Microsoft Word - 資料9 水理計算参考
|
|
|
- さみ ほうねん
- 7 years ago
- Views:
Transcription
1 資料 9 水理計算参考資料 1 水理の基本 (1) 水の重さ 1 気圧のもとにおける水の密度は 3.98 において最大である 温度と密度の関係 を下表に示す 温度 ( ) 密度 ρ( kg /m 3 ) 単位体積重量 w(kn/m 3 ) 水の密度 ρ( ロー ) は 厳密には表のように温度によって異なるが 一般に計算に おいては ρ=1 kg /m 3 (=1g/ cm 3 =1t/m 3 ) として計算する また 単位体積重量 w は次のようになる w=ρg=1 kg /m m/sec 2 =987N/m 3 =9.87kN/m 3 ( 重力の加速度 g=9.87m/sec 2 とする ) (2) 水圧水圧の単位は Pa( パスカル ) で表されるが これを長さと力の単位で表すと 1Pa=1N/m 2 つまり 1Pa の水の圧力の大きさは 1m 2 の面積に1N( ニユートン ) の力が作用した大きさである いま 水深 1の水底の水圧を考える 水底には 水底上の水の重量がかかるので 水底の水圧は 水圧 = 底面上の水柱の重量 底面積 =1m 1m kN/m 3 1m 2 =98.7kN/m 2 =98.7KPa(=.987MPa) 1 すなわち 水圧 98.7KPa(=.987MPa) という ことは 1 の高さまで水を押し上げることがで きる圧力ということになる 1m 1m 67
2 (3) 水圧と水頭の関係 P= 水圧 (Pa) W= 水の単位体積重量 =1kg /m 3 =9.87kN/m 3 H= 水頭 (m) P=WH=9.87(kN/m 3 ) H(m)=9.87H(kN/ m2 )=.987H(MPa) 1MPa( メガパスカル )=1 1 6 Pa=1N/mm 2 N(kg m/ sec 2 ) は力の単位で質量 1kgの物体に働き1m/sec 2 の加速度を生じるときの力で重力の加速度 g= である 1kgf=9.87N 1kgf/cm 2 = N/m 2 =98.7 kpa( キロパスカル )=.987MPa 例題 1..3MPaの静水圧があるとき直結給水はどのくらいの高さまで上昇するか また 1mの静水頭の水圧はいくらか H=P W=.3.987=3.9m P=W H=.987 1=.147MPa 2. 従来単位で 3 kgf/cm 2 はSI 単位 (MPa) では いくらになるか 3.987=.294MPa 概算的には 従来単位 kgf/cm 2 をSI 単位 (MPa) に変換した場合は1 分の1になる (4) 流速と流量の関係 Q=A V V=Q A Q= 流量 V= 流速 A= 断面積例題内径 /mの管を流れる水の平均速度が2./secであると その流量は1 分間何リットルになるか Q=A V=πd 2 /4 V=(π (.) 2 /4) 2.=.392m 3 /sec =.392m 3 /sec 1l /m 3 6sec/min=23.l /min 68
3 () 動水勾配線 A B ha 動水勾配線 hb a 図のような装置で管端 aに栓をすると立上り管 A Bの水位はタンクの静水面と同じ高さで静止する 次に栓をはずすと矢印のように管路に水が流れ aより放水される この時立上り管 A Bの水位は図のように低下する これは管内を水が流れる場合 管壁との摩擦によりエネルギーが失われるからで この失われた水頭 ha hbを損失水頭という そして 管路に水が流れているときの各立ち上り管の水位を結んだ線を動水勾配線という 損失水頭と距離との比を動水勾配といいIで表す I=h/L となるが 水理計算上ではこの値が小さすぎるため 千分率 ( ) に補正して取り扱うことが多い したがって 前記式は I=(h/L) 1 ( ) として利用される ここに I= 動水勾配 h= 損失水頭 L= 距離 損失水頭損失水頭を生ずる原因には 次のようなものがある ( ア ) 管の内壁と水との摩擦による損失 ( イ ) 管の流入部で生ずる損失 ( ウ ) 管の曲り部分で生ずる損失 ( 工 ) 仕切弁等の障害物によって生ずる損失 ( オ ) 管の口径の変化によって生ずる損失 ( 力 ) 管の流出口によって生ずる損失損失水頭の発生は 主に水の粘性にかかわっており そのうち ( イ ) から ( 力 ) については それぞれの箇所で水流が乱れるために生ずるものである これらの損失は 管水路を流れる水の運動エネルギーの一部を失うものであるから 損失水頭 hは 速度水頭であるv 2 /2gにある係数を乗じた値となる h=f v 2 /2g この式でfを損失係数といい 個々の場合毎に実験的に求められている 損失水頭の 69
4 うち 最も大きなものは 摩擦損失水頭であり その他の損失は個々に計算しないで摩擦損失に相当する値に置き換えておく方が簡便であり 通常の管水路の計算式ではこれによることが多い なお 置き換える場合に 水頭で置き換えるより 直管の長さに置き換えた方が便利である これを直管換算長という 例題延長 1の管路に水が流れたときの損失水頭が2mであった このときの動水勾配はいくらか I=(h/L) 1( )=(2m/1) 1=2 2 流量表による計算例 例題 1. 給水管の口径 D=2/m 給水管の延長 L=21m 配水管の水圧 P=.2MPa のときの給水栓の流量 Qを求めよ XMN 1m 1m 4m 1m 表 2-12 より各換算長を求めて給水管の長さを加えると 2/m 分水栓 2. 副栓付伸縮止水栓 2.7m メーター 8. メーター用逆止弁. エルボ 2. (2 個 1m) 給水管 21. 給水栓 8. 計 48.7m 有効水頭 h= 配水管水頭 -( 土被り + 立上り ) =2.4-(1.+1.)=18.4m 配水管水頭 =.2MPa.987=2.4m 動水勾配 I=(h/L) 1( )=(18.4/48.7) 1=378 ウェストン公式流量図表より 378 を上にあがり2/mの線との交点より横にQ=.7l /secを得る 同様にTW 公式流量図表でもQ=.7l /sec を得る 7
5 2. 図のタンクに給水する場合 4 時間以内にタンクを満水するには 何 m/m の給 水管を必要とするか 3 XMN 1m 1m 1 配水管の水圧 P=.1MPa 2 給水管の延長 L=3. 3 タンクの容量 W=. 3 給水管口径を2/mと仮定して L=3.+2.( 分水栓 )+2.7m( 伸縮止水栓 )+8.( メーター )+.( 逆止弁 )+3. ( エルボ 3 箇所 )+2.( ボールタップ )=7.7m h=1.2m-2m( 土被り + 立上り )=8.2m 配水管水頭 =.1MPa.987=1.2m 動水勾配 I=(h/L) 1( )=(8.2/7.7) 1=116 ウェストン公式流量図表より 116 を上にあがり2/mの線との交点より横にQ=.39l /secを得る Q=.39l /sec=1.4 3 /hr 満水時間 = 1.4=3.6 時間 <4 時間したがって 給水管の口径は 2/mでよい 71
