koba/class/soft-kiso/ 1 λ if λx.λy.y false 0 λ typed λ-calculus λ λ 1.1 λ λ, syntax τ (types) ::= b τ 1 τ 2 τ 1

Size: px
Start display at page:

Download "koba/class/soft-kiso/ 1 λ if λx.λy.y false 0 λ typed λ-calculus λ λ 1.1 λ λ, syntax τ (types) ::= b τ 1 τ 2 τ 1"

Transcription

1 koba/class/soft-kiso/ 1 λ if λx.λy.y false 0 λ typed λ-calculus λ λ 1.1 λ λ, syntax τ (types) ::= b τ 1 τ 2 τ 1 τ 2 M (terms) ::= c τ x M 1 M 2 λx : τ.m (M 1,M 2 ) fst(m) snd(m) b int bool τ 1 τ 2 τ 1 τ 2 (1, true) int bool λ c τ 1 c τ τ τ b b 1 b 2, b 1 b 2 b b 1 b 2 c b 1 b 2 b 1 b 2 [[c b 1 b 2 ]] b 1 b 2 b c b 1 b 2 b b 1 b 2 b [[c b 1 b 2 b ]] b c b c b b 1 λ false 0 λ λx.λy.x 1

2 c τ τ c 1 int 1 λx : τ.m x C Java ML (M 1,M 2 ) M 1 M 2 fst(m) M snd(m) M call-by-value call-by-name V (value) ::= c τ λx.m (V 1,V 2 ) (λx.m)v cbv [V/x]M (R-Beta) c b 1 b c b 1 1 cbv [[c b 1 b ]] (c b 1 1 ) (R-Const1) c b 1 b 2 b (c b 1 1,c b 2 2 ) cbv [[c b 1 b 2 b ]] (c b 1 1,c b 2 2 ) (R-Const2) M cbv M MN cbv M N N cbv N VN cbv VN (R-App1) (R-App2) M 1 cbv M 1 (M 1,M 2 ) cbv (M 1,M 2) (R-Pair1) M 2 cbv M 2 (V,M 2 ) cbv (V,M 2 ) M cbv M fst(m) cbv fst(m ) fst(v 1,V 2 ) cbv V 1 M cbv M snd(m) cbv snd(m ) snd(v 1,V 2 ) cbv V 2 (R-Pari2) (R-Fst1) (R-Fst2) (R-Snd1) (R-Snd2) 2

3 1.1.3 λ, syntax term syntax (λx : int.x)true formal Γ M : τ Γ Γ M : τ Γ M τ Γ M τ inductive T-Var T-Abs Γ,x: τ Γ x τ Γ c τ : τ Γ,x: τ x : τ (T-Const) (T-Var) Γ M 1 : τ 1 τ 2 Γ M 2 : τ 1 Γ M 1 M 2 : τ 2 (T-App) Γ,x: τ 1 M : τ 2 Γ λx : τ 1.M : τ 1 τ 2 (T-Abs) Γ M 1 : τ 1 Γ M 2 : τ 2 Γ (M 1,M 2 ):τ 1 τ 2 (T-Pair) Γ M : τ 1 τ 2 Γ fst(m) :τ 1 (T-Fst) Γ M : τ 1 τ 2 Γ snd(m) :τ 2 (T-Snd) Γ M : τ M Γ (well-typed) Remark 1.1: α λx:int.λx: bool.x x : int,y: bool y : bool x : int λy : bool.y(= λx : bool.x) :bool bool λx : int.λx : bool.x : int bool bool 3

4 Exercise term Γ M : τ Γ,τ 1. λx : int.yx 2. xx 3. λz :(int int int).zxy 4. (xy)(xz) 5. (yx)(zx) Γ M Γ M : τ τ unique Theorem 1.2: Γ M : τ 1 Γ M : τ 2 τ 1 = τ 2. Exercise (Type Soundness) λ 1(2) + int int int (true, 1) fst snd fst(1) fst(1) 1.3 M 1.4, subject reduction M M 1.10 Theorem 1.3 [Progress]: M : τ M M M cbv M Proof: M M = c τ M 2 C 4

