O IN 8 O 特長 高耐圧 (BCEO ) 大電流駆動 (IO(max)=

More information

Microsoft PowerPoint - H22パワエレ第3回.ppt

Microsoft PowerPoint - H22パワエレ第3回.ppt パワーエレトクロニクス ( 舟木担当分 ) 第三回サイリスタ位相制御回路逆変換動作 平成 年 月 日月曜日 限目 誘導負荷 位相制御単相全波整流回路 導通期間 ( 点弧角, 消弧角 β) ~β( 正の半波について ) ~ β( 負の半波について ) β> となる時に連続導通となる» この時, 正の半波の導通期間は~» ダイオードでは常に連続導通 連続導通と不連続導通の境界を求める オン状態の微分方程式

More information

Microsoft Word - TA79L05_06_08_09_10_12_15_18_20_24F_J_P11_070219_.doc

Microsoft Word - TA79L05_06_08_09_10_12_15_18_20_24F_J_P11_070219_.doc 東芝バイポーラ形リニア集積回路シリコンモノリシック TA79L05F,TA79L06F,TA79L08F,TA79L09F,TA79L10F, TA79L12F,TA79L15F,TA79L18F,TA79L20F,TA79L24F 5, 6, 8, 9, 10, 12, 15, 18, 20, 24 三端子負出力固定定電圧電源 特長 TTL C 2 MOS の電源に最適です 外付け部品は不要です

More information

2STB240AA(AM-2S-H-006)_01

2STB240AA(AM-2S-H-006)_01 項目記号定格単位 電源 1 印加電圧電源 2 印加電圧入力電圧 (A1 A2) 出力電圧 ( ) 出力電流 ( ) 許容損失動作周囲温度保存周囲温度 S CC I o Io Pd Topr Tstg 24.0.0 0.3 S+0.3 0.3 CC+0.3 10 0. 20 + 4 +12 (1)S=12 系項目 記号 定格 単位 電源 1(I/F 入力側 ) 電源 2(I/F 出力側 ) I/F 入力負荷抵抗

More information

TTD1409B_J_

TTD1409B_J_ バイポーラトランジスタ シリコン NPN 三重拡散形 1. 用途 高電圧スイッチング用 2. 特長 (1) 直流電流増幅率が高い : h FE = 600 ( 最小 ) (V CE = 2 V, I C = 2 A) (2) ベースエミッタ間に抵抗が内蔵されております 3. 外観と内部回路構成図 1. ベース 2. コレクタ 3. エミッタ TO-220SIS 4. 絶対最大定格 ( 注 ) ( 特に指定のない限り,

More information

スライド 1

スライド 1 アナログ検定 2014 1 アナログ検定 2014 出題意図 電子回路のアナログ的な振る舞いを原理原則に立ち返って解明できる能力 部品の特性や限界を踏まえた上で部品の性能を最大限に引き出せる能力 記憶した知識や計算でない アナログ技術を使いこなすための基本的な知識 知見 ( ナレッジ ) を問う問題 ボーデ線図などからシステムの特性を理解し 特性改善を行うための基本的な知識を問う問題 CAD や回路シミュレーションツールの限界を知った上で

More information

elm1117hh_jp.indd

elm1117hh_jp.indd 概要 ELM7HH は低ドロップアウト正電圧 (LDO) レギュレータで 固定出力電圧型 (ELM7HH-xx) と可変出力型 (ELM7HH) があります この IC は 過電流保護回路とサーマルシャットダウンを内蔵し 負荷電流が.0A 時のドロップアウト電圧は.V です 出力電圧は固定出力電圧型が.V.8V.5V.V 可変出力電圧型が.5V ~ 4.6V となります 特長 出力電圧 ( 固定 )

More information

untitled

untitled - 第 7 章 - ゲートドライブ回路設計方法 目次 ページ 1 ドライブ条件と主要特性の関係 7-2 2 ドライブ電流について 7-6 3 デッドタイムの設定 7-8 4 ドライブ回路の具体例 7-10 5 ドライブ回路設計 実装上の注意事項 7-11 本章では,IGBT モジュールのゲート駆動回路の設計手法について説明します 7-1 1 ドライブ条件と主要特性の関係 表 7-1 は IGBT のドライブ条件と主要特性の一般的な関係を示します

More information

Microsoft Word - サイリスタ設計

Microsoft Word - サイリスタ設計 サイリスタのゲート回路設計 サイリスタはパワエレ関係の最初に出てくる素子ですが その駆動用ゲート回路に関する文献が少なく 学 生が使いこなせないでいる ゲート回路の設計例 ( ノイズ対策済み ) をここに記しておく 基本的にサイリス タのゲート信号は電流で ON させるものです 1. ノイズ対策済みゲート回路基本回路の説明 図 1 ノイズ対策済みゲート回路基本回路 1.1 パルストランス パルストランスは

More information

TTB1067B_J_

TTB1067B_J_ バイポーラトランジスタシリコン PNP エピタキシャル形 ( ダーリントン接続 ) 1. 用途 マイクロモータドライブ用 ハンマードライブ用 スイッチング用 電力増幅用 2. 特長 (1) 直流電流増幅率が高い : h FE = 2000 ( 最小 ) (V CE = -2 V, I C = -1 A) (2) コレクタエミッタ間飽和電圧が低い :V CE(sat) = -1.5 V ( 最大 )

More information

MOSFET dv/dt 影響について Application Note MOSFET dv/dt 影響について 概要 MOSFET のドレイン - ソース間の dv / dt が大きいことが問題を引き起こすことがあります この現象の発生要因とその対策について説明します Tosh

MOSFET dv/dt 影響について Application Note MOSFET dv/dt 影響について 概要 MOSFET のドレイン - ソース間の dv / dt が大きいことが問題を引き起こすことがあります この現象の発生要因とその対策について説明します Tosh 概要 MOSFET のドレイン - ソース間の dv / d が大きいことが問題を引き起こすことがあります この現象の発生要因とその対策について説明します 1 目次 概要... 1 目次... 2 1. MOSFET の dv/d とは... 3 1.1. dv/d 発生のタイミング... 3 1.1.1. スイッチング過渡期の dv/d... 3 1.1.2. ダイオード逆回復動作時の dv/d...