6 3 住宅団地等の計算例 1 住宅団地等の共用給水管設計の一例として 支分栓の使用水量及び所要水頭を仮定し 共用給水管の管径を決定する方法を述べる 次の共用給水管の管径を求める 13mm 13mm 13mm 13mm 13mm 配水管水圧 P=.1Mpa O m m m m m m m m m A B C D E F G H I 13mm 13mm 13mm 13mm 13mm 支分栓の口径は 13mm で 使用水量は.2l /sec(1l /min) とする また それ ぞれの支分栓の所要水頭は 1 とする 同時使用率を考慮し 水量を共用給水管の 幹線各区間での流量を求め 支分栓分岐箇所の水圧が 1 以下とならないよう幹線 の管径を決定する 区間支分栓数全流量 l /sec 同時使用率同時使用流量 H-I G-H F-G E-F D-E C-D B-C A-B O-A 同時使用率は 第 2 章第 3 節表 2-8 による (1) 幹線 H-I 間の設計 1 流量.l /sec 2mm 3 区間直間換算長 m 72
7 4 動水勾配流量.l /sec 管径 2mm の場合ウェストンの表より 6/1=6 損失水頭動水勾配 6 管延長 m より 6/1 =.3 7 区間所要水頭.3+=.3 (2) 幹線 G-H 間の設計 1 流量.7l /sec 2mm 3 区間直間換算長 m 4 動水勾配流量.7l /sec 管径 2mm の場合ウェストンの表より 12/1=12 損失水頭動水勾配 12 管延長 m より 12/1 =.6 7 区間所要水頭.6+=.6 (3) 幹線 F-G 間の設計 1 流量.9l /sec 3 区間直間換算長 3m m 4 動水勾配流量.9l /sec 管径 3m の場合ウェストンの表より 7/1=7 損失水頭動水勾配 7 管延長 m より 7/1 =.3m 7 区間所要水頭.3m+=.3m (4) 幹線 E-F 間の設計 1 流量 1.13l /sec 3 区間直間換算長 3m m 4 動水勾配流量 1.13l /sec 管径 3m の場合ウェストンの表より 1/1=1 損失水頭動水勾配 1 管延長 m より 1/1 =. 7 区間所要水頭.+=. () 幹線 D-E 間の設計 1 流量 1.3l /sec 3 区間直間換算長 3m m 73
8 4 動水勾配流量 1.3l /sec 管径 3m の場合ウェストンの表より 1/7=143 損失水頭動水勾配 143 管延長 m より 143/1 =.72m 7 区間所要水頭.72m+=.72m (6) 幹線 C-D 間の設計 1 流量 1.8l /sec 3 区間直間換算長 4m m 4 動水勾配流量 1.8l /sec 管径 4m の場合ウェストンの表より /1= 損失水頭動水勾配 48 管延長 m より /1 =.2m 7 区間所要水頭.2m+=.2m (7) 幹線 B-C 間の設計 1 流量 1.8l /sec 4m 3 区間直間換算長 m 4 動水勾配流量 1.8l /sec 管径 4m の場合ウェストンの表より /8=63 損失水頭動水勾配 63 管延長 m より 63/1 =.32m 7 区間所要水頭.32m+=.32m (8) 幹線 A-B 間の設計 1 流量 2.3/sec 4m 3 区間直間換算長 m 4 動水勾配流量 2.3l /sec 管径 4m の場合ウェストンの表より 23/3=77 損失水頭動水勾配 77 管延長 m より 77/1 =.39m 7 区間所要水頭.39m+=.39m (9) 幹線 O-A 間の設計 1 流量 2.2l /sec 4m 3 区間直間換算長 m 74
9 4 動水勾配流量 2.2l /sec 管径 4m の場合ウェストンの表より 18/2=9 損失水頭動水勾配 9 管延長 m より 9/1 =.4m 7 区間所要水頭.4m+=.4m (1)O 点の所要水頭は =13.88mになる 図に表すと下記のようになる E F G H I 11.7m m l /sec 1 2 2mm 3 m O A B C D 13.88m m m m m すなわち 求めた O 点の所要水頭 13.88m は 配水管の水頭 1.3m(.1MPa) より小さいので それぞれの仮定管径でよい 2. 住宅団地等の給水管は 例 1 のように給水量を求め配水管の動水圧及び給水管の 損失水頭から求めることとするが 想定できない場合には概算的に第 2 章第 3 節表 を利用し求める 給水戸数 7 戸の場合 給水量は 表 2-9 より 17~11l /min となる 次に表 2-1 より流速 2m 以下で上記流量が可能な口径を選ぶと 必要口径は 4/m になる 7
10 3. 一定規模以上の給水用具を有する場合の同時使用水量の算出は 表 2-11 器具給水 負荷単位表より 各種給水用具の負荷単位に給水用具を乗じたものを累計し 図 2-1 給水負荷単位と流量表より求める A B C F E D 各部屋の給水用具 負荷単位 台所流し :3 洗面器 :1 浴槽 :2 シャワー :2 大便器 ( 洗浄タンク ) :3 計 11 単位 区間 負荷単位 同時使用水量 l /min A-B 11 2= 22 8 B-C 11 4= C-D 11 6= D-E 11 12= E-F 11 18= E-F 間の使用水量は 23l /min であるので 第 2 章第 3 節表 2-1 より求める 口径は 7mm になる 76
11 4 流入管口径の計算例 受水タンクの流入量 q K Q T V q: 受水タンク流入量 (m 3 /hr) V: タンク有効量 (m 3 ) K:3. ( 時間係数 ) T: 使用時間 ( 第 9 章第 14 節表 9-3) Q:1 日平均使用水量 (m 3 / 日 ) 上記の式より受水タンク流入量を求め第 9 章第 14 節表 9-4 メーター適用基準表の許容 流量よりメーター口径を決定する 例題 1. 4 階建てのマンションにおけるそのタンク容量と流入管口径を求める ただし 3LDK 8 戸 2DK 1 戸とする 1 日平均使用水量表 9-3より Q1 3LDK Q2 2DK 8 4 人 3l =9.6m 3 / 日 1 2 人 4l =8. 3 / 日 合計 17.6m 3 / 日受水タンク容量第 9 章第 14 節 1より /1=7.4<7.m 3 / 日高置タンク容量第 9 章第 14 節 3より /12=1.47<1.m 3 / 日 17.6 (7. 1.) 流入量 q=3 2. 1m 3 /hr 12 故に表 9-4メーター適用基準表の許容流量より2.1<2.3m 3 /hr から流入管口径は 2m/m となる 2. 4 階建てのワンルームマンション 12 戸のタンク容量と流入管口径を求める 1 日平均使用水量第 9 章第 14 節表 9-3より Q=12 戸 1 人 4l =4.8m 3 / 日受水タンク容量第 14 節 1より 4.8 4/1=1.92<2. 3 / 日 77
