ここで, 力の向きに動いた距離 とあることに注意しよう 仮にみかんを支えながら, 手を水平に 1 m 移動させる場合, 手がした仕事は 0 である 手がみかんに加える力の向きは鉛直上向き ( つまり真上 ) で, みかんが移動した向きはこれに垂直 みかんは力の向きに動いていないからである 解説 1

Size: px
Start display at page:

Download "ここで, 力の向きに動いた距離 とあることに注意しよう 仮にみかんを支えながら, 手を水平に 1 m 移動させる場合, 手がした仕事は 0 である 手がみかんに加える力の向きは鉛直上向き ( つまり真上 ) で, みかんが移動した向きはこれに垂直 みかんは力の向きに動いていないからである 解説 1"

Transcription

1 1 仕事と仕事の原理 仕事の原理 解説 1 エネルギー電池で明かりをともすことができる 音を出すことやモーターを動かすことにも利用できる 電池には光, 音, 物を動かすといった能力がある 車の燃料はガソリンが一般的だが, 水素を燃料とするもの, 太陽光で動くものもある ガソリン, 水素, 太陽光それぞれには, 車を動かすという能力がある 電池, ガソリン, 水素, 太陽光 には, 光, 音, 物を動かす, 物を壊すといったさまざまな現象を生み出す能力がある ここで, さまざまな現象を生み出す能力をエネルギーという エネルギーの単位はジュール J である 解説 1 仕事とはさまざまな現象どうし, その程度の差は簡単には比べられない そこでエネルギーの大きさを比べるための モノサシ ( 共通の基準 ) が必要になる これが仕事である 仕事は, 物体に力を加えて移動させることである 例えば, みかん 1 個 ( 約 100g) を支える手は 1 N の力を出している そのままゆっくりと 1 m 持ち上げるとき, その間, 手は少なくとも 1 N の力を出し続けなければならない このように, 物体に 1 N の力を加え続け, その力の向きに物体を 1m 動かすとき, 手は 1J の仕事をしたという 仕事は次の式で表される 単位はジュール J 仕事 J = 力の大きさ N 力の向きに動いた距離 m 130

2 ここで, 力の向きに動いた距離 とあることに注意しよう 仮にみかんを支えながら, 手を水平に 1 m 移動させる場合, 手がした仕事は 0 である 手がみかんに加える力の向きは鉛直上向き ( つまり真上 ) で, みかんが移動した向きはこれに垂直 みかんは力の向きに動いていないからである 解説 1 仕事が 0 になるとき 仕事が 0 になる ( 仕事をしていない ) のは, 次のような場合である 1 加えた力の向きと, 移動の向きが垂直の場合 2 力を加え続けたが, 物体が移動しなかった場合 3 加えた力の大きさが, ほぼ 0 の場合 摩擦のない水平面上で, 物体を等速直線運動させる場合が3に当たる 摩擦 ( や空気抵抗 ) が無視できるほど小さい場合, 物体の運動方向に力を加え続ける必要がないので, 仕事は 0 になる 例題 1 次の問いに答えよ ただし,100g の物体にはたらく重力の大きさを 1N とする (1) 1.2kg の荷物を, 床から 2m 持ち上げた このとき何 J の仕事をしたか (2) 摩擦のある平面で, 質量 900g の物体をゆっくりと引いて 2 m 移動させた 物体を引いているとき, バネはかりは 400g を示していた 手は何 J の仕事をしたか 例題 1の解答 (1) 24 J (2) 8 J (1) 1.2kg = 1200g 荷物に加わる重力の大きさは 12N 12 N の力を加え続けて荷物を 2 m 持ち上げたことになる 12 2 = 24 J (2) 重力の向きは鉛直下向きで, 物体は水平方向に移動する 互いに垂直なので, 物体に加わる重力 9N は, 手がする仕事に無関係 バネはかりの値から, 手は右方向に 4N の力を加え続けたことがわかる 物体は力の向きに 2 m 移動したので, 手がした仕事は, 4 2 = 8 J 解説 1 仕事の原理我々は日常, 斜面, 滑車のほかいろいろな道具を使っている 道具には 小さな力で大きな力を取り出せる という利点がある しかし, 力を加え続ける距離が長くなるので, 仕事の量としては同じになる 現実的には, 斜面や滑車の回転には摩擦の影響があり, ロープや滑車には質量があるので, 道具を使うと仕事の量は増えてしまうが, 通常これらの影響を無視して考える 131

3 仕事の原理 ( 道具を使って ) 必要な力を小さくしても動かす距離は長くなり, 仕事で得す ることはない ( 必要なエネルギーは変わらない ) ここでは, 仕事の原理を理解するために,30 kg の物体を 2m の高さに引き上げるのに要す るエネルギーを考える 直接引き上げる, 斜面を利用する, 滑車を利用する, それぞれの場合 の仕事の量を求めてみる 解説 1 直接引き上げる場合 30 kg(=30000g) の物体に加わる重力は 300N 直接引き上げる場合に必要な力は 300 N である 300N の力を 2m 出し続けることになる したがって手がする仕事は, = 600 J 表現上の注意手は 300N の力で 2m 引き上げた 一方, 物体は 300N の力で 2m 引き上げられた 手がした仕事 に対して 物体がされた仕事 ともいう 解説 1 斜面を利用する場合 図のような斜面上では, 重力の斜面高さ方向の分力の大きさは, 重力 斜辺であるから (106 ページ参照 ), = 120 N したがって, この斜面で物体を引き上げるためには 120N の力が必要になる これは, 直接引き上げるときの 300N より小さな力である 小さな力で引き上げることが可能になるが, 引き続ける距離は 5m と長くなる 手がする仕事は, = 600 J 斜面を利用すると, 小さな力で済むが, 力を加え続ける距離は長くなる 仕事の量は, 直接引き上げる場合と同じである 実際には, 斜面と物体の間の摩擦の影響で, 直接引き上げる場合より仕事の量は大きくなる 132

4 解説 1 定滑車を利用する場合 定滑車は, 中心軸を天井 ( など ) に固定した円板に, ロープをかけて回転させる道具で, 力の向きを変え るはたらきをするものである ロープを下向きに引くことで物体は持ち上がる 必要な力の大きさは, 直接持ち上げる場合と変わら ない 300N の力でロープを 2 m 引き続けるので, 手がする仕事は, = 600 J 仕事の量は, 直接引き上げる場合と同じである 滑車はなめらかに回転し, ロープの質量は無視できるほど小さいものとして考えてよい 解説 1 動滑車を利用する場合 動滑車を利用すると, 加える力を小さくすることができる 動滑車はロープにつられた円板で, この円板と持ち上げる物体を固定する 図の場合, 物体に加わる重力 300 N を, 動滑車の両側のロープ 2 カ所で支えることになる そのためロープの左端の天井には 150 N の力が加わる ロープの右端を支える手には 150 N の力がかかる 150N の力で引き続けることで, 物体を持ち上げることができる ただ, 物体を 2m 持ち上げるためには, 動滑車の両側のロープ 2m ずつ, 合わせて 4m 分をロープ右端で引き下げなければならない したがって 150 N の力を 4m 加える必要がある 手がする仕事は, = 600 J 仕事の量は, 直接引き上げる場合と同じである 133