More information

97-3j

97-3j DT INTERNATIONAL RECTIFIER APPLICATION ENG 233 KANSAS ST. EL SEGUNDO,CA.90245 TEL(310)322-3331 FAX(310)322-3332 97 3J 制御 I C によって駆動されるパワー段の過渡時の注意点 Chris Chey John Parry 訳 アイアールファーイースト株式会社 目次 ; 1. はじめに

More information

第6世代IGBTモジュール Sシリーズ stdタイプ CM800DY-24S

第6世代IGBTモジュール Sシリーズ stdタイプ CM800DY-24S コレクタ電流 I C... 7 9 A * コレクタ エミッタ間電圧 CES... 1 2 最大接合温度 T jmax... 1 7 5 C フラットベース形 銅ベース板 RoHS 指令準拠 UL Recognized under UL1557, File E323585 2 素子入 *. 直流コレクタ電流定格は, 主端子で制限されます. 用途 インバータ装置, サーボアンプ, 電源装置など 外形及び接続図

More information

TC4093BP/BF

TC4093BP/BF 東芝 CMOS デジタル集積回路シリコンモノリシック TC4093BP, TC4093BF TC4093BP/TC4093BF Quad 2-Input NAND Schmitt Triggers は 全入力端子にシュミットトリガ機能をもった 4 回路の 2 入力 NAND ゲートです すなわち 入力波形の立ち上がり時と立ち下がり時に回路しきい値電圧が異なる ( P N ) のため 通常の NAND

More information

THYRISTOR 100A Avg 800 Volts PGH101N8 回路図 CIRCUIT 外形寸法図 OUTLINE DRAWING Dimension:[mm] 総合定格 特性 Part of Diode Bridge & Thyristor 最大定格 Maximum Ratings 項

THYRISTOR 100A Avg 800 Volts PGH101N8 回路図 CIRCUIT 外形寸法図 OUTLINE DRAWING Dimension:[mm] 総合定格 特性 Part of Diode Bridge & Thyristor 最大定格 Maximum Ratings 項 THYRISTOR 100A Avg 800 Volts PGH101N8 回路図 CIRCUIT 外形寸法図 OUTLINE DRAWING Dimension:[mm] 総合定格 特性 Part of Diode Bridge & Thyristor 最大定格 Maximum Ratings 平均出力電流 Average RectifiedOutput Current 動作接合温度範囲 OperatingJunctionTemperature

More information

Microsoft PowerPoint - 集積回路工学(5)_ pptm

Microsoft PowerPoint - 集積回路工学(5)_ pptm 集積回路工学 東京工業大学大学院理工学研究科電子物理工学専攻 松澤昭 2009/0/4 集積回路工学 A.Matuzawa (5MOS 論理回路の電気特性とスケーリング則 資料は松澤研のホームページ htt://c.e.titech.ac.j にあります 2009/0/4 集積回路工学 A.Matuzawa 2 インバータ回路 このようなインバータ回路をシミュレーションした 2009/0/4 集積回路工学

More information

GT40QR21_J_

GT40QR21_J_ ディスクリート IGBT シリコン N チャネル IGBT 1. 用途 電圧共振インバータスイッチング専用 注意 : 本資料に掲載されている製品を上記以外の用途に使用しないでください 2. 特長 (1) 第 6.5 世代品 (2) RC 構造によるダイオード内蔵 (3) 取り扱いが簡単なエンハンスメントタイプ (4) スイッチング時間が速い IGBT : t f = 0.20 µs ( 標準 ) (I

More information

名称 型名 SiC ゲートドライバー SDM1810 仕様書 適用 本仕様書は SiC-MOSFET 一体取付形 2 回路ゲートドライバー SDM1810 について適用いたします 2. 概要本ドライバーは ROHM 社製 2ch 入り 180A/1200V クラス SiC-MOSFET

名称 型名 SiC ゲートドライバー SDM1810 仕様書 適用 本仕様書は SiC-MOSFET 一体取付形 2 回路ゲートドライバー SDM1810 について適用いたします 2. 概要本ドライバーは ROHM 社製 2ch 入り 180A/1200V クラス SiC-MOSFET 1 1. 適用 本は SiC-MOSFET 一体取付形 2 回路ゲートドライバー について適用いたします 2. 概要本ドライバーは ROHM 社製 2ch 入り 180A/1200V クラス SiC-MOSFET パワーモジュール BSM180D12P2C101 に直接実装できる形状で SiC-MOSFET のゲート駆動回路と DC-DC コンバータを 1 ユニット化したものです SiC-MOSFET

More information

hvigbt_ipm_daidevice_1610

hvigbt_ipm_daidevice_1610 作成 FG 4000 G X 90 D A µ µ µµ µµ 2 TYPE CM 1200 H A - 66 H NO. E964AA1-008 MITSUBISHI ELECTRIC CORPORATION JAPAN 3 4 5 6 7 µµ µ 8 9 p w w 10 t t p w w 11 t t 12 p w w 13 14 trr t Irr IE 0.5Irr 0 0 15 =

More information

THYRISTOR 100A Avg 800 Volts PGH100N8 回路図 CIRCUIT 外形寸法図 OUTLINE DRAWING Dimension:[mm] 総合定格 特性 Part of Diode Bridge & Thyristor 最大定格 Maximum Ratings 項