12 流入量 q= /hr 12 表 9-4メーター適用基準表の許容流量より.7<.8m 3 /hr から流入管口径は 13m/mになる 上記の例の場合 計算上は13m/m になるが 例えば動水勾配が2 では.184l /sec=.66m 3 /hrしか流れないので 流入不足になる このように管路の延長が長い場合や配水管動水頭が少ない場合は 到達流量計算をしてみる必要がある 3. 建築面積 282のホテルにおけるタンク容量と流入管口径を求める 有効面積第 14 節 1より 28 6%=1 68 m2 1 日平均使用水量表 9-3より Q=168 m2 4l /d/ m2=67.2m 3 / 日受水タンク容量第 14 節 1より /1=26.9<27. 3 / 日高置タンク容量第 14 節 3より /12=.6<6. 3 / 日 67.2 (27. 6.) 流入量 q=3 8. m 3 /hr 12 故に表 9-4メーター適用基準表の許容流量より8.<2m 3 /hr から流入管口径は /m となる 78
Taro-水理計算.$td
水理計算の基本知識と実践演習問題 技術検定研修協会 受験案内 www.kenshu-kyokai.co.jp/jyuken.html 水理計算の基本原則を理解して 確実に得点を GET しよう 基本知識 1 長さを表す式の変換長さを表す場合は 次の変換式を用います 計算する場合は 通常 m の単位で統一します 1 mm = 0.001m 10 mm = 0.01m 100 mm = 0.1 m 2
Microsoft Word - 水理計算.doc
水理計算 1. 計画使用水量の決定計画使用水量とは 給水装置工事の対象となる給水装置に給水される水量をいい 給水装置の計画の基礎となるものである 一般に直結給水の場合は 同時使用水量から求められる 同時使用水量の算定に当たっては 各種算定方法の特徴をふまえ 使用実態に応じた方法を選択すること 一般的な同時使用水量の算定方法は 以下のとおりである (1) 集合住宅 ファミリータイプ ( 床面積 30
第3章直結給水の設計
2 直結直圧式給水の設計 給水装置の口径は 配水管の最小動水圧時においても所要水量を十分に供給できる大きさとしなけ ればならない 給水装置の口径の決定方法は 給水装置の方式 規模等を十分に調査し 設計水量 水圧 メータ の性能 損失水頭 給水栓の同時使用率等を検討の上に決定する 2.1 設計水量 直結式給水における設計水量は 給水器具の同時使用の割合を十分考慮して実態にあった水量を設 定することが必要である
7 章問題解答 7-1 予習 1. 長方形断面であるため, 断面積 A と潤辺 S は, 水深 h, 水路幅 B を用い以下で表される A = Bh, S = B + 2h 径深 R の算定式に代入すると以下のようになる A Bh h R = = = S B + 2 h 1+ 2( h B) 分母の
7 章問題解答 7- 予習. 長方形断面であるため, 断面積 と潤辺 S は, 水深, 水路幅 B を用い以下で表される B, S B + 径深 R の算定式に代入すると以下のようになる B R S B + ( B) 分母の /B は河幅が水深に対して十分に広ければ, 非常に小さな値となるため, 上式は R ( B) となり, 径深 R は水深 で近似できる. マニングの式の水深 を等流水深 0 と置き換えると,
2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように
3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入
Microsoft Word - 【公開用】中高層建物直結給水施行基準
中高層建物直結給水施行基準 平成 30 年 4 月 廿日市市水道局 第 1 章総則第 1 節目的この基準は 廿日市市上水道事業給水条例施行規程 ( 平成 12 年企業管理規程第 1 号 ) 第 2 条の規定に基づき 配水管の水圧のみを利用して建物の4 階以上へ直接給水する場合の給水装置の設計及び施工等について必要事項を定め 適正な運用を確保することを目的とする なお この基準に明記されていないものについては
<4D F736F F F696E74202D C CC89C88A B8CDD8AB B83685D>
断面積 (A) を使わずに, 間隙率を使う透水係数の算定 図に示したような 本の孔を掘って, 上流側から食塩を投入した 食塩を投入してから,7 時間後に下流側に食塩が到達したことが分かった この地盤の透水係数を求めよ 地盤の間隙比は e=0.77, 水位差は 0 cmであった なお, この方法はトレーサ法の中の食塩法と呼ばれている Nacl 計測器 0 cm 0.0 m 断面積 (A) を使わずに,
伝熱学課題
練習問題解答例 < 第 章強制対流熱伝達 >. 式 (.9) を導出せよ (.6) を変換する 最初に の微分値を整理しておく (.A) (.A) これを用いて の微分値を求める (.A) (.A) (.A) (.A6) (.A7) これらの微分値を式 (.6) に代入する (.A8) (.A9) (.A) (.A) (.A) (.9). 薄い平板が温度 で常圧の水の一様な流れの中に平行に置かれている
Microsoft PowerPoint - 1章 [互換モード]
1. 直線運動 キーワード 速さ ( 等速直線運動, 変位 ) 加速度 ( 等加速度直線運動 ) 重力加速度 ( 自由落下 ) 力学 I 内容 1. 直線運動 2. ベクトル 3. 平面運動 4. 運動の法則 5. 摩擦力と抵抗 6. 振動 7. 仕事とエネルギー 8. 運動量と力積, 衝突 9. 角運動量 3 章以降は, 運動の向きを考えなければならない 1. 直線運動 キーワード 速さ ( 等速直線運動,
<897E8C F80837D A815B838B81458FE395948ECE95C7817B8145>
円形標準マンホール 上部斜壁 + 床版タイプ 浮上がりの検討. 設計条件 () 設計地震動 地震動レベル () 概要図 呼び方内径 都型 ( 内径 0cm) 00 00 0 600 0 0.00.0 0.0 0.0.0.70 0 60 00 60 60 00.0.0 00 00 00 00 00 P () マンホール条件 ) 寸法諸元 6 7 種類 呼び名 高さ モル 上部 下部 タル 外径 内径
水理学(水理学Ⅰ、水理学Ⅱの復習)
水理学のまとめ ここでは, 水理学 Ⅱ および水工実験 演習を受講した学生が, 最低限習得すべき内容の問題とそれに必要な水理 学的知識をまとめる. なお, 指示がない場合には, =000 kg/m 3, g =9.8m/sec,π=3.4 を用いよ.. 静止状態の圧力のつりあい 演習課題. 図. のように密度 =000kg/m 3 の水で満たされたU 字管の左右のピストンが高低差 z =5cm の状態で静止している.