5 M = x M : τ M = M 1 M 2 M : τ τ 1 M 1 : τ 1 τ M 2 : τ 1 M 1 M 1 cbv M 1 M 1 M = M 1 M 2 M cbv M M 1 M 1 = c τ1 τ M 1 = λx.m 1 M 2 M 2 : M 2 cbv M 2 M 2 M = M 1 M 2 M cbv M M 2 M 1 = λx.m 1 M =[M 2 /x]m 1 R-Beta M cbv M M 1 = c τ1 τ τ 1 τ = b 1 b 2 b τ 1 τ = b 1 b M 2 : b 1 b 2 M 2 M 2 =(c b 1 1,c b 2 2 ) M =[[c b 1 b 2 b ]] (c b 1 1,c b 2 2 ) R-Const2 M cbv M M 2 : b 1 M 2 M 2 = c b 1 1 M =[[c b1 b ]] (c b 1 1 ) R-Const1 M cbv M M = λx : τ.m 1 M M =(M 1,M 2 ) M : τ M M 1 M 2 τ = τ 1 τ 2 M 1 : τ 1 M 2 : τ 2 M 1 M 1 cbv M 1 M 1 M =(M 1,M 2) M cbv M M 1 M 2 M 2 cbv M 2 M 2 M =(M 1,M 2 ) R-Pair2 M cbv M M = fst(m 1 ) M : τ M 1 : τ τ 2 M 1 M 1 cbv M 1 M 1 M = fst(m 1 ) M cbv M M 1 M 1 =(V 1,V 2 ) M = V 1 R-Fst2 M cbv M M = snd(m 1 ) M = fst(m 1 ) Theorem 1.4 [ (Type Preservation)]: Γ M : τ M cbv Γ M : τ M Γ Γ Γ, Γ x. τ.(γ(x) =τ Γ (x) =τ) Lemma 1.5 [weakening]: Γ M : τ Γ Γ Γ M : τ Proof: Γ M : τ 5

6 Exercise 1.6: Lemma 1.7 [substitution lemma]: Γ M 1 : τ 1 Γ,x : τ 1 M 2 : τ 2 Γ [M 1 /x]m 2 : τ 2 Proof: M 2 M 2 = x [M 1 /x]m 2 = M 1 M 2 = y( x) [M 1 /x]m 2 = y Γ,x : τ 1 M 2 : τ 2 Γ(y) =τ 2 Γ [M 1 /x]m 2 : τ 2 M 2 = λy : τ 21.M 2 Γ,x : τ 1 M 2 : τ 2 Γ,x : τ 1,y : τ 21 M 2 : τ 22 τ 2 = τ 21 τ 22 Lemma 1.5 Γ,y : τ 21 M 1 : τ 1 Γ,y: τ 21 [M 1 /x]m 2 : τ 22 T-Abs Γ λy : τ 21.[M 1 /x]m 2 : τ 21 τ 22 Γ [M 1 /x]m 2 : τ 2 Exercise 1.8: Proof of Theorem 1.4: M cbv M R-Beta M =(λx.m 1 )M 2 M =[M 2 /x]m 1 Γ M : τ Γ,x: τ 1 M 1 : τ Γ M 2 : τ 1 Lemma 1.7 Γ M : τ R-Const1 M = c b1 b c b 1 1 M =[[c b1 b ]] (c b 1 1 )=c b 2 τ = b T-Const Γ M : τ R-App1 M = M 1 M 2 M = M 1 M 2 M 1 cbv M 1 Γ M : τ Γ M 1 : τ 1 τ Γ M 2 : τ 1 Γ M 1 : τ 1 τ T-App Γ M : τ Exercise 1.9: Corollary 1.10 [Type Soundness]: M : τ M cbv M cbv M Exercise 1.4 M cbv M induction 6