5 解説 1 仕事率 例えばピラミッドのような建造物をつくる場合を考えてみる クレーンのような動力機械が なかった時代, 多くの人手と時間を要したことであろう 人力でも機械でも仕事の量 ( 必要な エネルギー ) は変わらない しかし, 仕事の能率という点では違いがある 仕事やエネルギーは, その全体量だけではなく仕事の能率を問題にすることがある これを 仕事率という 仕事率 W = 仕事 J かかった時間 秒 仕事率は, 単位時間 (1 秒間 ) 当たりにする仕事の量である 1 秒間に 1 J の仕事をするとき の仕事率が 1 W 単位のワット W は, 電力と同じ単位である まとめ 1 新しい理科のことばと単位 仕事 と 仕事の量 の区別はない 同じである 134

6 練習問題 111 解答は 242 ページ g の物体にはたらく重力の大きさを 1 N として次の問いに答えよ また, 動滑車と糸の質量は無視できるほど小さく, 摩擦力の影響はないものとする (1) 図 1 のように, 質量 200 g の物体にニュートンはかりをつなぎ, 静かに引き上げ た 物体が床から離れるとき, はかりの目盛りは何 N になるか (2) 物体が床を離れて床から 18cm の高さになるまでに, 手が物体にした仕事は何 J か (3) 図 2 のように動滑車を使って, 質量 200g の物体を静かに引き上げる 物体が床から 離れるときのはかりの目盛りは何 N になるか (4) 物体が床から離れてから 18cm の高さに引き上げるには, ニュートンはかりにつない だ糸を何 cm 引き上げる必要があるか (2001 年岩手県 改題 ) 135

7 2 摩擦力のはたらかない斜面を使って実験を行った 重さが 500g のおもりをニュートンはかりにつるし, 操作 1, 操作 2 を行った 100 g の物体にはたらく重力の大きさを 1 N として次の問いに答えよ [ 操作 1] 図 1 のように, ゆっくりとおもりをもとの高さから15cm 真上に引き上げた [ 操作 2] 図 2のように, 摩擦力のはたらかない斜面にそって, 点 A から点 Bまでゆっくりとおもりを引き上げ, もとの高さよりも15cm 高くした (1) 操作 1 で, おもりを 15cm 引き上げるために必要な仕事は何 J か (2) 図 2 の点 B でおもりにはたらく重力を, 斜面に垂直な方向と斜面方向に分解して図に矢印でかき入れよ 作図のために用いた線は消さずに残せ (3) 操作 2 で, おもりを摩擦力のはたらかない斜面にそって引き上げているとき, ニュートンはかりの目盛りは 2.5N であった AB 間の斜面にそった距離は何 cm か (2002 年島根県 改題 ) 136

FdData理科3年

FdData理科3年 FdData 中間期末 : 中学理科 3 年 [ 仕事の原理 : 斜面 ] パソコン タブレット版へ移動 [ 仕事の原理 引く力 ] [ 問題 ](2 学期期末 ) 次の図のような斜面を使って質量 35kg の物体を 3m の高さまで引き上げた ただし, ひもの重さ, 斜面や滑車の摩擦はないものとする また,100g の物体にはたらく重力を 1N とする (1) このとき, 物体がされた仕事はいくらか

More information

FdData理科3年

FdData理科3年 FdData 中間期末 : 中学理科 3 年 : 仕事 [ 仕事の原理 : 斜面 ] [ 仕事の原理 引く力 ] [ 問題 ](2 学期期末 ) 図のような斜面を使って質量 35kg の物体を 3m の高さまで引き上げた ただし, ひもの重さ, 斜面や滑車の摩擦はないものとする また,100g の物体を引き上げるのに必要な力を 1N とする (1) このとき, 物体がされた仕事はいくらか (2) 図のとき,

More information

問 一 次の各問いに答えなさい

問 一 次の各問いに答えなさい 年 組 番 名前 教材 8-(1) の解答力と圧力 次の 図 のように, 質量 18kg の直方体の形をした物体をいろいろな面を下にしてスポンジの 上に置き, スポンジのくぼみ方を調べる実験を行いました ただし, 質量 100g の物体にはたら く重力の大きさを1Nとして, 下の各問いに答えなさい 図 20cm 直方体の物体 30cm B C 10cm A スポンジ (1) 図 のA~C 面を下にして順番にスポンジの上に置いたとき,

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

.( 斜面上の放物運動 ) 目的 : 放物運動の方向の分け方は, 鉛直と水平だけではない 図のように, 水平面から角 だけ傾いた固定した滑らかな斜面 と, 質量 の小球を用意する 原点 から斜面に垂直な向きに, 速さ V で小球を投げ上げた 重力の加速度を g として, 次の問い に答えよ () 小

.( 斜面上の放物運動 ) 目的 : 放物運動の方向の分け方は, 鉛直と水平だけではない 図のように, 水平面から角 だけ傾いた固定した滑らかな斜面 と, 質量 の小球を用意する 原点 から斜面に垂直な向きに, 速さ V で小球を投げ上げた 重力の加速度を g として, 次の問い に答えよ () 小 折戸の物理 演習編 ttp://www.orito-buturi.co/ N..( 等加速度運動目的 : 等加速度運動の公式を使いこなす 問題を整理する能力を養う ) 直線上の道路に,A,B の 本の線が 5. の間隔で道路に 垂直に交差して引かれている この線上を一定の加速度で運 動しているトラックが通過する トラックの先端が A を通過してか ら後端が B を通過するまでの時間は.8s であった

More information

Microsoft PowerPoint - 1章 [互換モード]

Microsoft PowerPoint - 1章 [互換モード] 1. 直線運動 キーワード 速さ ( 等速直線運動, 変位 ) 加速度 ( 等加速度直線運動 ) 重力加速度 ( 自由落下 ) 力学 I 内容 1. 直線運動 2. ベクトル 3. 平面運動 4. 運動の法則 5. 摩擦力と抵抗 6. 振動 7. 仕事とエネルギー 8. 運動量と力積, 衝突 9. 角運動量 3 章以降は, 運動の向きを考えなければならない 1. 直線運動 キーワード 速さ ( 等速直線運動,

More information

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 剛体過去問解答例. 長さの棒の慣性モーメントは 公式より l G l A 点のまわりは平行軸の定理より A l l l B y 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 運動方程式は 方向 : R f, y 方向 : y N l 回転 : G { N f R cos } A 静止しているとき 方向の力と 力のモーメントがつり合うので y ~ より R ' また 摩擦力が最大静止摩擦力より大きいとはしごは動き出すので