1
問題を解こう. 熱力学の基礎 問題. 容積 [m ] の密閉容器内に 温度 0[ ] 質量 0[kg] の酸素が含まれている この容器内の圧力を求めよ ただし 酸素の気体定数を R= 59.8[J/kg K] とする 解答 酸素の体積 V=m 質量 m=0kg なので 酸素の比容積 v=/0 m /kg である 式 (.) において ガス定数 R=59.8 温度 T=(0+7)K であるので 圧力
伝熱学課題
練習問題解答例 < 第 9 章熱交換器 > 9. 入口温度 0 の kg/ の水と 入口温度 0 の 0 kg/ の水の間で熱交換を行 う 前者の出口温度が 40 の時 後者の出口温度はいくらか 解 ) 式 (9.) を使う,,,, において どちらの流体も水より に注意して 0 40 0 0, これを解いて, 9. 0 の水を用いて 0.MPa の飽和蒸気 kg/ と熱交換させ 蒸気を復水させること
01給水装置工事設計施工指針
3. 設計の基本条件 3.1 設計の基本条件 1. 給水装置は 水道事業者の施設である配水管に直接接続し 需要者に安全な水道水を供給する設備であることから 給水装置の構造及び材質は政令の定める基準に適合するよう設計しなければならない 2. 給水装置は 需要者に安全な水道水を供給するために 汚水等が配水管に逆流しない構造となっていること 給水管及び給水用具の材質が水道水の水質に影響を及ぼさないこと 内圧
Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a
1 1 1.1 (Darcy) v(cm/s) (1.1) v = ki (1.1) v k i 1.1 h ( )L i = h/l 1.1 t 1 h(cm) (t 2 t 1 ) 1.1 A Q(cm 3 /s) 2 1 1.1 Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t
問 一 次の各問いに答えなさい
年 組 番 名前 教材 8-(1) の解答力と圧力 次の 図 のように, 質量 18kg の直方体の形をした物体をいろいろな面を下にしてスポンジの 上に置き, スポンジのくぼみ方を調べる実験を行いました ただし, 質量 100g の物体にはたら く重力の大きさを1Nとして, 下の各問いに答えなさい 図 20cm 直方体の物体 30cm B C 10cm A スポンジ (1) 図 のA~C 面を下にして順番にスポンジの上に置いたとき,
砂防堰堤設計計算 透過型砂防堰堤
1 砂防堰堤設計計算 透過型砂防堰堤 目次 2 1 設計条件 1 2 設計流量の算出 2 2-1 渓床勾配 2 2-2 土石流濃度 2 2-3 土石流ピーク流量 2 3 水通しの設計 3 3-1 開口部の設定 3 3-2 土石流ピーク流量 (Qsp) に対する越流水深 6 3-3 設計水深 8 4 水通し断面 8 5 越流部の安定計算 9 5-1 安定条件 9 5-2 設計外力の組合せ 9 5-3
FdData理科3年
FdData 中間期末 : 中学理科 3 年 [ 仕事の原理 : 斜面 ] パソコン タブレット版へ移動 [ 仕事の原理 引く力 ] [ 問題 ](2 学期期末 ) 次の図のような斜面を使って質量 35kg の物体を 3m の高さまで引き上げた ただし, ひもの重さ, 斜面や滑車の摩擦はないものとする また,100g の物体にはたらく重力を 1N とする (1) このとき, 物体がされた仕事はいくらか
第 9 屋外貯蔵タンク冷却用散水設備の基準 ( 昭和 57 年 7 月 1 日消防危第 80 号 ) タンクの冷却用散水設備 ( 以下 散水設備 という ) は 次によること 1 散水設備の設置範囲は 危険物規則第 15 条第 1 号に定める技術上の基準に適合しないタンク ( 一部適合しないものにあ
第 9 屋外貯蔵タンク冷却用散水設備の基準 ( 昭和 57 年 7 月 1 日消防危第 80 号 ) タンクの冷却用散水設備 ( 以下 散水設備 という ) は 次によること 1 散水設備の設置範囲は 危険物規則第 15 条第 1 号に定める技術上の基準に適合しないタンク ( 一部適合しないものにあっては その部分を含む 以下 不適合タンク という ) 及び当該タンクが保有すべき空地内に存する容量
Microsoft PowerPoint - 12_2019裖置工�榇諌
1 装置工学概論 第 12 回 蒸留装置の設計 (3) 流動装置の設計 (1) 東京工業大学物質理工学院応用化学系 下山裕介 2019.7.15 装置工学概論 2 第 1 回 4 /15 ガイダンス : 化学プロセスと装置設計 第 2 回 4 /22 物質 エネルギー収支 第 3 回 5 /6( 祝 ) 化学プロセスと操作変数 5 /13 休講 第 4 回 5 /20 無次元数と次元解析 第 5 回
水理学Ⅱ及び同演習
水理学 Ⅱ 及び同演習第 回一様断面の不等流 ( 水面形 堰 水門の流れ ) 目標 : 一様断面からなる開水路で, 勾配の変化や堰 水門による水面形の変化を予測する 一様断面における水深の変化 (d/dx) を表す開水路の基礎式から勾配の変化による等流水深と限界水深の関係を考察する 与えられた水路勾配等流水深と限界水深の関係から, 常流 射流といった流れの分類を行う. 水門や堰のある水路において水面形の変化を予測する
浮力と圧力
浮力と圧力 もくじ 浮力以前 2 ビニル袋の水の重さは なくなった のか 3 浮力の導入 4 圧力とは 4 液体による圧力 5 浮力はなぜ生じるのか 6 アルキメデスの原理 8 浮力とそれ以外の力のつりあい 9 問題 10 答え 13 1 浮力以前 ばねを水にひたしても, 水の重さがばねにかかることはない ( 図 1) 水の入ったビニル袋がばねの近くにただよっていても, ばねに影響はない ( 図 2)
FC 正面 1. 地震入力 1-1. 設計基準 準拠基準は以下による 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = Z KS W : 機械重量 FV = KV M G = 機械質量 (M) 重力加速度 (G) KV =
FC 正面 1. 地震入力 1-1. 設計基準 準拠基準は以下による 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = Z KS W : 機械重量 FV = KV M G = 機械質量 (M) 重力加速度 (G) KV = (1/2) KH Z : 地域係数 KS: 設計用標準震度 KV: 設計用鉛直震度 1-2. 設計条件耐震クラス