7 1.1.5 Strong Normalization λ, β-reduction call-by-value cbv normal form Theorem 1.11 [strong normalization]: Γ M : τ β M β M 2 [2] β M 1 β strong normalization λ, total function strong normalization fixed point operator fix (τ 1 τ 2 ) (τ 1 τ 2 ) Principal Typing λ, λx : τ.m e (terms) ::= c τ x e 1 e 2 λx.e (e 1,e 2 ) fst(e) snd(e) e Γ M : τ Γ,M,τ M e e Γ,M,τ e = x τ x : τ M : τ e = λx.x τ λx : τ.x : τ τ reasonable syntax Γ M : τ Γ,M,τ syntax τ (types) ::= α (type variables) b τ 1 τ 2 τ 1 τ 2 λ, M Erase(M) e Γ,M,τ Definition 1.12 [principal typing]: (Γ,M,τ) e principal typing 1. Erase(M) =e 2. Γ M : τ 3. Γ M : τ, Erase(M )=e Γ,M,τ θ 7

8 (a) θγ Γ (b) θm = M (c) θτ = τ Γ,M,τ, principal typing λ, principal typing unification mgu 3 PT(c τ ) = (,c τ,τ) PT(x) = (x : α, x, α) where α is fresh PT(e 1 e 2 ) = let (Γ 1,M 1,τ 1 )=PT(e 1 ) (Γ 2,M 2,τ 2 )=PT(e 2 ) θ = mgu({(τ 1,τ 2 α)} {(Γ 1 (x), Γ 2 (x)) x dom(γ 1 ) dom(γ 2 )}) where α is fresh in ((θγ 1 ) (θγ 2 ),θ(m 1 M 2 ),θα) PT(λx.e) = let (Γ,M,τ)=PT(e) in if x dom(γ) then (Γ\x, λx :Γ(x).M, Γ(x) τ) else (Γ,λx: α.m, α τ) where α is fresh PT((e 1,e 2 )) = let (Γ 1,M 1,τ 1 )=PT(e 1 ) (Γ 2,M 2,τ 2 )=PT(e 2 ) θ = {(Γ 1 (x), Γ 2 (x)) x dom(γ 1 ) dom(γ 2 )}) in ((θγ 1 ) (θγ 2 ),θ((m 1,M 2 )),θ(τ 1 τ 2 )) PT(fst(e)) = let (Γ,M,τ)=PT(e) θ = mgu({(τ,α β)} where α,β are fresh in (θγ,θ(fst(m)),θα) PT(snd(e)) = let (Γ,M,τ)=PT(e) θ = mgu({(τ,α β)} where α,β are fresh in (θγ,θ(snd(m)),θβ) 3 {(τ 11,τ 12),...,(τ n1,τ n2)} τ 11 = τ 12,...,τ n1 = τ n2 (most general unifier) 8

9 Exercise principal typing ML Prolog 1.2 Polymorphism λ, λx.x λx : τ.x (monomorphic) (polymorphic) ML parametric polymorphism λ, λx : τ.x λx.x λx : τ.x (λx.xx)(λx.x) λ, λx : τ.x τ λ λx : τ.x (Λα : U 1.λx : α.x)τ Id =Λα : U 1.λx : α.x Id τ = λx : τ.x Id τ Id[τ] Id compose compose =Λα : U 1.Λβ : U 1.Λγ : U 1.λf : β γ.λg : α β.λx : α.f(g(x)) U 1 τ : U 1 τ U 1 τ ::= α b τ 1 τ 2 τ 1 τ 2 Id compose U 1 Id τ τ τ α : U 1.(α α) compose α : U 1. β : U 1. γ : U 1.((β γ) (α β) α γ) U 1 α 1 : U 1. α n : U 1.τ U 2 U 2 σ 9

10 Remark 1.13: U 2 U impredicative polymorphism τ ::= α b τ 1 τ 2 τ 1 τ 2 α : U.τ ( α.α) ( α.α) U 2 syntax, :U 1 Definition 1.14 [λ, -term]: M ::= c σ x M 1 M 2 λx : τ.m Λα.M M[τ] Γ c σ : σ Γ,x: σ x : σ (TPoly-Const) (TPoly-Var) Γ M 1 : τ 1 τ 2 Γ M 2 : τ 1 Γ M 1 M 2 : τ 2 (TPoly-App) Γ,x: τ 1 M : τ 2 Γ λx : τ 1.M : τ 1 τ 2 Γ M : σ α not free in Γ Γ Λα.M : α.σ Γ M : α.σ Γ M[τ]:[τ/α]σ (TPoly-Abs) (TPoly- -Intro) (TPoly- -Elim) λ,,let λ, untyped λ-calculus (λx.xx)(λx.x) term (λx : α.(α α).(x[τ τ])(x[τ]))(λα.λx : α.x)) λx : α.(α α).(x[τ τ])(x[τ]) α.(α α) τ τ ( α.(α α)) (τ τ) U 1 U 2 σ ::= α b σ 1 σ 2 α.σ 10