THYRISTOR 100A Avg 800 Volts PGH100N8 回路図 CIRCUIT 外形寸法図 OUTLINE DRAWING Dimension:[mm] 総合定格 特性 Part of Diode Bridge & Thyristor 最大定格 Maximum Ratings 項 THYRISTOR 100A Avg 800 Volts PGH100N8 回路図 CIRCUIT 外形寸法図 OUTLINE DRAWING Dimension:[mm] 総合定格 特性 Part of Diode Bridge & Thyristor 最大定格 Maximum Ratings 平均出力電流 Average RectifiedOutput Current 動作接合温度範囲 OperatingJunctionTemperature

More information

TTC004B_J_

TTC004B_J_ バイポーラトランジスタ シリコン NPN エピタキシャル形 1. 用途 オーディオアンプドライブ段増幅用 2. 特長 (1) 高耐圧です : V CEO = 160 V ( 最小 ) (2) TTA004Bとコンプリメンタリになります (3) コレクタ出力容量が小さい : C ob = 12 pf ( 標準 ) (4) トランジション周波数が高い : f T = 100 MHz ( 標準 ) 3.

More information

DF2B6.8FS_J_

DF2B6.8FS_J_ ESD 保護用ダイオード シリコンエピタキシャルプレーナ形 1. 用途 ESD 保護用 注意 : 本製品は ESD 保護用ダイオードであり, ESD 保護用以外の用途 ( 定電圧ダイオード用途を含むがこれに限らない ) には使用はできません 2. 外観と回路構成図 1: カソード 2: アノード fsc 3. 絶対最大定格 ( 注 ) ( 特に指定のない限り, T a = 25) 項目 記号 定格

More information

Microsoft PowerPoint - TLP184,185_TLP290,291 比較表 ppt

Microsoft PowerPoint - TLP184,185_TLP290,291 比較表 ppt TLP180/181 vs. TLP184/185 TLP280/281/284/285 vs. TLP290/291 比較表 フォトカプラ新 PKG SO6 内部構造 受光 IC( 出力 ) 2011 年 12 月東芝ディスクリートテクノロジー株式会社ディスクリート営業技術推進部 発光タ イオート ( 入力 ) Copyright 2011, Toshiba Corporation. 1 TLP180/181

More information

BD9328EFJ-LB_Application Information : パワーマネジメント

BD9328EFJ-LB_Application Information : パワーマネジメント DC/DC Converter Application Information IC Product Name BD9328EFJ-LB Topology Buck (Step-Down) Switching Regulator Type Non-Isolation Input Output 1 4.2V to 18V 1.0V, 2.0A 2 4.2V to 18V 1.2V, 2.0A 3 4.2V

More information

スライド 1

スライド 1 劣化診断技術 ビスキャスの開発した水トリー劣化診断技術について紹介します 劣化診断技術の必要性 電力ケーブルは 電力輸送という社会インフラの一端を担っており 絶縁破壊事故による電力輸送の停止は大きな影響を及ぼします 電力ケーブルが使用される環境は様々ですが 長期間 使用環境下において性能を満足する必要があります 電力ケーブルに用いられる絶縁体 (XLPE) は 使用環境にも異なりますが 経年により劣化し

More information

TC74HC14AP/AF

TC74HC14AP/AF 東芝 CMOS デジタル集積回路シリコンモノリシック TC74HC14AP,TC74HC14AF Hex Schmitt Inverter TC74HC14A は シリコンゲート CMOS 技術を用いた高速 CMOS シュミットトリガインバータです CMOS の特長である低い消費電力で LSTTL に匹敵する高速動作を実現できます ピン接続 機能は TC74HCU04 と同じですが すべての入力は約

More information

TC74HC00AP/AF

TC74HC00AP/AF 東芝 CMOS デジタル集積回路シリコンモノリシック TC74HC00AP,TC74HC00AF Quad 2-Input NAND Gate TC74HC00A は シリコンゲート CMOS 技術を用いた高速 CMOS 2 入力 NAND ゲートです CMOS の特長である低い消費電力で LSTTL に匹敵する高速動作を実現できます 内部回路はバッファ付きの 3 段構成であり 高い雑音余裕度と安定な出力が得られます

More information

Microsoft Word - TC4017BP_BF_J_P10_060601_.doc

Microsoft Word - TC4017BP_BF_J_P10_060601_.doc 東芝 CMOS デジタル集積回路シリコンモノリシック TC4017BP,TC4017BF TC4017BP/TC4017BF Decade Counter/Divider は ステージの D タイプ フリップフロップより成る 進ジョンソンカウンタで 出力を 進数に変換するためのデコーダを内蔵しています CLOCK あるいは CLOCK INHIBIT 入力に印加されたカウントパルスの数により Q0~Q9

More information

形式 :PDU 計装用プラグイン形変換器 M UNIT シリーズ パルス分周変換器 ( レンジ可変形 ) 主な機能と特長 パルス入力信号を分周 絶縁して単位パルス出力信号に変換 センサ用電源内蔵 パルス分周比は前面のスイッチで可変 出力は均等パルス オープンコレクタ 電圧パルス リレー接点パルス出力

形式 :PDU 計装用プラグイン形変換器 M UNIT シリーズ パルス分周変換器 ( レンジ可変形 ) 主な機能と特長 パルス入力信号を分周 絶縁して単位パルス出力信号に変換 センサ用電源内蔵 パルス分周比は前面のスイッチで可変 出力は均等パルス オープンコレクタ 電圧パルス リレー接点パルス出力 計装用プラグイン形変換器 M UNIT シリーズ パルス分周変換器 ( レンジ可変形 ) 主な機能と特長 パルス入力信号を分周 絶縁して単位パルス出力信号に変換 センサ用電源内蔵 パルス分周比は前面のスイッチで可変 出力は均等パルス オープンコレクタ 電圧パルス リレー接点パルス出力を用意 密着取付可能 アプリケーション例 容積式流量計のパルス信号を単位パルスに変換 機械の回転による無接点信号を単位パルスに変換

More information

EcoSystem 5 Series LED Driver Overview (369754)