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

物理演習問題

物理演習問題 < 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が

More information

Review Test 1 センター試験対策 物理 I [ 力学編 ] 単元別総復習 6 回分 このテストは 大学入試攻略の部屋で配布されている Excel でセンター対 策 [ 物理 ] with CAT on Excel の印刷版です 同じ問題が Excel の画面上で簡単に解くことができて,

Review Test 1 センター試験対策 物理 I [ 力学編 ] 単元別総復習 6 回分 このテストは 大学入試攻略の部屋で配布されている Excel でセンター対 策 [ 物理 ] with CAT on Excel の印刷版です 同じ問題が Excel の画面上で簡単に解くことができて, Review Test センター試験対策 物理 I [ 力学編 ] 単元別総復習 6 回分 このテストは 大学入試攻略の部屋で配布されている Excel でセンター対 策 [ 物理 ] with CAT on Excel の印刷版です 同じ問題が Excel の画面上で簡単に解くことができて, しかもその場で採点 ができる CAT システム をなるべくご利用いただきたいのですが, それがで きない受験生の皆さんのために,

More information

1 混合物の性質を調べるために, 次の実験を行った 表は, この実験の結果をまとめたもの である このことについて, 下の 1~4 の問いに答えなさい 実験操作 1 図 1 のように, 液体のエタノール 4cm 3 と水 16cm 3 の混合物を, 枝つきフラスコの中に入れ, さらに沸騰石を加えて弱火で加熱した 温度計を枝つきフラスコの枝の高さにあわせ, 蒸気の温度を記録した 操作 2 ガラス管から出てきた液体を

More information

物理学 (2) 担当 : 白井 英俊

物理学 (2) 担当 : 白井 英俊 物理学 (2) 担当 : 白井 英俊 Email: [email protected] 2 章力のつり合い 力学とは 力と運動の関係を調べる学問 そのための基礎として 静止している物体 = 物体に働く力がつりあって平衡状態にある について 力の働きを調べる 2.1 力とは きちんとした定義が与えられ 特定の意味を持つ用語のこと 物理学に限らず いろいろな学問において 力 のように普通の言葉が専門用語として用いられることが多いので注意しよう

More information

物理学 (4) 担当 : 白井 英俊

物理学 (4) 担当 : 白井 英俊 物理学 (4) 担当 : 白井 英俊 Email: [email protected] 4 章力のモーメントとモーメントのつり合い 物体に力を加えた時 作用点の位置によるが 並進運動 --- 物体全体としての移動回転運動 --- 物体自体の回転をおこす回転運動をおこす能力のことを力のモーメントという 4 章では力のモーメントについて学ぶ 4.1 力のモーメント 剛体 (rigid body):

More information

浮力と圧力

浮力と圧力 浮力と圧力 もくじ 浮力以前 2 ビニル袋の水の重さは なくなった のか 3 浮力の導入 4 圧力とは 4 液体による圧力 5 浮力はなぜ生じるのか 6 アルキメデスの原理 8 浮力とそれ以外の力のつりあい 9 問題 10 答え 13 1 浮力以前 ばねを水にひたしても, 水の重さがばねにかかることはない ( 図 1) 水の入ったビニル袋がばねの近くにただよっていても, ばねに影響はない ( 図 2)

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://orito-buturi.com/ NO.3 今日の目的 : 1 微分方程式をもう一度 三角関数の近似について学ぶ 3 微分の意味を考える 5. 起電力 の電池, 抵抗値 の抵抗, 自己インダクタンス のコイルとスイッチを用いて右図のような回路をつくった 始めスイッチは 開かれている 時刻 t = でスイッチを閉じた 以下の問に答えよ ただし, 電流はコイルに

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

Fd入試理科

Fd入試理科 FdData 入試理科 3 年 Home [http://www.fdtext.com/dan/ ] 仕事 仕事 仕事率 質量 300g の物体を, 床から 2m の高さまでゆっくりと持ち上げるときの仕事の大きさは何 J か ただし, 質量 100g の物体にはたらく重力の大きさを 1N とする ( 北海道 ) [ 解答 ]6J 物体に力を加えて移動させたときの作業量を仕事という ある物体に 1N

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

センター試験対策[物理I]

センター試験対策[物理I] Review Test センター試験対策 物理 I [ 力学編 ] 単元別総復習 6 回分 このテストは 大学入試攻略の部屋で配布されている Excel でセンター対 策 [ 物理 ] with CT on Excel の印刷版です 同じ問題が Excel の画面上で簡単に解くことができて, しかもその場で採点 ができる CT システム をなるべくご利用いただきたいのですが, それがで きない受験生の皆さんのために,

More information

高校電磁気学 ~ 電磁誘導編 ~ 問題演習

高校電磁気学 ~ 電磁誘導編 ~ 問題演習 高校電磁気学 ~ 電磁誘導編 ~ 問題演習 問 1 磁場中を動く導体棒に関する問題 滑車 導体棒の間隔 L m a θ (1) おもりの落下速度が のとき 導体棒 a に生じる誘導起電力の 大きさを求めよ 滑車 導体棒の間隔 L m a θ 導体棒の速度 水平方向の速度 cosθ Δt の時間に回路を貫く磁束の変化 ΔΦ は ΔΦ = ΔS = LcosθΔt ΔΦ ファラデーの法則 V = N より

More information

Taro-解答例NO3放物運動H16

Taro-解答例NO3放物運動H16 放物運動 解答のポイント 初速度, 水平との角度 θ で 高さ の所から投げあげるとき 秒後の速度 =θ =θ - 秒後の位置 =θ 3 ( 水平飛行距離 ) =θ - + 4 ( 高さ ) ~4 の導出は 基本問題 参照 ( 地上から投げた場合の図 : 教科書参照 ) 最高点の 高さ 最高点では において = 水平到達距離 より 最高点に到達する時刻 を求め 4に代入すると最高点の高さH 地上では

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

理科学習指導案指導者海田町立海田西中学校教諭石川幸宏 1 日時平成 30 年 2 月 21 日 ( 水 ) 第 4 校時 2 学年第 1 学年 2 組 ( 男子 19 名女子 18 名 37 名 ) 3 場所海田西中学校第 2 理科室 4 単元名身のまわりの現象 ~ 力の世界 ~ 5 単元について

理科学習指導案指導者海田町立海田西中学校教諭石川幸宏 1 日時平成 30 年 2 月 21 日 ( 水 ) 第 4 校時 2 学年第 1 学年 2 組 ( 男子 19 名女子 18 名 37 名 ) 3 場所海田西中学校第 2 理科室 4 単元名身のまわりの現象 ~ 力の世界 ~ 5 単元について 理科学習指導案指導者海田町立海田西中学校教諭石川幸宏 1 日時平成 30 年 2 月 21 日 ( 水 ) 第 4 校時 2 学年第 1 学年 2 組 ( 男子 19 名女子 18 名 37 名 ) 3 場所海田西中学校第 2 理科室 4 単元名身のまわりの現象 ~ 力の世界 ~ 5 単元について (1) 単元観私たちは, 身のまわりの日常生活の中で様々な力や重力, 圧力などと深くかかわり合いながら,