<926E906B8E9E2D958282AB8FE382AA82E882CC8C9F93A22E626376>
ボックスカルバートの地震時設計 浮き上がりの検討. 設計条件 () 設計地震動 地震動 レベル () 概要図 400 3900 3000 3000 4000 (3) ボックスカルバート条件 ) 寸法諸元形状 内幅 B(mm) 内高 H(mm) 頂版厚 T(mm) 底版厚 T(mm) 左側壁厚 T3(mm) 右側壁厚 T4(mm) 外幅 B0(mm) 外高 H0(mm) 頂版ハンチ高 C(mm) 底版ハンチ高
FdData理科3年
FdData 中間期末 : 中学理科 3 年 : 仕事 [ 仕事の原理 : 斜面 ] [ 仕事の原理 引く力 ] [ 問題 ](2 学期期末 ) 図のような斜面を使って質量 35kg の物体を 3m の高さまで引き上げた ただし, ひもの重さ, 斜面や滑車の摩擦はないものとする また,100g の物体を引き上げるのに必要な力を 1N とする (1) このとき, 物体がされた仕事はいくらか (2) 図のとき,
例題 1 表は, 分圧 Pa, 温度 0 および 20 において, 水 1.00L に溶解する二酸化炭素と 窒素の物質量を表している 二酸化炭素窒素 mol mol mol mol 温度, 圧力, 体積を変えられる容器を用意し,
ヘンリーの法則問題の解き方 A. ヘンリーの法則とは溶解度が小さいある気体 ( 溶媒分子との結合力が無視できる気体 ) が, 同温 同体積の溶媒に溶けるとき, 溶解可能な気体の物質量または標準状態換算体積はその気体の分圧に比例する つまり, 気体の分圧が P のとき, ある温度 ある体積の溶媒に n mol または標準状態に換算してV L 溶けるとすると, 分圧が kp のとき, その溶媒に kn
流速流量表 ( 縦断用 ) 呼び名 幅 a(m) 深さ c(m) ハンチ高 s(m) 水深余
VS 側溝流速 流量表 計算表の説明縦断の流速 流量表横断の流速 流量表 H22.11 版 P1 P2~24 P25~47 水深余裕高 f(m) f= C-0.8 C ( 八割水深で計算 ) 通水断面積 A(m 2 ) と潤辺 P(m) f( 水深余裕高 ) s( ハンチ高 ) のとき通水断面積 A= a (c-f) 潤辺 P= P1+P2 ( プレキャスト部 ) P1=2 (c-f) ( 現場打部
Q Q= d 2 V V= 4 d P + H + = 2g W V 2 V m/s g 9.8m/s H () P kgf/s, W Kg/ H= V=2 2 () 3 V 2 (h) ()(L) ()(f) ()(V) 2 ()(d) ()(P) L V 2 h= f d 2-70
() (H) () ( P) () (H)() 1 1,000kg 1 1m 1,000/100x100 0.1kgf/ (H)m=(P)1kgf/ (0.098 (H)m 1 2 3 4 5 6 7 8 9 10 (P)kgf/ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 (P) 0.0098 0.0196 0.0294 0.0392 0.0490 0.0588
略記 法 = 水道法 ( 昭和 32 年法律第 177 号 ) 施行令 = 水道法施行令 ( 昭和 32 年政令第 336 号 ) 基準省令 = 給水装置の構造及び材質の基準に関する省令 ( 平成 9 年厚生省令第 14 号 ) 給水条例 = 筑前町水道事業給水条例 ( 平成 17 年条例第 142
筑前町給水装置工事設計施工指針 - 2 0 1 8 年 - 筑前町上下水道課 略記 法 = 水道法 ( 昭和 32 年法律第 177 号 ) 施行令 = 水道法施行令 ( 昭和 32 年政令第 336 号 ) 基準省令 = 給水装置の構造及び材質の基準に関する省令 ( 平成 9 年厚生省令第 14 号 ) 給水条例 = 筑前町水道事業給水条例 ( 平成 17 年条例第 142 号 ) 条例施行規則
Microsoft PowerPoint - 流体力学の基礎02(OpenFOAM 勉強会 for geginner).pptx
~ 流体力学の基礎 ~ 第 2 回 流体静力学 2011 年 10 月 22 日 ( 土 ) 講習会のスケジュール概要 ( あくまでも現時点での予定です ) 流体力学の基礎 第 1 回目 2011.09 流体について 第 2 回目 2011.10 流体静力学 第 3 回目 2011.11/12 流体運動の基礎理論 1 第 4 回目 2012.01 流体運動の基礎理論 2 第 5 回目 2012.02
道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月
道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月 目次 本資料の利用にあたって 1 矩形断面の橋軸方向の水平耐力及び水平変位の計算例 2 矩形断面 (D51 SD490 使用 ) 橋軸方向の水平耐力及び水平変位の計算例 8 矩形断面の橋軸直角方向の水平耐力及び水平変位の計算例
耐雪型歩道柵 (P 種 )H=1.1m ランク 3 ( 基礎ブロック ) 平成年月日
耐雪型歩道柵 (P 種 )H=1.1m ランク 3 ( 基礎ブロック ) 平成年月日 目 次 1. 目的 1 2. 耐雪型の設置計画 1 3. 構造諸元 1 4. 許容応力度 1 4-1 使用部材の許容応力度 ( SS400,STK410 相当 1 4-2 無筋コンクリートの引張応力度 1 4-3 地盤の耐荷力 1 5. 設計荷重 2 5-1 鉛直力 ( 沈降力 ) 2 5-2) 水平力 ( クリープ力
<8D5C91A28C768E5A8F91836C C768E5A8F A2E786C73>
スカイセイフティネット構造計算書 スカイテック株式会社 1. 標準寸法 2. 設計条件 (1) 荷重 通常の使用では スカイセーフティネットに人や物は乗せないことを原則とするが 仮定の荷重としてアスファルト ルーフィング1 巻 30kgが1スパンに1 個乗ったとした場合を考える ネットの自重は12kgf/1 枚 これに単管 (2.73kgf/m) を1m 辺り2 本考える 従ってネット自重は合計で
(1) 1.1
1 1 1.1 1.1.1 1.1 ( ) ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) ( ) ( ) ( ) 2 1 1.1.2 (1) 1.1 1.1 3 (2) 1.2 4 1 (3) 1.3 ( ) ( ) (4) 1.1 5 (5) ( ) 1.4 6 1 (6) 1.5 (7) ( ) (8) 1.1 7 1.1.3