EcoSystem 5 Series LED Driver Overview (369754) ED 調光ドライバ 5 シリーズ ED 調光ドライバ ( 日本仕様 ) 5% 調光 5 シリーズ ED 調光ドライバ ( 日本仕様 )( AC100/200V PSE) 369754b 1 05.13.14 5 シリーズ ED 調光ドライバはスムーズな連続調光 ( 出力電流 5% まで *) が可能で さまざまなスペースや用途に高性能の ED 調光を提供します 特長 フリッカーのない連続調光 (5%~100%)

More information

Microsoft PowerPoint pptx

Microsoft PowerPoint pptx 4.2 小信号パラメータ 1 電圧利得をどのように求めるか 電圧ー電流変換 入力信号の変化 dv BE I I e 1 v be の振幅から i b を求めるのは難しい? 電流増幅 電流ー電圧変換 di B di C h FE 電流と電圧の関係が指数関数になっているのが問題 (-RC), ただし RL がない場合 dv CE 出力信号の変化 2 pn 接合の非線形性への対処 I B 直流バイアスに対する抵抗

More information

NJM 端子負定電圧電源 概要 NJM7900 シリーズは, シリーズレギュレータ回路を 1 チップ上に集積した負出力 3 端子レギュレータ IC です 放熱板を付けることにより,1A 以上の出力電流にて使用可能です 用途はテレビ, ステレオ等の民生用機器から通信機, 測定器等の工業用電

NJM 端子負定電圧電源 概要 NJM7900 シリーズは, シリーズレギュレータ回路を 1 チップ上に集積した負出力 3 端子レギュレータ IC です 放熱板を付けることにより,1A 以上の出力電流にて使用可能です 用途はテレビ, ステレオ等の民生用機器から通信機, 測定器等の工業用電 3 端子負定電圧電源 概要 シリーズは, シリーズレギュレータ回路を 1 チップ上に集積した負出力 3 端子レギュレータ IC です 放熱板を付けることにより,1A 以上の出力電流にて使用可能です 用途はテレビ, ステレオ等の民生用機器から通信機, 測定器等の工業用電子機器迄広くご利用頂けます 外形 FA 1. COMMON 2. IN 3. OUT 特徴 過電流保護回路内蔵 サーマルシャットダウン内蔵

More information

Microsoft Word - TC4013BP_BF_J_P9_060601_.doc

Microsoft Word - TC4013BP_BF_J_P9_060601_.doc 東芝 CMOS デジタル集積回路シリコンモノリシック TC4013BP,TC4013BF TC4013BP/TC4013BF Dual D-Type Flip Flop は 2 回路の独立な D タイプ フリップフロップです DATA 入力に加えられた入力レベルはクロックパルスの立ち上がりで Q および Q 出力に伝送されます SET 入力を H RESET 入力を L にすると Q 出力は H Q

More information

Microsoft PowerPoint _DT_Power calculation method_Rev_0_0_J.pptx

Microsoft PowerPoint _DT_Power calculation method_Rev_0_0_J.pptx Fuji Power MOSFE 電力計算方法 Design ool Cher. 概要 MOSFE を使用する上で許容される損失を超えていないか確認する必要があります しかし MOSFE の損失は電力計などによる測定ができないため オシロスコープなどによりドレイン ソース間電圧 ドレイン電流 D 波形から計算しなくてはなりません 本資料では MOSFE の損失計算方法を提示します また付属として損失計算補助ツールの使用方法も併せて提示します

More information

DMシリーズセンダスト (Fe-Si-Al) コイルの許容両端電圧 :V D はんだ処理部最大外径 :D( 縦方向 ),( 横方向 ) 最大幅 : リード全長 :=± はんだ処理境界 :=.MAX コイル品番 HDM24AQDVE 定格電流インダクタンス (khz ) 最大直流抵抗巻線仕様外形寸法

DMシリーズセンダスト (Fe-Si-Al) コイルの許容両端電圧 :V D はんだ処理部最大外径 :D( 縦方向 ),( 横方向 ) 最大幅 : リード全長 :=± はんだ処理境界 :=.MAX コイル品番 HDM24AQDVE 定格電流インダクタンス (khz ) 最大直流抵抗巻線仕様外形寸法 DM シリーズ 主な用途 スイッチング電源出力平滑用チョーク DC-DC コンバータ用チョーク ノイズ対策用ノーマルモードチョーク 力率改善回路用チョーク 特長 周波数特性 温度特性に優れています フェライトに比べて 飽和磁束密度が高いため 直流重畳特性が良く 小形化できます コアの電流重畳特性 () 9 8 コアの電流重畳特性 (2) 9 8 Percent permebility [%] 7 6

More information

形式 :WYPD 絶縁 2 出力計装用変換器 W UNIT シリーズ パルスアイソレータ ( センサ用電源付 2 出力形 ) 主な機能と特長 パルス入力信号を絶縁して各種のパルス出力信号に変換 オープンコレクタ 電圧パルス リレー接点パルス出力を用意 センサ用電源内蔵 耐電圧 2000V AC 密着

形式 :WYPD 絶縁 2 出力計装用変換器 W UNIT シリーズ パルスアイソレータ ( センサ用電源付 2 出力形 ) 主な機能と特長 パルス入力信号を絶縁して各種のパルス出力信号に変換 オープンコレクタ 電圧パルス リレー接点パルス出力を用意 センサ用電源内蔵 耐電圧 2000V AC 密着 絶縁 2 出力計装用変換器 W UNIT シリーズ パルスアイソレータ ( センサ用電源付 2 出力形 ) 主な機能と特長 パルス入力信号を絶縁して各種のパルス出力信号に変換 オープンコレクタ 電圧パルス リレー接点パルス出力を用意 センサ用電源内蔵 耐電圧 2000V AC 密着取付可能 アプリケーション例 フィールド側のパルス信号を直流的に絶縁してノイズ対策を行う パルス出力の種類を変換 ( 例