11 α.σ impredicative polymorphsim Girard Reynolds construct ML[1] syntax let M ::= x M 1 M 2 λx : τ.m Λα.M M[τ] let x : σ = M 1 in M 2 end let Γ M 1 : σ Γ,x: σ M 2 : τ Γ let x : σ = M 1 in M 2 end : τ (TPoly-Let) x M 2 U 2 σ let bind body polymorphic let x : α.(α α) =Λα.λx : α.x in (x[τ τ])(x[τ]) end λ bind monomorphic λ,,let λ e Γ M : σ, Erase(M) = e (Γ,M,σ) syntax Erase e ::= x e 1 e 2 λx.e let x = e 1 in e 2 end Erase(x) = x Erase(M 1 M 2 ) = Erase(M 1 )Erase(M 2 ) Erase(λx : τ.m) = λx.erase(m) Erase(Λα.M) = Erase(M) Erase(M[τ]) = Erase(M) Erase(let x : σ = M 1 in M 2 end) = let x = Erase(M 1 ) in Erase(M 2 ) end syntax ML ML λ,,let λ,,let λ, M Erase(M) Γ e : σ α not free in Γ Γ e : α.σ (T-ML- -Intro) 11

12 Γ e : α.σ Γ e :[τ/α]σ (T-ML- -Elim) λ, M T-ML- -Intro, T-ML- -Elim T-ML- -Elim U 2 T-ML- -Elim U 2 TPoly-Var T-ML- -Elim, T-ML- -Intro T-ML- -Intro Γ e : σ Γ e : α.σ Γ e :[τ/α]σ Γ e : σ α τ Γ e :[τ/α]σ T-ML- -Elim TPoly-Var T-ML- -Intro TPoly-Let λ,,let Γ e : τ type judgement Γ,x: α.τ x[ τ]:[ τ/ α]τ (T-ML-Var) Γ M 1 : τ 1 τ 2 Γ M 2 : τ 1 Γ M 1 M 2 : τ 2 (T-ML-App) Γ,x: τ 1 M : τ 2 Γ λx : τ 1.M : τ 1 τ 2 (T-ML-Abs) Γ M 1 : τ 1 Γ,x: α.τ 1 M 2 : τ 2 { α} τ 1 Γ Γ let x : α.τ 1 =Λ α.m 1 in M 2 end : τ 2 (T-ML-Let) 12

13 λ,,let λ, principal typing principal typing e (Γ,M,σ) Γ,σ U 1 e (Γ,M,σ) M,τ λ,,let principal typing A let U 2 e principal typing PT(e, ) PT(c α.τ,a) = (,c α.τ [ β], [ β/ α]τ) where β are fresh. PT(x, A) = if A(x) = α.τ then (x : α.τ, x[ β], [ β/ α]τ) where β are fresh. else({x : α},x,α) where α is fresh PT(e 1 e 2,A) = let (Γ 1,M 1,τ 1 )=PT(e 1,A) (Γ 2,M 2,τ 2 )=PT(e 2,A) θ = mgu({(τ 1,τ 2 α)}) {(Γ 1 (x), Γ 2 (x)) x dom(γ 1 ) dom(γ 2 )}) where α is fresh in ((θγ 1 ) (θγ 2 ),θ(m 1 M 2 ),θα) PT(λx.e, A) = let (Γ, M, τ)=pt(e, A) in if x dom(γ) then (Γ\x, λx :Γ(x).M, Γ(x) τ) else (Γ,λx: α.m, α τ) where α is fresh PT(let x = e 1 in e 2 end,a) = let (Γ 1,M 1,τ 1 )=PT(e 1,A) (Γ 2,M 2,τ 2 )=PT(e 2,A {x: α.τ 1 }) where α appears in τ 1 but not in Γ 1 θ = mgu({(γ 1 (y), Γ 2 (y)) x dom(γ 1 ) dom(γ 2 )}) in ((θγ 1 ) (θ(γ 2 \x)),θ(let x : α.τ 1 =Λ αm 1 in M 2 end),θτ 2 ) [1] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard ML (Revised). The MIT Press, [2].. 9.,

Int Int 29 print Int fmt tostring 2 2 [19] ML ML [19] ML Emacs Standard ML M M ::= x c λx.m M M let x = M in M end (M) x c λx.