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位 http://totemt.sur.ne.p 外積 ( ベクトル積 ) の活用 ( 面積, 法線ベクトル, 平面の方程式 ) 3 次元空間の つのベクトルの積が つのベクトルを与えるようなベクトルの掛け算 ベクトルの積がベクトルを与えることからベクトル積とも呼ばれる これに対し内積は符号と大きさをもつ量 ( スカラー量 ) を与えるので, スカラー積とも呼ばれる 外積を使うと, 平行四辺形や三角形の面積,

More information

立体切断⑹-2回切り

立体切断⑹-2回切り 2 回切り問題のポイント 1. 交線を作図する 2つの平面が交わると 必ず直線ができます この直線のことを 交線 ( こうせん ) といいます 2. 体積を求める方法は次の 3 通りのどれか! 1 柱の体積 = 底面積 高さ 1 2 すいの体積 = 底面積 高さ 3 3 柱の斜め切り= 底面積 高さの平均 ただし 高さの平均が使えるのは 底面が円 三角形 正方形 長方形 ひし形 平行四辺形 正偶数角形のときだけ

More information

スライド 1

スライド 1 Q & A Q: 猫ひねりができるのって猫だけですか?(2 人 ) A: 動物が専門でない私にとっては難しい質問です おそらく 猫に近い ヒョウ チーター ヤマネコ等はできるのではないかと思います ちなみに猫とともにペットの代表である犬は 猫ほどうまくないようです 犬を抱っこしていて落としてしまい 怪我をする犬もけっこういるようです 猫はおそらく大丈夫です Q: 空気抵抗は気圧に比例したりしますか?

More information

平成 31 年度 前期選抜学力検査問題 数学 ( 2 時間目 45 分 ) 受検番号氏名 注 意 1 問題は, 表と裏にあります 2 答えは, すべて解答欄に記入しなさい 1 次の (1)~(7) の問いに答えなさい (1) 3 (-2 2 ) を計算しなさい 表合計 2 次の (1)~(6) の問

平成 31 年度 前期選抜学力検査問題 数学 ( 2 時間目 45 分 ) 受検番号氏名 注 意 1 問題は, 表と裏にあります 2 答えは, すべて解答欄に記入しなさい 1 次の (1)~(7) の問いに答えなさい (1) 3 (-2 2 ) を計算しなさい 表合計 2 次の (1)~(6) の問 平成 1 年度 前期選抜学力検査問題 数学 ( 時間目 45 分 ) 受検番号氏名 注 意 1 問題は, 表と裏にあります 答えは, すべて解答欄に記入しなさい 1 次の ~(7) の問いに答えなさい (- ) を計算しなさい 表合計 次の ~(6) の問いに答えなさい 合計 関数 y = x のグラフについて正しいものを, 次のア ~ エからすべて選んで記号を書きなさい アイウエ グラフは原点を通る

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 演習プリント N.15 43. 目的 : 電磁誘導は, 基本を理解すれば問題はそれほど難しくない! ということを学ぶ 問 1 の [ ] に適切な数値または数式を入れ, 問 に答えよ 図 1 のように, 紙面に垂直で一様な磁界が 0 の領域だけにある場合について考える 磁束密度は Wb/m で, 磁界は紙面の表から裏へ向かっている 図のように,1 辺の長さが m の正方形のコイル を,

More information

木村の物理小ネタ 単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合

木村の物理小ネタ   単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合 単振動と単振動の力学的エネルギー. 弾性力と単振動 弾性力も単振動も力は F = -x の形で表されるが, x = の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合いの位置 である たとえば, おもりをつるしたばねについて, ばねの弾性力を考えるときは, ばねの自然長を x = とし, おもりの単振動で考える場合は, おもりに働く力がつり合った位置を

More information

【FdData中間期末過去問題】中学数学1年(比例と反比例の応用/点の移動/速さ)

【FdData中間期末過去問題】中学数学1年(比例と反比例の応用/点の移動/速さ) FdDt 中間期末過去問題 中学数学 1 年 ( 比例と反比例の応用 / 点の移動 / 速さ ) http://www.fdtet.com/dt/ 水そうの問題 [ 問題 ](2 学期期末 ) 水が 200 l 入る水そうに, 毎分 8 l の割合で水を入れていく 水を入れはじめてから 分後の水の量を y l とするとき, 次の各問いに答えよ (1), y の関係を式に表せ (2) の変域を求めよ

More information

<82D282A982C1746F95F18D908F57967B95B E696E6464>

<82D282A982C1746F95F18D908F57967B95B E696E6464> 1 2 (90cm 70cm 2015) 3 (68cm 28cm 30cm 12kg 2015) (77.5 109.5cm 2015) 4 (22cm 50cm 50cm 4.6kg 2015) (45cm 62.5cm 2015) (47.4cm 62.5cm 2014) 5 (28.5cm 23.5cm) (45cm 62cm 2015) (97cm 107cm 2015) 6 7 8 9

More information

6 12 10661 93100 227213202 222208197 85kg cm 20 64.521 106856142 2 1 4 3 9767 100 35 cm 7747 208198 90kg 23 5828 10661 93100 cm 227213202 10639 61 64.521 85kg 78kg 70kg 61 100 197204.5 cm 15 61

More information

180 140 22

180 140 22 21 180 140 22 23 25 50 1 3 350 140 500cm 600 140 24 25 26 27 28 29 30 31 1/12 8.3 1/15 6.7 10 1/8 12.5 1/20 140 90 75 150 60 150 10 30 15 35 2,000 30 32 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 % 100 50 33.3

More information

例題1 転がり摩擦

例題1 転がり摩擦 重心 5.. 重心問題解法虎の巻. 半円 分円. 円弧. 扇形. 半球殻 5. 半球体 6. 厚みのある半球殻 7. 三角形 8. 円錐 9. 円錐台. 穴あき板. 空洞のある半球ボール 重心問題解法虎の巻 関西大学工学部物理学教室 齊藤正 重心を求める場合 質点系の重心の求め方が基本 実際の物体では連続体であるので 積分形式で求める場合が多い これらの式は 次元のベクトル形式で書かれている通り つの式は実際には

More information

第 2 学年 5 組理科学習指導案 日時平成 26 年 12 月 12 日 ( 金 ) 場所城北中学校授業者酒井佑太 1 単元名電気の世界 2 単元について (1) 教材観今日の私たちの日常生活において 電気製品はなくてはならないものであり 電気についての基礎的な知識は必要不可欠である しかし 実際