More information

The DatasheetArchive - Datasheet Search Engine

The DatasheetArchive - Datasheet Search Engine 東芝 CMOS デジタル集積回路シリコンモノリシック TC4069UBP,TC4069UBF,TC4069UBFT TC4069UBP/TC4069UBF/TC4069UBFT Hex Inverter は 6 回路のインバータです 内部回路はシンプルな 1 段ゲート構成のため 本来のインバータの他に CR 発振回路 / 水晶発振回路 / リニアアンプ等の応用に適しています 1 段ゲート構成のため

More information

Microsoft PowerPoint - 集積デバイス工学7.ppt

Microsoft PowerPoint - 集積デバイス工学7.ppt 集積デバイス工学 (7 問題 追加課題 下のトランジスタが O する電圧範囲を求めよただし T, T - とする >6 問題 P 型 MOS トランジスタについて 正孔の実効移動度 μ.7[m/ s], ゲート長.[μm], ゲート幅 [μm] しきい値電圧 -., 単位面積あたりの酸化膜容量

More information

暫定資料 東芝フォトカプラ GaAlAs LED + フォト IC TLP250 TLP250 汎用インバータ エアコン用インバータ パワー MOS FET のゲートドライブ IGBT のゲートドライブ 単位 : mm TLP250 は GaAlAs 赤外発光ダイオードと 高利得 高速の集積回路受光

暫定資料 東芝フォトカプラ GaAlAs LED + フォト IC TLP250 TLP250 汎用インバータ エアコン用インバータ パワー MOS FET のゲートドライブ IGBT のゲートドライブ 単位 : mm TLP250 は GaAlAs 赤外発光ダイオードと 高利得 高速の集積回路受光 暫定資料 東芝フォトカプラ GaAlAs LED + フォト IC 汎用インバータ エアコン用インバータ パワー MOS FET のゲートドライブ IGBT のゲートドライブ 単位 : mm は GaAlAs 赤外発光ダイオードと 高利得 高速の集積回路受光チップを組み合せた 8PIN DIP のフォトカプラです は IGBT およびパワー MOS FET のゲート駆動用に適しています 入力しきい値電流

More information

スライド 1

スライド 1 パワーエレクトロニクス工学論 10. 各種シングル インダクタデュアル アウトプット (SIDO) 電源 10-1 降圧形 昇圧形 SIDO 電源 10-2 リプル制御 SIDO 電源 10-3 ZVS-PWM 制御 SIDO 電源 10-4 ソフトスイッチングSIDO 電源 SIDO: Single Inductor Dual Output 10-1 10.1 降圧形 昇圧形 SIDO 電源 (1)

More information

ACモーター入門編 サンプルテキスト

ACモーター入門編 サンプルテキスト 技術セミナーテキスト AC モーター入門編 目次 1 AC モーターの位置付けと特徴 2 1-1 AC モーターの位置付け 1-2 AC モーターの特徴 2 AC モーターの基礎 6 2-1 構造 2-2 動作原理 2-3 特性と仕様の見方 2-4 ギヤヘッドの役割 2-5 ギヤヘッドの仕様 2-6 ギヤヘッドの種類 2-7 代表的な AC モーター 3 温度上昇と寿命 32 3-1 温度上昇の考え方

More information

Microsoft PowerPoint pptx

Microsoft PowerPoint pptx 3.2 スイッチングの方法 1 電源の回路図表記 電源ラインの記号 GND ラインの記号 シミュレーションしない場合は 省略してよい ポイント : 実際には V CC と GND 配線が必要だが 線を描かないですっきりした表記にする 複数の電源電圧を使用する回路もあるので 電源ラインには V CC などのラベルを付ける 2 LED のスイッチング回路 LED の明るさを MCU( マイコン ) で制御する回路

More information

第5世代IGBTモジュール NXシリーズ CM100RX-12A

第5世代IGBTモジュール NXシリーズ CM100RX-12A 用途 7 素子入 インバータ装置, サーボアンプ, 電源装置など 外形及び接続図 コレクタ電流... 1 0 0 A コレクタ エミッタ間電圧 CES... 6 0 0 最大接合温度 T jmax... 1 5 0 C フラットベース形 銅ベース板 ( めっきレス ) RoHS 指令対応 UL Recognized under UL1557, File E3285 :mm TERMINAL =0.8

More information

DF2B29FU_J_

DF2B29FU_J_ ESD 保護用ダイオード シリコンエピタキシャルプレーナ形 1. 用途 ESD 保護用 注意 : 本製品は ESD 保護用ダイオードであり, ESD 保護用以外の用途 ( 定電圧ダイオード用途を含むがこれに限らない ) には使用はできません 2. 特長 (1) AEC-Q101 適合 ( 注 1) 注 1: 詳細については弊社営業窓口へお問合せ下さい 3. 外観と回路構成図 1: Pin 1 2:

More information

フロントエンド IC 付光センサ S CR S CR 各種光量の検出に適した小型 APD Si APD とプリアンプを一体化した小型光デバイスです 外乱光の影響を低減するための DC フィードバック回路を内蔵していま す また 優れたノイズ特性 周波数特性を実現しています

フロントエンド IC 付光センサ S CR S CR 各種光量の検出に適した小型 APD Si APD とプリアンプを一体化した小型光デバイスです 外乱光の影響を低減するための DC フィードバック回路を内蔵していま す また 優れたノイズ特性 周波数特性を実現しています 各種光量の検出に適した小型 APD Si APD とプリアンプを一体化した小型光デバイスです 外乱光の影響を低減するための DC フィードバック回路を内蔵していま す また 優れたノイズ特性 周波数特性を実現しています なお 本製品の評価キットを用意しています 詳細については 当社 営業までお問い合わせください 特長 高速応答 増倍率 2 段階切替機能 (Low ゲイン : シングル出力, High