Int Int 29 print Int fmt tostring 2 2 [19] ML ML [19] ML Emacs Standard ML M M ::= x c λx.m M M let x = M in M end (M) x c λx. 1, 2 1 m110057@shibaura-it.ac.jp 2 sasano@sic.shibaura-it.ac.jp Eclipse Visual Studio ML Standard ML Emacs 1 ( IDE ) IDE C C++ Java IDE IDE IDE IDE Eclipse Java IDE Java Standard ML 1 print (Int. 1 Int

More information

I: 2 : 3 +

I: 2 : 3 + I: 1 I: 2008 I: 2 : 3 + I: 3, 3700. (ISBN4-00-010352-0) H.P.Barendregt, The lambda calculus: its syntax and semantics, Studies in logic and the foundations of mathematics, v.103, North-Holland, 1984. (ISBN

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

ML λ λ 1 λ 1.1 λ λ λ e (λ ) ::= x ( ) λx.e (λ ) e 1 e 2 ( ) ML λx.e Objective Caml fun x -> e x e let 1

ML λ λ 1 λ 1.1 λ λ λ e (λ ) ::= x ( ) λx.e (λ ) e 1 e 2 ( ) ML λx.e Objective Caml fun x -> e x e let 1 2005 sumii@ecei.tohoku.ac.jp 2005 6 24 ML λ λ 1 λ 1.1 λ λ λ e (λ ) ::= x ( ) λx.e (λ ) e 1 e 2 ( ) ML λx.e Objective Caml fun x -> e x e let 1 let λ 1 let x = e1 in e2 (λx.e 2 )e 1 e 1 x e 2 λ 3 λx.(λy.e)

More information

構造化プログラミングと データ抽象

構造化プログラミングと データ抽象 計算の理論 後半第 3 回 λ 計算と型システム 本日の内容 λ 計算の表現力 ( 前回の復習 ) データの表現 不動点演算子と再帰 λ 計算の重要な性質 チャーチ ロッサー性 簡約戦略 型付き λ 計算 ブール値 組 ブール値と組の表現 true, false を受け取り 対応する要素を返す関数 として表現 T = λt.λf.t F = λt.λf.f if e 1 then e 2 else

More information

# let rec sigma (f, n) = # if n = 0 then 0 else f n + sigma (f, n-1);; val sigma : (int -> int) * int -> int = <fun> sigma f n ( : * -> * ) sqsum cbsu

# let rec sigma (f, n) = # if n = 0 then 0 else f n + sigma (f, n-1);; val sigma : (int -> int) * int -> int = <fun> sigma f n ( : * -> * ) sqsum cbsu II 4 : 2001 11 7 keywords: 1 OCaml OCaml (first-class value) (higher-order function) 1.1 1 2 + 2 2 + + n 2 sqsum 1 3 + 2 3 + + n 3 cbsum # let rec sqsum n = # if n = 0 then 0 else n * n + sqsum (n - 1)

More information

構造化プログラミングと データ抽象

構造化プログラミングと データ抽象 計算の理論 後半第 3 回 λ 計算と型システム 本日の内容 λ 計算の表現力 ( 前回のつづき ) 前回の復習 不動点演算子と再帰 λ 計算の重要な性質 チャーチ ロッサー性 簡約戦略 型付き λ 計算 ブール値 組 ブール値と組の表現 ( 復習 ) true, false を受け取り 対応する要素を返す関数 として表現 T = λt.λf.t F = λt.λf.f if e 1 then e

More information

Emacs ML let start ::= exp (1) exp ::= (2) fn id exp (3) ::= (4) (5) ::= id (6) const (7) (exp) (8) let val id = exp in