第 2 学年 5 組理科学習指導案 日時平成 26 年 12 月 12 日 ( 金 ) 場所城北中学校授業者酒井佑太 1 単元名電気の世界 2 単元について (1) 教材観今日の私たちの日常生活において 電気製品はなくてはならないものであり 電気についての基礎的な知識は必要不可欠である しかし 実際 第 2 学年 5 組理科学習指導案 日時平成 26 年 12 月 12 日 ( 金 ) 場所城北中学校授業者酒井佑太 1 単元名電気の世界 2 単元について (1) 教材観今日の私たちの日常生活において 電気製品はなくてはならないものであり 電気についての基礎的な知識は必要不可欠である しかし 実際に見たり触ったりできない電流を理解することは難しく 苦手意識をもっている生徒も少なくない また 磁界についても砂鉄や方位磁針を用いて間接的に磁界を観察するため

More information

【FdData中間期末過去問題】中学理科3年(力/合成と分解/つりあい/慣性/作用反作用)

【FdData中間期末過去問題】中学理科3年(力/合成と分解/つりあい/慣性/作用反作用) FdData 中間期末 : 中学理科 3 年 : 力 [2 力のつりあい / 力の合成と分解 / 斜面上の物体 /3 力のつりあい / 慣性の法則 作用 反作用の法則 ] [ 理科 3 年 pdf ファイル一覧 ] 2 力のつりあい [2 力のつりあいの 3 条件 ] [ 問題 ](2 学期期末 ) 2 つの力がつり合うための条件をまとめた次の文の1~4にあてはまる語句を下の [ ] からそれぞれ選べ

More information

第1章 様々な運動

第1章 様々な運動 自己誘導と相互誘導 自己誘導 自己誘導起電力 ( 逆起電力 ) 図のように起電力 V V の電池, 抵抗値 R Ω の抵抗, スイッチS, コイルを直列につないだ回路を考える. コイルに電流が流れると, コイル自身が作る磁場による磁束がコイルを貫く. コイルに流れる電流が変化すると, コイルを貫く磁束も変化するのでコイルにはこの変化を妨げる方向に誘導起電力が生じる. この現象を自己誘導という. 自己誘導による起電力は電流変化を妨げる方向に生じるので逆起電力とも呼ばれる.

More information

1年4章変化と対応①

1年4章変化と対応① 年 4 章変化と対応 ( ) 組 ( ) 番名前 ( ). 次の式で表される と の関係のうち, が に比例するものを選び, 記号で答えなさ い また, 選んだものについて, 比例定数をいいなさい. =-3 について, の値に対応する の値を求めて, 次の表を完成させなさい = =+ 3 = 3 4 =- 0 6-9. 次の ( ア ) ~ ( ウ ) について, が に比例するものを選び, 記号で答えなさい

More information

【FdData中間期末過去問題】中学理科3年(速さ/記録タイマー/等速直線運動/斜面)

【FdData中間期末過去問題】中学理科3年(速さ/記録タイマー/等速直線運動/斜面) FdData 中間期末 : 中学理科 3 年 : 運動 [ 運動している物体 / 速さ / 記録タイマー / 力がはたらかない物体の運動斜面を下る物体の運動 / 自由落下 / 運動の方向と力が逆向きの場合 / 運動総合 FdData 中間期末製品版のご案内 ] [FdData 中間期末ホームページ ] 掲載の pdf ファイル ( サンプル ) 一覧 次のリンクは [Shift] キーをおしながら左クリックすると,

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

比例のグラフ : 地震 1 地下のごく浅い場所で発生した地震を, 地点 A,B,C,D で観測した 次の表は, 各地点の震源からの距離と, 初期微動と主要動がそれぞれ始まった時刻をまとめたものである また, 図 1 は, この地震の震源からの距離とこの地震が発生してから P 波と S 波が到達するま

比例のグラフ : 地震 1 地下のごく浅い場所で発生した地震を, 地点 A,B,C,D で観測した 次の表は, 各地点の震源からの距離と, 初期微動と主要動がそれぞれ始まった時刻をまとめたものである また, 図 1 は, この地震の震源からの距離とこの地震が発生してから P 波と S 波が到達するま 比例のグラフ : 地震 1 地下のごく浅い場所で発生した地震を, 地点 A,B,C,D で観測した 次の表は, 各地点の震源からの距離と, 初期微動と主要動がそれぞれ始まった時刻をまとめたものである また, 図 1 は, この地震の震源からの距離とこの地震が発生してから P 波と S 波が到達するまでの時間との関係をグラフで表したものである 次の各問いに答えなさい ただし, この地震の震央 ( 震源

More information

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8 [N/m] m[g] mẍ x (N) x. f[hz] f π ω π m ω πf[rd/s] m ω 4π f [Nm/rd] J[gm ] J θ θ (gm ) θ. f[hz] f π ω π J J ω 4π f /8 θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ

More information

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63>

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63> 土質力学 Ⅰ 及び演習 (B 班 : 小高担当 ) 配付資料 N.11 (6.1.1) モールの応力円 (1) モールの応力円を使う上での3つの約束 1 垂直応力は圧縮を正とし, 軸の右側を正の方向とする 反時計まわりのモーメントを起こさせるせん断応力 の組を正とする 3 物体内で着目する面が,θ だけ回転すると, モールの応力円上では θ 回転する 1とは物理的な実際の作用面とモールの応力円上との回転の方向を一致させるために都合の良い約束である

More information

Microsoft PowerPoint - 08economics3_2.ppt

Microsoft PowerPoint - 08economics3_2.ppt 経済学第 3 章の決定とその変化 3.2 需要曲線のシフトと財のの変化 中村学園大学吉川卓也 1 代替財のの変化 みかんのが上昇 ( 低下 ) すると みかんの代替財であるりんごの需要曲線は右 ( 左 ) へシフトする ( 第 2 章 ) 図 3.2は みかんのが上昇したことによりりんごの需要曲線が右シフトしたとき りんごがどのように変化するかを示している みかんの上昇前 : りんごの供給曲線 とりんごの需要曲線

More information

2018年度 筑波大・理系数学

2018年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ < < とする 放物線 上に 点 (, ), A (ta, ta ), B( - ta, ta ) をとる 三角形 AB の内心の 座標を p とし, 外心の 座標を q とする また, 正の実数 a に対して, 直線 a と放物線 で囲まれた図形の面積を S( a) で表す () p, q を cos を用いて表せ S( p) () S(

More information

機構学 平面機構の運動学

機構学 平面機構の運動学 問題 1 静止座標系 - 平面上を運動する節 b 上に2 定点,Bを考える. いま,2 点の座標は(0,0),B(50,0) である. 2 点間の距離は 50 mm, 点の速度が a 150 mm/s, 点 Bの速度の向きが150 である. 以下の問いに答えよ. (1) 点 Bの速度を求めよ. (2) 瞬間中心を求めよ. 節 b a (0,0) b 150 B(50,0) 問題 1(1) 解答 b