More information

TLP421

TLP421 東芝フォトカプラ赤外 LED + フォトトランジスタ 事務機器 家庭内機器 ソリッドステートリレー スイッチング電源 各種コントローラ 電位が異なる回路間の信号伝達 単位 : mm は GaAs 赤外 LED とシリコンフォトトランジスタを組み合わせた 4pinDIP のフォトカプラで高絶縁耐圧 ( 交流 5 kv RMS min) を備えています コレクタ エミッタ間電圧 : 80 V ( 最小

More information

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 となるように半固定抵抗器を調整する ( ゼロ点調整のため ) 図 1 非反転増幅器 2010 年度版物理工学実験法

More information

出力電圧ランク 品名 出力電圧 品名 出力電圧 品名 出力電圧 NJU774*F15 1.5V NJU774*F28 2.8V NJU774*F4 4.V NJU774*F18 1.8V NJU774*F29 2.9V NJU774*F45 4.5V NJU774*F19 1.9V NJU774*F

出力電圧ランク 品名 出力電圧 品名 出力電圧 品名 出力電圧 NJU774*F15 1.5V NJU774*F28 2.8V NJU774*F4 4.V NJU774*F18 1.8V NJU774*F29 2.9V NJU774*F45 4.5V NJU774*F19 1.9V NJU774*F 低飽和型レギュレータ 概要 NJU7741/44 はC-MOS プロセスを使用し 超低消費電流を実現した低飽和型レギュレータです SOT-23-5 の小型パッケージに搭載し 出力電流 1mA 小型.1 Fセラミックコンデンサ対応の為 携帯機器の応用に最適です また NJU7744 には出力シャントスイッチが付いているため 端子の使用時における出力応答の高速化が可能となっております 外形 NJU7741/44F

More information

DF10G5M4N_J_

DF10G5M4N_J_ ESD 保護用ダイオード シリコンエピタキシャルプレーナ形 1. 用途 ESD 保護用 注意 : 本製品は ESD 保護用ダイオードであり, ESD 保護用以外の用途 ( 定電圧ダイオード用途を含むがこれに限らない ) には使用はできません 2. 外観と内部回路構成図 1 : I/O 1 2 : I/O 2 3 : GND 4 : I/O 3 5 : I/O 4 6 : NC 7 : NC 8 :

More information

社外Web版an_oscillation_parallel_mosfet_ 和文

社外Web版an_oscillation_parallel_mosfet_ 和文 MOSFET 並列接続 ( ) 概要 本資料はパワー MOSFET の並列接続における発振現象と対策について述べたものです 目次 概要... 1 目次... 2 MOSFET の並列動作について... 3 素子特性バラツキによる電流バラツキ ( 並列動作 )... 3 定常状態動作時の電流アンバランス... 3 スイッチング過渡期における電流アンバランス... 3 寄生発振 ( 並列動作 )...

More information

等価回路図 絶対最大定格 (T a = 25ºC) 項目記号定格単位 入力電圧 1 V IN 15 V 入力電圧 2 V STB GND-0.3~V IN+0.3 V 出力電圧 V GND-0.3~V IN+0.3 V 出力電流 I 120 ma 許容損失 P D 200 mw 動作温度範囲 T o

等価回路図 絶対最大定格 (T a = 25ºC) 項目記号定格単位 入力電圧 1 V IN 15 V 入力電圧 2 V STB GND-0.3~V IN+0.3 V 出力電圧 V GND-0.3~V IN+0.3 V 出力電流 I 120 ma 許容損失 P D 200 mw 動作温度範囲 T o 小型スタンバイ機能付高精度正電圧レギュレータ 概要 NJU7241 シリーズは, 出力電圧精度 ±2% を実現したスタンバイ機能付の低消費電流正電圧レギュレータ IC で, 高精度基準電圧源, 誤差増幅器, 制御トランジスタ, 出力電圧設定用抵抗及び短絡保護回路等で構成されています 出力電圧は内部で固定されており, 下記バージョンがあります また, 小型パッケージに搭載され, 高出力でありながらリップル除去比が高く,

More information

TA78L005,006,007,075,008,009,10,12,132,15,18,20,24AP

TA78L005,006,007,075,008,009,10,12,132,15,18,20,24AP 東芝バイポーラ形リニア集積回路シリコンモノリシック TA78L005AP,TA78L006AP,TA78L007AP,TA78L075AP,TA78L008AP, TA78L009AP,TA78L010AP,TA78L012AP,TA78L132AP,TA78L015AP, TA78L018AP,TA78L020AP,TA78L024AP 5, 6, 7, 7.5, 8, 9, 10, 12, 13.2,

More information

Microsoft Word - TC4538BP_BF_J_2002_040917_.doc

Microsoft Word - TC4538BP_BF_J_2002_040917_.doc 東芝 CMOS デジタル集積回路シリコンモノリシック TC438BP,TC438BF TC438BP/TC438BF Dual Precision Retriggerable/Resettable Monostable Multivibrator は リトリガ動作 リセット動作の可能な単安定マルチバイブレータでトリガは A B 2 つの入力により立ち上がり および立ち下がりのどちらでも行うこともできます

More information

Microsoft PowerPoint - H30パワエレ-3回.pptx

Microsoft PowerPoint - H30パワエレ-3回.pptx パワーエレクトロニクス 第三回パワー半導体デバイス 平成 30 年 4 月 25 日 授業の予定 シラバスより パワーエレクトロニクス緒論 パワーエレクトロニクスにおける基礎理論 パワー半導体デバイス (2 回 ) 整流回路 (2 回 ) 整流回路の交流側特性と他励式インバータ 交流電力制御とサイクロコンバータ 直流チョッパ DC-DC コンバータと共振形コンバータ 自励式インバータ (2 回 )