<8E518D6C8E9197BF816995AA908582DC82B7816A2E786477>
分水ます (2 段オリフィス方式 ) を用いた地下貯留槽の計算方法 (~ 貯留浸透施設の計算も含む ) 分水ます (2 段オリフィス ) を用いた地下貯留槽の容量は 調整池容量計算システム では算出が出来ないため 以下の手順により計算して下さい ( 下図参照 ) ( 手順 ) (1) 調整ますの計算を実施し ますの容量と下段オリフィスからの放流量を算出します (2) 地下貯留施設の計算を行います (
19年度一次基礎科目計算問題略解
9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる
() 実験 Ⅱ. 太陽の寿命を計算する 秒あたりに太陽が放出している全エネルギー量を計測データをもとに求める 太陽の放出エネルギーの起源は, 水素の原子核 4 個が核融合しヘリウムになるときのエネルギーと仮定し, 質量とエネルギーの等価性から 回の核融合で放出される全放射エネルギーを求める 3.から
55 要旨 水温上昇から太陽の寿命を算出する 53 町野友哉 636 山口裕也 私たちは, 地球環境に大きな影響を与えている太陽がいつまで今のままであり続けるのかと疑問をもちました そこで私たちは太陽の寿命を求めました 太陽がどのように燃えているのかを調べたら水素原子がヘリウム原子に変化する核融合反応によってエネルギーが発生していることが分かった そこで, この反応が終わるのを寿命と考えて算出した
<8B5A8F708E77906A89FC92F988C E FCD2E786477>
第 8 章練積み造擁壁の標準構造図 8.1 標準構造図の種類練積み造擁壁の種類としては 擁壁の背面の状態 ( 切土か盛土 ) によって切土タイプと盛土タイプの2 種類があります 表 8-1 参照過去に造成が行われている場合及び切土と盛土を同時に行う場合には 盛土タイプを使用してください 8.2 標準構造図使用上の注意点 1) 設置地盤の地耐力が表 8-1 の値以上にしてください 軟弱地盤や 過去に埋立てを行
GEH-1011ARS-K GEH-1011BRS-K 1. 地震入力 参考 1-1. 設計基準 使用ワッシャー 準拠基準は以下による M10 Φ 30 内径 11 t2 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH =
GEH-1011ARS-K GEH-1011BRS-K 1. 地震入力 参考 1-1. 設計基準 使用ワッシャー 準拠基準は以下による M10 Φ 30 内径 11 t2 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = Z KS W : 機械重量 FV = KV M G = 機械質量 (M) 重力加速度 (G) KV =
集水桝の構造計算(固定版編)V1-正規版.xls
集水桝の構造計算 集水桝 3.0.5 3.15 横断方向断面の計算 1. 計算条件 11. 集水桝の寸法 内空幅 B = 3.000 (m) 内空奥行き L =.500 (m) 内空高さ H = 3.150 (m) 側壁厚 T = 0.300 (m) 底版厚 Tb = 0.400 (m) 1. 土質条件 土の単位体積重量 γs = 18.000 (kn/m 3 ) 土の内部摩擦角 φ = 30.000
L 型擁壁 (CP-WALL) 構造図 S=1/30 CP-WALL(B タイプ ) H=1900~2500 断面図 正面 背面図 製品寸法表 適用 製品名 H H1 H2 B 各部寸法 (mm) B1 B2 T1 T2 T3 T4 T5 水抜孔位置 h1 h2 参考質量 (kg) (
L 型擁壁 (CP-WALL) 構造図 CP-WALL( タイプ ) =10~0 断面図 正面 背面図 製品寸法表 適用 製品名 1 2 各部寸法 (mm) 1 2 T1 T2 T3 T4 T5 水抜孔位置 h1 h2 参考質量 (kg) (kn/m2) 連結穴 M16 背面 正面 -10-10 1295 1295 945 945 155 155 155 155 80 80 1 1 1825 1882
物理演習問題
< 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が
第 15 章コンクリート補修工 15-1 ひび割れ補修工 (1) ひび割れ表面処理工 ( 研磨工 ) 15-1 (2) ひび割れ低圧注入工 15-1 (3) ひび割れ充填工 目地補修工 (1) 成型ゴム挿入工 15-4 (2) 充填工 既設水路断面修復 表面被
第 15 章コンクリート補修工 15-1 ひび割れ補修工 (1) ひび割れ表面処理工 ( 研磨工 ) 15-1 (2) ひび割れ低圧注入工 15-1 (3) ひび割れ充填工 15-3 15-2 目地補修工 (1) 成型ゴム挿入工 15-4 (2) 充填工 15-5 15-3 既設水路断面修復 表面被覆工 (1) 高圧洗浄工 15-6 (2) 断面修復工 15-7 (3) 表面被覆工 15-8 第
パソコンシミュレータの現状
第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に
<92868C70837C CA8C768E5A8F912E786C73>
平成 28 年度 宮川流域玉城第 7 処理分区管渠設計業務 度会郡玉城町勝田地内 中継ポンプ容量計算書 玉城町 基本事項 1. 中継ポンプ場 M1397-1 ha 当り時間最大汚水量 0.000294 m3/sec ha 項 目 基本事項 計画流入水量 0.081m3/min ( 0.00135 m3/sec ) 流入管口径 VUφ 200 流入管底高地盤高流出管口径流出管底高吐出先名称吐出先地盤高吐出先流入管管底高
ギリシャ文字の読み方を教えてください
埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 慣性モーメント -1/6 テーマ 01: 慣性モーメント (Momet of ietia) コマ回しをすると, 長い時間回転させるには重くて大きなコマを選ぶことや, ひもを早く引くことが重要であることが経験的にわかります. 遊びを通して, 回転の運動エネルギーを増やせば, 回転の勢いが増すことを学習できるので, 機械系の学生にとってコマ回しも大切な体験学習のひとつと言えます.