More information

[ ものづくり(理工)分野 ]

[ ものづくり(理工)分野 ] [ 適性検査 Ⅱ ものづくり ( 理工 ) 分野 ] 1 図 1のように 1 辺が6cm の立方体があります この立方体の表面にペンキをぬり 図 2のように2cm ずつ間を空けて たて 横に線をかき入れました そして かき入れた線にそって小さな立方体に切り分けました このとき 次の (1) ~(6) の問いに答えなさい 図 1 図 2 (1) 図 2 の小さな立方体のうち 2 面にペンキがぬられている立方体

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 慣性モーメント -1/6 テーマ 01: 慣性モーメント (Momet of ietia) コマ回しをすると, 長い時間回転させるには重くて大きなコマを選ぶことや, ひもを早く引くことが重要であることが経験的にわかります. 遊びを通して, 回転の運動エネルギーを増やせば, 回転の勢いが増すことを学習できるので, 機械系の学生にとってコマ回しも大切な体験学習のひとつと言えます.

More information

木村の理論化学小ネタ 理想気体と実在気体 A. 標準状態における気体 1mol の体積 標準状態における気体 1mol の体積は気体の種類に関係なく 22.4L のはずである しかし, 実際には, その体積が 22.4L より明らかに小さい

木村の理論化学小ネタ   理想気体と実在気体 A. 標準状態における気体 1mol の体積 標準状態における気体 1mol の体積は気体の種類に関係なく 22.4L のはずである しかし, 実際には, その体積が 22.4L より明らかに小さい 理想気体と実在気体 A. 標準状態における気体 1mol の体積 標準状態における気体 1mol の体積は気体の種類に関係なく.4L のはずである しかし, 実際には, その体積が.4L より明らかに小さい気体も存在する このような気体には, 気体分子に, 分子量が大きい, 極性が大きいなどの特徴がある そのため, 分子間力が大きく, 体積が.4L より小さくなる.4L とみなせる実在気体 H :.449

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

スライド タイトルなし

スライド タイトルなし Aprl 15, 15 平成 8 年度学部前期 教科書 : 力学 Ⅱ( 原島鮮著, 裳華房 ) 金用日 :8 限,9 限,1 限 (15:35~18:) 丸山央峰 http://www.borobotcs.mech.nagoya-u.ac.jp/ Nagoya Unversty, Borobotcs, Ara Lab 科目名 : 解析力学及び演習 単位数 :.5 授業形態 : 講義 演習 授業内容

More information

自由落下と非慣性系における運動方程式 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣

自由落下と非慣性系における運動方程式 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣 自由落下と非慣性系における運動方程式 1 1 2 3 4 5 6 7 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣性力があるか... 7 1 2 無重力 (1) 非慣性系の住人は無重力を体感できる (a) 併進的な加速度運動をしている非慣性系の住人

More information

物体の自由落下の跳ね返りの高さ 要約 物体の自由落下に対する物体の跳ね返りの高さを測定した 自由落下させる始点を高くするにつれ 跳ね返りの高さはただ単に始点の高さに比例するわけではなく 跳ね返る直前の速度に比例することがわかった

物体の自由落下の跳ね返りの高さ 要約 物体の自由落下に対する物体の跳ね返りの高さを測定した 自由落下させる始点を高くするにつれ 跳ね返りの高さはただ単に始点の高さに比例するわけではなく 跳ね返る直前の速度に比例することがわかった 物体の自由落下の跳ね返りの高さ 要約 物体の自由落下に対する物体の跳ね返りの高さを測定した 自由落下させる始点を高くするにつれ 跳ね返りの高さはただ単に始点の高さに比例するわけではなく 跳ね返る直前の速度に比例することがわかった (1) 目的球技において必ず発生する球の跳ね返りとはどのような規則性に基づいて発生しているのかを調べるために 4 種類の物体を用い様々な床の上で実験をして跳ね返りの規則性を測定した

More information

Taro-3年生生徒による重力加速度

Taro-3年生生徒による重力加速度 重力加速度測定方法の研究 物理実験室使用 3 年組 SS 番 班 名前 重力加速度測定実験 結果検討について 1. 目的 生徒が重力加速度の測定実験を行う中で 積極的 能動的に討議し検討していく事を目指す 正確な数値を求めることよりも 方法の検討 誤差の原因等を検討することを主眼とする 重力が働く場での運動 ( 落下運動 繰り返し行われる運動等 ) には重力加速度が関係していることを理解し それぞれの実験の原理を把握してから実験を行う

More information

比例・反比例 例題編 問題・解答

比例・反比例 例題編 問題・解答 中学数学比例 反比例の問題 関数 ( 移行措置による追加 ) 比例 変域 座標 比例のグラフ 比例の式 比例の文章問題 座標と変域 反比例とグラフ 反比例の式 反比例の文章問題 比例と反比例のグラフ * ページ表示 を 見開き でご覧いただきますと 問題とその 答えが見やすくなります * このテキストは家庭学習の補助教材としてのみご利用いただけま す その他 ( 問題の改変 商用など ) の利用はご遠慮くださいま

More information

基礎化学 Ⅰ 第 5 講原子量とモル数 第 5 講原子量とモル数 1 原子量 (1) 相対質量 まず, 大きさの復習から 原子 ピンポン玉 原子の直径は, 約 1 億分の 1cm ( 第 1 講 ) 原子とピンポン玉の関係は, ピンポン玉と地球の関係と同じくらいの大きさです 地球 では, 原子 1

基礎化学 Ⅰ 第 5 講原子量とモル数 第 5 講原子量とモル数 1 原子量 (1) 相対質量 まず, 大きさの復習から 原子 ピンポン玉 原子の直径は, 約 1 億分の 1cm ( 第 1 講 ) 原子とピンポン玉の関係は, ピンポン玉と地球の関係と同じくらいの大きさです 地球 では, 原子 1 第 5 講原子量とモル数 1 原子量 (1) 相対質量 まず, 大きさの復習から 原子 ピンポン玉 原子の直径は, 約 1 億分の 1cm ( 第 1 講 ) 原子とピンポン玉の関係は, ピンポン玉と地球の関係と同じくらいの大きさです 地球 では, 原子 1 つの質量は? 水素原子は,0.167 10-23 g 酸素原子は,2.656 10-23 g 炭素原子は,1.993 10-23 g 原子の質量は,

More information

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方 大阪大学物理 8 を解いてみた Ⅰ. 問 g 最高点の座標を y max とすると, 力学的エネルギー保存則より \ y m mgy 補足 max g max 小物体の運動方向に対する仕事は重力 ( 保存力 ) の斜面に沿った成分のみであり, 垂直抗力 ( 非保存力 ) の仕事は である よって, 力学的エネルギー保存則が成り立つ これを確かめてみよう 小物体は重力の斜面に沿った外力を受けながらその運動エネルギーを失っていく