More information

第6世代IGBTモジュール Sシリーズ NXタイプ CM100MXA-24S

第6世代IGBTモジュール Sシリーズ NXタイプ CM100MXA-24S CIB (Converter+Inverter+Chopper Brake) 用途インバータ装置, サーボアンプ, 電源装置など 外形及び接続図 コレクタ電流 I C... A コレクタ エミッタ間電圧 CES... 2 最大接合温度 T jmax... 75 C フラットベース形 銅ベース板 スズメッキピン端子 RoHS 指令対応 UL Recognized under UL557, File E323585

More information

B3.並列運転と冗長運転(PBAシリーズ)

B3.並列運転と冗長運転(PBAシリーズ) B3. 並列運転と冗長運転について 3.1 並列運転 ( 容量アップ ) PBA(PBA300F~PBA1500F(T)) シリーズにつきまして 並列運転をすることが可能です 1 並列運転とはの容量不足を補うために複数のを並列接続し 電流容量を増加させる方法です 2 PBA10F~PBA150F のモデルにつきまして 並列運転はできません 冗長運転のみ対応ができます ( 項 3.2 参照 ) 図 3.1.1

More information

回路シミュレーションに必要な電子部品の SPICE モデル 回路シミュレータでシミュレーションを行うためには 使用する部品に対応した SPICE モデル が必要です SPICE モデルは 回路のシミュレーションを行うために必要な電子部品の振る舞い が記述されており いわば 回路シミュレーション用の部

回路シミュレーションに必要な電子部品の SPICE モデル 回路シミュレータでシミュレーションを行うためには 使用する部品に対応した SPICE モデル が必要です SPICE モデルは 回路のシミュレーションを行うために必要な電子部品の振る舞い が記述されており いわば 回路シミュレーション用の部 当社 SPICE モデルを用いたいたシミュレーションシミュレーション例 この資料は 当社 日本ケミコン ( 株 ) がご提供する SPICE モデルのシミュレーション例をご紹介しています この資料は OrCAD Capture 6.( 日本語化 ) に基づいて作成しています 当社 SPICE モデルの取り扱いに関するご注意 当社 SPICE モデルは OrCAD Capture/PSpice 及び

More information

untitled

untitled - 第 5 章 - 保護回路設計方法 目次 ページ 1 短絡 ( 過電流 ) 保護 5-2 2 過電圧保護 5-6 本章では IGBT モジュールの保護回路設計手法について説明します 5-1 1 短絡 ( 過電流 ) 保護 1.1 短絡耐量について IGBT が短絡状態になると IGBT のコレクタ電流が増加し所定の値を超えるとコレクタ-エミッタ間 (C -E 間 ) 電圧が急増します この特性により

More information

Microsoft PowerPoint - 5章(和訳ver)_15A版_rev.1.1.ppt

Microsoft PowerPoint - 5章(和訳ver)_15A版_rev.1.1.ppt 第 5 章 推奨配線及びレイアウト 内容 ページ 1. 応用回路例. 5-2 2. プリント基板設計における推奨パターン及び注意点.. 5-5 5-1 1. 応用回路例 この章では 推奨配線とレイアウトについて説明しています プリント基板設計時におけるヒントと注意事項については 以下の応用回路例をご参照下さい 図.5-1と図.5-2には それぞれ2 種類の電流検出方法での応用回路例を示しており 注意事項は共通となります

More information

TK50P04M1_J_

TK50P04M1_J_ MOSFET シリコン N チャネル MOS 形 (U-MOS-H) 1. 用途 スイッチングレギュレータ用 モータドライブ用 パワーマネジメントスイッチ用 2. 特長 (1) スイッチングスピードが速い (2) ゲート入力電荷量が小さい : Q SW = 9.4 nc ( 標準 ) (3) オン抵抗が低い : R DS(ON) = 6.7 mω ( 標準 ) (V GS = 10 V) (4) 漏れ電流が低い

More information

日置技報-AC/DCカレントセンサ CT6904/CT

日置技報-AC/DCカレントセンサ CT6904/CT 依田元 * 要 旨 は,5 A と 8 A 定格の大電流測定に対応し, MHz (±3 db) の広い測定周波数帯域を実現した高精度電流センサである. スイッチング周波数の高周波化に伴うノイズ環境下での電流測定を考慮し, 新規開発した巻線構造とシールド構造により, 広帯域, かつ, 高い耐ノイズ性を実現できた. ここに製品の概要, 特長, 構成, および特性データについて解説する.. はじめに 自動車,

More information

TA7805,057,06,07,08,09,10,12,15,18,20,24F

TA7805,057,06,07,08,09,10,12,15,18,20,24F 東芝バイポーラ形リニア集積回路シリコンモノリシック TA7805F,TA78057F,TA7806F,TA7807F,TA7808F,TA7809F, TA7810F,TA7812F,TA7815F,TA7818F,TA7820F,TA7824F 5 V, 5.7 V, 6 V, 7 V, 8 V, 9 V, 10 V, 12 V, 18 V, 20 V, 24 V 三端子正出力固定レギュレータ 特長

More information

パワー MOSFET 寄生発振 振動 Application Note パワー MOSFET 寄生発振 振動 概要 本資料はパワー MOSFET の寄生発振 振動現象と対策について述べたものです Toshiba Electronic Devices & Storage Corpo

パワー MOSFET 寄生発振 振動 Application Note パワー MOSFET 寄生発振 振動 概要 本資料はパワー MOSFET の寄生発振 振動現象と対策について述べたものです Toshiba Electronic Devices & Storage Corpo 概要 本資料はパワー MOSFET の寄生発振 振動現象と対策について述べたものです 1 目次 概要... 1 目次... 2 1. MOSFET の発振 振動について ( 単体使用時 )... 3 2. 発振回路の形成... 3 2.1. 発振現象とは... 3 2.1.1. 帰還回路 ( 正帰還と負帰還 )... 4 2.1.2. 発振条件... 5 2.2. MOSFET の発振... 5 2.2.1.