運動方程式の基本 座標系と変数を導入 (u,v) ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧
2. 潜水方程式系の導出 見延庄士郎 ( 海洋気候物理学研究室 ) [email protected] 第 1 回まとめ 1/2 二つの変数の関係の強さを表す統計量は相関であり, 最小値は -1, 最大値は +1, 無相関は である. 過去数十年間の ( 気象庁は 3 年 ) 月ごとの平均値を, 月平均データの平年値または気候値という. 観測値から平年値を引いたものが, 偏差である.
伝熱学課題
練習問題解答例 < 第 7 章凝縮熱伝達 > 7. 式 (7.) を解いて式 (7.) を導出せよ 解 ) 式 (7.) は (7.) 境界条件は : (Q7-.) : (Q7-.) 式 (7.) の両辺を について積分して C (Q7-.) 境界条件 (Q7-.) より C (Q7-.) よって (Q7-.) で さらに両辺を について積分して C (Q7-.) 境界条件 (Q7-.) より C
Microsoft Word - 2_0421
電気工学講義資料 直流回路計算の基礎 ( オームの法則 抵抗の直並列接続 キルヒホッフの法則 テブナンの定理 ) オームの法則 ( 復習 ) 図 に示すような物体に電圧 V (V) の直流電源を接続すると物体には電流が流れる 物体を流れる電流 (A) は 物体に加えられる電圧の大きさに比例し 次式のように表すことができる V () これをオームの法則 ( 実験式 ) といい このときの は比例定数であり
線積分.indd
線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+
NETES No.CG V
1 2006 6 NETES No.CG-050001-V 2007 5 2 1 2 1 19 5 1 2 19 8 2 i 1 1 1.1 1 1.2 2 1.3 2 2 3 2.1 3 2.2 8 3 9 3.1 9 3.2 10 3.3 13 3.3.1 13 3.3.2 14 3.3.3 14 3.3.4 16 3.3.5 17 3.3.6 18 3.3.7 21 3.3.8 22 3.4
土木工事共通仕様書(その2)
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 2 3 22 578 582 27 4 5 6 567 7 21 8 9 (9), 10 11 12 13 14 (1) (2) 16 532 35 15 (3) (4) (1) (1) 16 (4) () () () 17 () 18 170 19 20 21 10 22 23 24 25 26 27
第 3 章二相流の圧力損失
第 3 章二相流の圧力損失 単相流の圧力損失 圧力損失 (/) 壁面せん断応力 τ W 力のバランス P+ u m πd 4 τ w 4 τ D u τ w m w πd : 摩擦係数 λ : 円管の摩擦係数 λ D u m D P τ W 摩擦係数 層流 16/Re 乱流 0.079 Re -1/4 0.046 Re -0.0 (Blasius) (Colburn) 大まかには 0.005 二相流の圧力損失液相のみが流れた場合の単相流の圧力損失
微分方程式による現象記述と解きかた
微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則
益永八尋 2013 年 11 月 24 日 管体構造計算 益永八尋 パイプラインの縦断図及び水理縦断図のデータから管体構造計算に必要なデータ ( 静水圧 水撃圧 土かぶり 荷重条件等 ) を抽出し 管種選定を行うための構造計算を行う このソフトを利用し 各管種の経済比較のための資料作成も容易に行える
管体構造計算 パイプラインの縦断図及び水理縦断図のデータから管体構造計算に必要なデータ ( 静水圧 水撃圧 土かぶり 荷重条件等 ) を抽出し 管種選定を行うための構造計算を行う このソフトを利用し 各管種の経済比較のための資料作成も容易に行える 例えば 掘削 埋戻し土量 の計算も 縦断図のデータと標準断面図のデータから可能であり 各管種別の工事費積算も容易に行え る また 筆者が作成したスラストブロックの計算ソフト
< A38CCB8AEE967B5F89BA908593B98AEE967B8C7689E68F915F8DFB8E712E786264>
7 計画雨水量 ( 前計画と変更なし ) 計画雨水量を決定するフローを示す 降雨データ 排水区域の決定 管渠ルートの選定 単位ブロックの排水区割 確率年の選定 土地利用の調査 流入時間の想定 流下時間の算定 降雨強度公式の決定 流達時間の決定 t 各地点の I 決定 流出係数 C の決定 各管渠毎の排水面積 A の決定 計画雨水流出量 Q の算定 図 7-1 計画雨水量算定フロー 49 7.1. 確率年下水道は
第 2 章 構造解析 8
第 2 章 構造解析 8 2.1. 目的 FITSAT-1 の外郭構造が, 打ち上げ時の加速度等によって発生する局所的な応力, 及び温度変化によってビスに発生する引っ張り応力に対して, 十分な強度を有することを明らかにする. 解析には SolidWorks2011 を用いた. 2.2. 適用文書 (1)JMX-2011303B: JEM 搭載用小型衛星放出機構を利用する小型衛星への構造 フラクチャコントロール計画書
6. 現況堤防の安全性に関する検討方法および条件 6.1 浸透問題に関する検討方法および条件 検討方法 現況堤防の安全性に関する検討は 河川堤防の構造検討の手引き( 平成 14 年 7 月 ): 財団法人国土技術研究センター に準拠して実施する 安全性の照査 1) 堤防のモデル化 (1)
6. 現況堤防の安全性に関する検討方法および条件 6.1 浸透問題に関する検討方法および条件 6.1.1 検討方法 現況堤防の安全性に関する検討は 河川堤防の構造検討の手引き( 平成 14 年 7 月 ): 財団法人国土技術研究センター に準拠して実施する 安全性の照査 1) 堤防のモデル化 (1) 断面形状のモデル化 (2) 土質構成のモデル化 検討条件 検討項目 検討内容 必要な検討条件 堤防のモデル化
untitled
21 H22 H20 H19 H20 H19 H21 H21 H17 H21 L=650m W=16m H21 L=355m H19 L=770m 15 8 1 (1) 42 118,607.62 118,606.34 1.28 18,748.35 18,748.31 0.04 2,845.58 2,845.48 0.10 1.42 40 40 18.89 0.65 1.44 20.98
) km 200 m ) ) ) ) ) ) ) kg kg ) 017 x y x 2 y 5x 5 y )