More information

Microsoft PowerPoint - 08economics4_2.ppt

Microsoft PowerPoint - 08economics4_2.ppt 経済学第 4 章資源配分と所得分配の決定 (2) 4.2 所得分配の決定 中村学園大学吉川卓也 1 所得を決定する要因 資源配分が変化する過程で 賃金などの生産要素価格が変化する 生産要素価格は ( 賃金を想定すればわかるように ) 人々の所得と密接な関係がある 人々の所得がどのように決まるかを考えるために 会社で働いている人を例にとる 2 (1) 賃金 会社で働いている人は 給与を得ている これは

More information

() 実験 Ⅱ. 太陽の寿命を計算する 秒あたりに太陽が放出している全エネルギー量を計測データをもとに求める 太陽の放出エネルギーの起源は, 水素の原子核 4 個が核融合しヘリウムになるときのエネルギーと仮定し, 質量とエネルギーの等価性から 回の核融合で放出される全放射エネルギーを求める 3.から

() 実験 Ⅱ. 太陽の寿命を計算する 秒あたりに太陽が放出している全エネルギー量を計測データをもとに求める 太陽の放出エネルギーの起源は, 水素の原子核 4 個が核融合しヘリウムになるときのエネルギーと仮定し, 質量とエネルギーの等価性から 回の核融合で放出される全放射エネルギーを求める 3.から 55 要旨 水温上昇から太陽の寿命を算出する 53 町野友哉 636 山口裕也 私たちは, 地球環境に大きな影響を与えている太陽がいつまで今のままであり続けるのかと疑問をもちました そこで私たちは太陽の寿命を求めました 太陽がどのように燃えているのかを調べたら水素原子がヘリウム原子に変化する核融合反応によってエネルギーが発生していることが分かった そこで, この反応が終わるのを寿命と考えて算出した

More information

文章題レベルチェック(整数のかけ算、わり算)【配布用】

文章題レベルチェック(整数のかけ算、わり算)【配布用】 2015/8/21 改訂 文章題レベルチェック ( 整数 ) 配布用 < 問題の解答方法 > 全ての問題をノートに書いてください そして その問題の意味を 図や絵にしてみてください その図や絵を見ながら 式を書いて答えを出してください 計算に必要な筆算などは 小さく書かずに 大きく間違えないように書いておいてください くれぐれも いきなり式を書いて答えを出さないようにしてください 解答ができたら 図や絵を使って

More information

2015年度 金沢大・理系数学

2015年度 金沢大・理系数学 05 金沢大学 ( 理系 ) 前期日程問題 解答解説のページへ四面体 OABC において, 3 つのベクトル OA, OB, OC はどの つも互いに垂直で あり, h > 0 に対して, OA, OB, OC h とする 3 点 O, A, B を通る平面上の点 P は, CP が CA と CB のどちらとも垂直となる点であるとする 次の問いに答えよ () OP OA + OB とするとき, と

More information

Xamテスト作成用テンプレート

Xamテスト作成用テンプレート 気体の性質 1 1990 年度本試験化学第 2 問 問 1 次の問い (a b) に答えよ a 一定質量の理想気体の温度を T 1 [K] または T 2 [K] に保ったまま, 圧力 P を変える このときの気体の体積 V[L] と圧力 P[atm] との関係を表すグラフとして, 最も適当なものを, 次の1~6のうちから一つ選べ ただし,T 1 >T 2 とする b 理想気体 1mol がある 圧力を

More information

第1章 単 位

第1章  単  位 H. Hmno 問題解答 問題解答. 力の釣合い [ 問題.] V : sin. H :.cos. 7 V : sin sin H : cos cos cos 上第 式より これと第 式より.. cos V : sin sin H : coscos cos 上第 式より これと第 式より.98. cos [ 問題.] :. V :. : 9 9. V :. : sin V : sin 8.78 H

More information

スライド 1

スライド 1 Q&A Q: 空気より重いガスなら声は低くなるのですか A: はい そのとおりです ( 動画参照 ) この動画で使われている気体は六フッ化硫黄 (SF 6 ) 分子量は 146 で窒素分子 28 の約 5 倍 無色 無臭 無毒の気体です Q: 貝を耳にあてると海の音が聞こえてくるというのはうそだったのだと知って悲しくなりました A: うそというわけではないと思いますが 気柱を耳にあてたときに聞こえるゴーっという音と同種のものだと思います

More information

<8D828D5A838A817C A77425F91E6318FCD2E6D6364>

<8D828D5A838A817C A77425F91E6318FCD2E6D6364> 4 1 平面上のベクトル 1 ベクトルとその演算 例題 1 ベクトルの相等 次の問いに答えよ. ⑴ 右の図 1 は平行四辺形 である., と等しいベクトルをいえ. ⑵ 右の図 2 の中で互いに等しいベクトルをいえ. ただし, すべてのマス目は正方形である. 解 ⑴,= より, =,= より, = ⑵ 大きさと向きの等しいものを調べる. a =d, c = f d e f 1 右の図の長方形 において,

More information

Hanako-公式集力学熱編.jhd

Hanako-公式集力学熱編.jhd 熱分野 ================================================= E-mail [email protected] ホームページ htt://www.ne.j/asahi/hanako/hysics/ ================================================= 公式集力学熱編.jhd < 1 > 気体の法則 気体の状態変化

More information

基礎物理問題集 No-1 P1. 変化量とグラフの関係 4 運動方程式 摩擦 次の空白を埋めて問題に答えよ 時間と共にあらゆるものが変化をするので最もよく出てくる変化は時刻の変化である時間でこれをと表すが単にtと表すこともある 変化量 (Δ= - ) として V= a= ア ) 位置を S[m],

基礎物理問題集 No-1 P1. 変化量とグラフの関係 4 運動方程式 摩擦 次の空白を埋めて問題に答えよ 時間と共にあらゆるものが変化をするので最もよく出てくる変化は時刻の変化である時間でこれをと表すが単にtと表すこともある 変化量 (Δ= - ) として V= a= ア ) 位置を S[m], o-1 P1. 変化量とグラフの関係 次の空白を埋めて問題に答えよ 時間と共にあらゆるものが変化をするので最もよく出てくる変化は時刻の変化である時間でこれをと表すが単にtと表すこともある 変化量 (Δ= - ) として V= = ア ) 位置を S[m], 時刻を t[s] とする 運動 A, について速さ V と加速度 を表す式と単位を示せ また その意味を理解するために V -t -t 平面での運動を図示せよ

More information

実験題吊  「加速度センサーを作ってみよう《

実験題吊  「加速度センサーを作ってみよう《 加速度センサーを作ってみよう 茨城工業高等専門学校専攻科 山越好太 1. 加速度センサー? 最近話題のセンサーに 加速度センサー というものがあります これは文字通り 加速度 を測るセンサーで 主に動きの検出に使われたり 地球から受ける重力加速度を測定することで傾きを測ることなどにも使われています 最近ではゲーム機をはじめ携帯電話などにも搭載されるようになってきています 2. 加速度センサーの仕組み加速度センサーにも様々な種類があります