More information

スライド 1

スライド 1 パワーエレクトロニクス工学論 10. 各種シングル インダクタデュアル アウトプット (SIDO) 電源 10-1 降圧形 昇圧形 SIDO 電源 10-2 リプル制御 SIDO 電源 10-3 ZVS-PWM 制御 SIDO 電源 10-4 ソフトスイッチングSIDO 電源 SIDO: Single Inductor Dual Output H28 群馬大学大学院講義パワーエレクトロニクス工学論

More information

プラグイン01_FRL-230(233,236).indd

プラグイン01_FRL-230(233,236).indd FRL-0 FRL-, 6 6 8 6 8 10 VC / NC FRL- N 0 FRL- FRL-0 6 N C C c 6 6 c 6 c c W WE 6c6-0 178 ecember 016 6 6 8 FRL-0 FRL-, 0. W 0 m V 0.1 W m V 8 0VC 0VC 8 10VC 10VC 00VC 6 c 6 W WE 00 m 0 m 0. VC 8 1 C 0

More information

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える 共振回路 概要 回路は ラジオや通信工学 などに広く使われる この回路の目的は 特定の周波数のときに大きな電流を得ることである 使い方には 周波数を設定し外へ発する 外部からの周波数に合わせて同調する がある このように 周波数を扱うことから 交流を考える 特に ( キャパシタ ) と ( インダクタ ) のそれぞれが 周波数によってインピーダンス *) が変わることが回路解釈の鍵になることに注目する

More information

PFC回路とAC-DC変換回路の研究

PFC回路とAC-DC変換回路の研究 第 2 回電気学会東京支部栃木 群馬支所合同研究発表会 2012/2/29 EG1112 PFC 回路と ACDC 変換器 村上和貴小堀康功邢林高虹 小野澤昌徳小林春夫高井伸和新津葵一 ( 群馬大学 ) Outline 研究背景と目的 PFCについて 従来 PFC 付 ACDC 変換器 新提案 PFC 付 ACDC 変換器 シミュレーションによる検討 まとめ Outline 研究背景と目的 PFCについて

More information

2SK2313

2SK2313 東芝電界効果トランジスタシリコン N チャネル MOS 形 (L 2 π MOSⅤ) リレー駆動 DC DC コンバータ用 モータドライブ用 単位 : mm 4V 駆動です オン抵抗が低い : R DS (ON) = 8mΩ ( 標準 ) 順方向伝達アドミタンスが高い : Y fs = 60S ( 標準 ) 漏れ電流が低い : I DSS = 100μA ( 最大 ) (V DS = 60V) 取り扱いが簡単な

More information

TC74HC4017AP/AF

TC74HC4017AP/AF 東芝 CMOS デジタル集積回路シリコンモノリシック TC74HC4017AP,TC74HC4017AF Decade Counter/Divider TC74HC4017A は シリコンゲート CMOS 技術を用いた高速 10 進ジョンソンカウンタです CMOS の特長である低い消費電力で 等価な LSTTL に匹敵する高速動作を実現できます CK あるいは CE 入力に印加されたカウントパルスの数により

More information

TITAN マルチコンタクト プローブ TITAN マルチコンタクト プローブは MPI の独自の TITAN RF プロービング技術をさらに発展させた RF/ マイクロ波デバイス特性評価用プローブです 最大 15 コンタクトまでのプロービングが可能で 各コンタクトは RF ロジック バイパス電源の

TITAN マルチコンタクト プローブ TITAN マルチコンタクト プローブは MPI の独自の TITAN RF プロービング技術をさらに発展させた RF/ マイクロ波デバイス特性評価用プローブです 最大 15 コンタクトまでのプロービングが可能で 各コンタクトは RF ロジック バイパス電源の TITAN マルチコンタクト プローブ TITAN マルチコンタクト プローブは MPI の独自の TITAN RF プロービング技術をさらに発展させた RF/ マイクロ波デバイス特性評価用プローブです 最大 5 コンタクトまでのプロービングが可能で 各コンタクトは RF ロジック バイパス電源の中から選択可能です TITAN プローブのもつ優れたインピーダンス整合 電気特性 チップの視認性 長寿命をすべて兼ね備えています

More information

MUSES01 2 回路入り J-FET 入力高音質オペアンプ ~ 人の感性に響く音を追求 ~ 概要 MUSES01 は オーディオ用として特別の配慮を施し 音質向上を図った 2 回路入り JFET 入力高音質オペアンプです 低雑音 高利得帯域 低歪率を特徴とし オーディオ用プリアンプ アクティブフ

MUSES01 2 回路入り J-FET 入力高音質オペアンプ ~ 人の感性に響く音を追求 ~ 概要 MUSES01 は オーディオ用として特別の配慮を施し 音質向上を図った 2 回路入り JFET 入力高音質オペアンプです 低雑音 高利得帯域 低歪率を特徴とし オーディオ用プリアンプ アクティブフ 回路入り J-FET 入力高音質オペアンプ ~ 人の感性に響く音を追求 ~ 概要 は オーディオ用として特別の配慮を施し 音質向上を図った 回路入り JFET 入力高音質オペアンプです 低雑音 高利得帯域 低歪率を特徴とし オーディオ用プリアンプ アクティブフィルター ラインアンプ等に最適です 外形 特徴 動作電源電圧 Vopr= ~ ±V 低雑音 9.nV/ Hz typ. @f=khz 入力オフセット電圧

More information

Power.indb

Power.indb 6 JY 1 3A RoHS mm 1.mm 9mWmW SJ UL9V- RoHS FA JY - 1 G - K P - UL JY W 3A G 3A // R 3A HG A HR A K P W UL -P December JY-W JY-G JY-R JY-HG JY-HRDecember JY1 3A 3A A 3A, VAC / 3VDC A, VAC / 3VDC 1a1 3m

More information