Emacs ML let start ::= exp (1) exp ::= (2) fn id exp (3) ::= (4) (5) ::= id (6) const (7) (exp) (8) let val id = exp in Emacs, {l06050,sasano}@sic.shibaura-it.ac.jp Eclipse Visual Studio Standard ML Haskell Emacs 1 Eclipse Visual Studio variable not found LR(1) let Emacs Emacs Emacs Java Emacs JDEE [3] JDEE Emacs Java 2

More information

…J…−†[†E…n…‘†[…hfi¯„^‚ΛžfiüŒå

…J…−†[†E…n…‘†[…hfi¯„^‚ΛžfiüŒå takuro.onishi@gmail.com II 2009 6 11 [A] D B A B A B A B DVD y = 2x + 5 x = 3 y = 11 x = 5 y = 15. Google Web (2 + 3) 5 25 2 3 5 25 Windows Media Player Media Player (typed lambda calculus) (computer

More information

Jacques Garrigue

Jacques Garrigue Jacques Garrigue Garrigue 1 Garrigue 2 $ print_lines () > for i in $1; do > echo $i > done $ print_lines "a b c" a b c Garrigue 3 Emacs Lisp (defun print-lines (lines) (dolist (str lines) (insert str)

More information

Parametric Polymorphism

Parametric Polymorphism ML 2 2011/04/19 Parametric Polymorphism Type Polymorphism ? : val hd_int : int list - > int val hd_bool : bool list - > bool val hd_i_x_b : (int * bool) list - > int * bool etc. let hd_int = function (x

More information

論理学入門 講義ノート email: mitsu@abelardfletkeioacjp Copyright c 1995 by the author ll right reserved 1 1 3 2 5 3 7 31 7 32 9 33 13 4 29 41 33 42 38 5 45 51 45 52 47 3 1 19 [ 1] Begin at the beginning [ 2] [

More information

Copyright c 2006 Zhenjiang Hu, All Right Reserved.

Copyright c 2006 Zhenjiang Hu, All Right Reserved. 1 2006 Copyright c 2006 Zhenjiang Hu, All Right Reserved. 2 ( ) 3 (T 1, T 2 ) T 1 T 2 (17.3, 3) :: (Float, Int) (3, 6) :: (Int, Int) (True, (+)) :: (Bool, Int Int Int) 4 (, ) (, ) :: a b (a, b) (,) x y

More information

「計算と論理」 Software Foundations その3

「計算と論理」  Software Foundations   その3 Software Foundations 3 cal17@fos.kuis.kyoto-u.ac.jp October 24, 2017 ( ) ( 3) October 24, 2017 1 / 47 Lists.v ( ) ( ) ( ) ( 3) October 24, 2017 2 / 47 ( ) Inductive natprod : Type := pair : nat nat natprod.

More information

ML Edinburgh LCF ML Curry-Howard ML ( ) ( ) ( ) ( ) 1

ML Edinburgh LCF ML Curry-Howard ML ( ) ( ) ( ) ( ) 1 More Logic More Types ML/OCaml GADT Jacques Garrigue ( ) Jacques Le Normand (Google) Didier Rémy (INRIA) @garriguejej ocamlgadt ML Edinburgh LCF ML Curry-Howard ML ( ) ( ) ( ) ( ) 1 ( ) ML type nebou and

More information

「計算と論理」 Software Foundations その4

「計算と論理」  Software Foundations   その4 Software Foundations 4 cal17@fos.kuis.kyoto-u.ac.jp http://www.fos.kuis.kyoto-u.ac.jp/~igarashi/class/cal/ November 7, 2017 ( ) ( 4) November 7, 2017 1 / 51 Poly.v ( ) ( 4) November 7, 2017 2 / 51 : (

More information

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional 1 1.1 semantics F 1 x, y, z,... F 1. F 38 2016 9 1 (oolean) Functional 2. T F F 3. P F (not P ) F 4. P 1 P 2 F (P 1 and P 2 ) F 5. x P 1 P 2 F (let x be P 1 in P 2 ) F 6. F syntax F (let x be (T and y)

More information

Copyright c 2008 Zhenjiang Hu, All Right Reserved.