More information

20~22.prt

20~22.prt [ 三クリア W] 辺が等しいことの証明 ( 円周角と弦の関係利用 ) の の二等分線がこの三角形の外接円と交わる点をそれぞれ とするとき 60 ならば であることを証明せよ 60 + + 0 + 0 80-60 60 から ゆえに 等しい長さの弧に対する弦の長さは等しいから [ 三クリア ] 方べきの定理 接線と弦のなす角と円周角を利用 線分 を直径とする円 があり 右の図のように の延長上の点

More information

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと 567_ 次曲線の三角関数による媒介変数表示 次曲線の三角関数による媒介変数表示 次曲線 ( 放物線 楕円 双曲線 ) の標準形の, についての方程式と, 三角関数による媒介変数表示は次のように対応している.. 放物線 () 4 p (, ) ( ptn, ptn ) (). 楕円. 双曲線 () () (, p p ), tn tn (, ) ( cos, sin ) (, ), tn cos (,

More information

相加平均 相乗平均 調和平均が表す比 台形 の上底 下底 の長さをそれぞれ, とするとき 各平均により 台形の高さ はどのように比に分けられるだろうか 相乗平均は 相似な つの台形になるから台形の高さ を : の 比に分ける また 相加平均は は : の比に分けます 調和平均は 対角線 と の交点を

相加平均 相乗平均 調和平均が表す比 台形 の上底 下底 の長さをそれぞれ, とするとき 各平均により 台形の高さ はどのように比に分けられるだろうか 相乗平均は 相似な つの台形になるから台形の高さ を : の 比に分ける また 相加平均は は : の比に分けます 調和平均は 対角線 と の交点を 台形に潜むいろいろな平均 札幌旭丘高校中村文則 台形に調和平均 相加平均をみる 右図の台形 において = = とする の長さを, を用いて表してみよう = x = y = c とすると であることから : = : より c y = x + y であることから : = : より c x = x + y を辺々加えると x + y c + = より + = x + y c となる ここで = = c =

More information

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63> 第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(

More information

2016年度 広島大・文系数学

2016年度 広島大・文系数学 06 広島大学 ( 文系 ) 前期日程問題 解答解説のページへ a を正の定数とし, 座標平面上において, 円 C : x + y, 放物線 C : y ax + C 上の点 P (, ) を考える - におけるC の接線 l は点 Q( s, t) でC に接してい る 次の問いに答えよ () s, t および a を求めよ () C, l および y 軸で囲まれた部分の面積を求めよ () 円 C

More information

2015-2017年度 2次数学セレクション(複素数)解答解説

2015-2017年度 2次数学セレクション(複素数)解答解説 05 次数学セレクション解答解説 [ 筑波大 ] ( + より, 0 となり, + から, ( (,, よって, の描く図形 C は, 点 を中心とし半径が の円である すなわち, 原 点を通る円となる ( は虚数, は正の実数より, である さて, w ( ( とおくと, ( ( ( w ( ( ( ここで, w は純虚数より, は純虚数となる すると, の描く図形 L は, 点 を通り, 点 と点

More information

1 次関数 1 次関数の式 1 次の表は, ろうそくを燃やした時間 x 分と残りのろうそくの長さ ycm の関係を表しています 次の問いに答えなさい x( 分 ) y(cm ) (1) 上の表のをうめなさい (2) ろうそくは,5 分間に何 cm 短くなっていく

1 次関数 1 次関数の式 1 次の表は, ろうそくを燃やした時間 x 分と残りのろうそくの長さ ycm の関係を表しています 次の問いに答えなさい x( 分 ) y(cm ) (1) 上の表のをうめなさい (2) ろうそくは,5 分間に何 cm 短くなっていく 次関数 次関数の式 次の表は, ろうそくを燃やした時間 分と残りのろうそくの長さ cm の関係を表しています 次の問いに答えなさい ( 分 ) 0 5 0 5 (cm ) 0 () 上の表のをうめなさい () ろうそくは,5 分間に何 cm 短くなっていくか () ろうそくは, 分間に何 cm の割合で短くなっていくか () ろうそくは, 分間に何 cm の割合で短くなっていくか (5) ろうそくの長さ

More information

<4D F736F F D2089F082AF82E997CD8A7796E291E A282EB82A282EB82C8895E93AE2E646F63>

<4D F736F F D2089F082AF82E997CD8A7796E291E A282EB82A282EB82C8895E93AE2E646F63> いろいろな運動. 自由落下. 投げ上げ 3. 放物運動 4. 標的にボールを当てる 5. 斜面に向かって投げ上げる 6. ブレーキをかけた自動車 7. 摩擦のある斜面上を滑り落ちる物体 8. ばね振り子 ( 単振動 ) 9. 摩擦を受けるばね振り子. 補足 : 微分方程式の解き方 自由落下質量 の質点を高さ h の地点から初速 で落とした. 鉛直上向きを 軸正 の向き, 地表を原点とし, 重力加速度の大きさを

More information

2017年度 長崎大・医系数学

2017年度 長崎大・医系数学 07 長崎大学 ( 医系 ) 前期日程問題 解答解説のページへ 以下の問いに答えよ () 0 のとき, si + cos の最大値と最小値, およびそのときの の値 をそれぞれ求めよ () e を自然対数の底とする > eの範囲において, 関数 y を考える この両 辺の対数を について微分することにより, y は減少関数であることを示せ また, e< < bのとき, () 数列 { } b の一般項が,

More information

2018年度 岡山大・理系数学

2018年度 岡山大・理系数学 08 岡山大学 ( 理系 ) 前期日程問題 解答解説のページへ 関数 f ( x) = ( + x) x について, 以下の問いに答えよ () f ( x ) = 0 を満たす x の値を求めよ () 曲線 y = f ( x ) について, 原点を通るすべての接線の方程式を求めよ (3) 曲線 y = f ( x ) について, 原点を通る接線のうち, 接点の x 座標が最大のものを L とする

More information

Microsoft Word - 中高の教科書における力のつり合いの定義及び同実験の教育的意義について(別刷)10.docx

Microsoft Word - 中高の教科書における力のつり合いの定義及び同実験の教育的意義について(別刷)10.docx 中高の教科書における力のつり合いの定義 及び同実験の教育的意義について 北海道長沼高等学校石川昌司 高校教科書で扱われている 3 力のつり合いの実験は, 誤差が大きくその他にも問題が多い. 中学校理科から高校物理にか けて, 力のつり合いがどのように扱われているか調査してみた. その上で 3 力のつり合いの実験の意義を科学史的な観点も 取り入れて再定義し, 筆者のこれまでの実践と合わせて紹介する.

More information