001 ) g 20 g 5 300 g 7 002 720 g 2 ) g 003 0.8 m 2 ) cm 2 004 12 15 1 3 1 ) 005 5 0.8 0.4 ) 6 006 5 2 3 66 ) 007 1 700 12 ) 008 0.315 ) 009 500 g ) kg 0.2 t 189 kg 17.1 kg 010 5 1 2 cm 3 cm )km 2-1 - 011
STEP 数学 Ⅰ を解いてみた から直線 に下ろした垂線の足を H とすると, H in( 80 ) in より, S H in H 同様にして, S in, S in も成り立つ よって, S in 三角形の面積 ヘロンの公式 in in 辺の長
STEP 数学 Ⅰ を解いてみた http://toitemit.ku.ne.jp 図形と計量 三角形の面積 三角形の面積 の面積を S とすると, S in in in 解説 から直線 に下ろした垂線の足を H とすると, H in より, S H in H STEP 数学 Ⅰ を解いてみた http://toitemit.ku.ne.jp から直線 に下ろした垂線の足を H とすると, H in(
材料の力学解答集
材料の力学 ( 第 章 ) 解答集 ------------------------------------------------------------------------------- 各種応力の計算問題 (No1) 1. 断面積 1mm の材料に 18N の引張荷重が働くとき, 断面に生じる応力はどれほどか ( 18(N/mm ) または 18(MP)) P 18( N) 18 N /
測量士補 重要事項 応用測量 点高法による土量計算
点高法による土量計算 < 試験合格へのポイント > 点高法による土量計算は H9 年度を最後にその出題はない 特に三角形法を用いた土量計算は H 年度が最後の出題であり 26 年ぶりの出題となった 特に公式を覚える必要はないが計算方法を理解することが大切である 1. 点高法による土量計算の方法 点高法による土量計算とは 盛土 ( 又は切土 ) する敷地を長方形 ( 又は三角形 ) に分割し その交点の高さを測り計画高との高低差を求め
(1) 擁壁の設計 東京都 H=2.0m < 常時に関する計算 > 2000 PV w1 w2 w3 PH GL 350 1800 97 4 土の重量 16.0, コンクリートの重量 24.0 摩擦係数 0.30, 表面載荷 9.8 ( 土圧係数は直接入力による ) 安定計算用の土圧係数 0.500 壁体計算用の土圧係数 0.500 W1 = 12.6, W2 = 12.3, W3 = 78.1 PH
第1章 単 位
H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,
<4D F736F F D208B8B D488E968AEE8F BD90AC E348C8E89FC90B3816A>
2 各種給水用具類などによる損失水頭の直管換算長 直管換算長とは 水栓類 水道メータ 管継手部等による損失水頭が これと同口 径の直管の何メートル分の損失水頭に相当するかを直管の長さで表したものをいう 表 2-8 器具類損失水頭の直管換算長 口径 ( mm ) 種別 13 20 25 40 50 75 100 エルボ 90 0.6 0.75 0.9 1.5 2.1 3.0 4.2 45 0.36 0.45
土の段階載荷による圧密試験
J I S A 1 1 7 土の段階載荷による圧密試験 ( 計算書 ) サンプルデータ試験年月日平成 6 年 9 月 6 日 試料番号 ( 深さ ) T1- (14.00~14.85m) 試験者藤代哲也初試験機 No. 1 直径 D cm 6.000 含水比 w0 % 5.3 供期最低 ~ 最高室温 0.5~1.0断面積 A cm 8.7 間隙比 e 0, 体積比 f 0 0.930 状土質名称粘性土まじり砂質礫
DVIOUT-SS_Ma
第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり
Microsoft PowerPoint - 発表II-3原稿r02.ppt [互換モード]
地震時の原子力発電所燃料プールからの溢水量解析プログラム 地球工学研究所田中伸和豊田幸宏 Central Research Institute of Electric Power Industry 1 1. はじめに ( その 1) 2003 年十勝沖地震では 震源から離れた苫小牧地区の石油タンクに スロッシング ( 液面揺動 ) による火災被害が生じた 2007 年中越沖地震では 原子力発電所内の燃料プールからの溢水があり
第1章 単 位
H. Hmno 問題解答 問題解答. 力の釣合い [ 問題.] V : sin. H :.cos. 7 V : sin sin H : cos cos cos 上第 式より これと第 式より.. cos V : sin sin H : coscos cos 上第 式より これと第 式より.98. cos [ 問題.] :. V :. : 9 9. V :. : sin V : sin 8.78 H
CERT化学2013前期_問題
[1] から [6] のうち 5 問を選んで解答用紙に解答せよ. いずれも 20 点の配点である.5 問を超えて解答した場合, 正答していれば成績評価に加算する. 有効数字を適切に処理せよ. 断りのない限り大気圧は 1013 hpa とする. 0 C = 273 K,1 cal = 4.184 J,1 atm = 1013 hpa = 760 mmhg, 重力加速度は 9.806 m s 2, 気体
円形直管ダクトの算定 ( 抵抗基準 ) タ クト材料 : スハ イラルタ クト 絶対粗度 ε= 空気の密度 P = 1.20 [kg/ m3 ] 摩擦抵抗損失の目標値 : 1.0 [Pa/m] 風量 Q [ m3 /h] 1,000 2,000 3,000 5,000 10,00
ダクト計算ソフトの概要説明 1 ダクト計算の基礎として円形直管ダクトの算定のダクト材料を変えながら練習して下さい ダクト材によって粗度が異なるため圧力損失が変わることを理解して下さい 2 一般空調ダクトは抵抗基準( 定圧法 ) で算定します SI 単位以前はm 当り 0.1mmAq を基準にしていましたが現在は 1.0~1.5Pa を基準にしています 3 集塵ダクトのようにダクト内風速 20m/s
ここで, 力の向きに動いた距離 とあることに注意しよう 仮にみかんを支えながら, 手を水平に 1 m 移動させる場合, 手がした仕事は 0 である 手がみかんに加える力の向きは鉛直上向き ( つまり真上 ) で, みかんが移動した向きはこれに垂直 みかんは力の向きに動いていないからである 解説 1
1 仕事と仕事の原理 仕事の原理 解説 1 エネルギー電池で明かりをともすことができる 音を出すことやモーターを動かすことにも利用できる 電池には光, 音, 物を動かすといった能力がある 車の燃料はガソリンが一般的だが, 水素を燃料とするもの, 太陽光で動くものもある ガソリン, 水素, 太陽光それぞれには, 車を動かすという能力がある 電池, ガソリン, 水素, 太陽光 には, 光, 音, 物を動かす,