Copyright c 2008 Zhenjiang Hu, All Right Reserved. 2008 10 27 Copyright c 2008 Zhenjiang Hu, All Right Reserved. (Bool) True False data Bool = False True Remark: not :: Bool Bool not False = True not True = False (Pattern matching) (Rewriting rules) not

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

inkiso.dvi

inkiso.dvi Ken Urai May 19, 2004 5 27 date-event uncertainty risk 51 ordering preordering X X X (preordering) reflexivity x X x x transitivity x, y, z X x y y z x z asymmetric x y y x x = y X (ordering) completeness

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

add1 2 β β - conversion (λx.x + 1(2 β x + 1 x λ f(x, y = 2 x + y 2 λ(x, y.2 x + y 1 λy.2 x + y λx.(λy.2 x + y x λy.2 x + y EXAMPLE (λ(x, y.2

add1 2 β β - conversion (λx.x + 1(2 β x + 1 x λ f(x, y = 2 x + y 2 λ(x, y.2 x + y 1 λy.2 x + y λx.(λy.2 x + y x λy.2 x + y EXAMPLE (λ(x, y.2 output: 2011,11,10 2.1 λ λ β λ λ - abstraction λ λ - binding 1 add1 + add1(x = x + 1 add1 λx.x + 1 x + 1 add1 function application 2 add1 add1(2 g.yamadatakahiro@gmail.com 1 add1 2 β β - conversion (λx.x

More information

( ) P, P P, P (negation, NOT) P ( ) P, Q, P Q, P Q 3, P Q (logical product, AND) P Q ( ) P, Q, P Q, P Q, P Q (logical sum, OR) P Q ( ) P, Q, P Q, ( P

( ) P, P P, P (negation, NOT) P ( ) P, Q, P Q, P Q 3, P Q (logical product, AND) P Q ( ) P, Q, P Q, P Q, P Q (logical sum, OR) P Q ( ) P, Q, P Q, ( P Advent Calendar 2018 @Fukuso Sutaro,,, ( ) Davidson, 5, 1 (quantification) (open sentence) 1,,,,,, 1 1 (propositional logic) (truth value) (proposition) (sentence) 2 (2-valued logic) 2, true false (truth

More information

−g”U›ß™ö‡Æ…X…y…N…g…‰

−g”U›ß™ö‡Æ…X…y…N…g…‰ 1 / 74 ( ) 2019 3 8 URL: http://www.math.kyoto-u.ac.jp/ ichiro/ 2 / 74 Contents 1 Pearson 2 3 Doob h- 4 (I) 5 (II) 6 (III-1) - 7 (III-2-a) 8 (III-2-b) - 9 (III-3) Pearson 3 / 74 Pearson Definition 1 ρ

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A B f : A B 4 (i) f (ii) f (iii) C 2 g, h: C A f g = f h g = h (iv) C 2 g, h: B C g f = h f g = h 4 (1) (i) (iii) (2) (iii) (i) (3) (ii) (iv) (4)

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

org/ghc/ Windows Linux RPM 3.2 GHCi GHC gcc javac ghc GHCi(ghci) GHCi Prelude> GHCi :load file :l file :also file :a file :reload :r :type expr :t exp

org/ghc/ Windows Linux RPM 3.2 GHCi GHC gcc javac ghc GHCi(ghci) GHCi Prelude> GHCi :load file :l file :also file :a file :reload :r :type expr :t exp 3 Haskell Haskell Haskell 1. 2. 3. 4. 5. 1. 2. 3. 4. 5. 6. C Java 3.1 Haskell Haskell GHC (Glasgow Haskell Compiler 1 ) GHC Haskell GHC http://www.haskell. 1 Guarded Horn Clauses III - 1 org/ghc/ Windows

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 5 3. 4. 5. A0 (1) A, B A B f K K A ϕ 1, ϕ 2 f ϕ 1 = f ϕ 2 ϕ 1 = ϕ 2 (2) N A 1, A 2, A 3,... N A n X N n X N, A n N n=1 1 A1 d (d 2) A (, k A k = O), A O. f

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

e ::= c op(e 1,..., e n ) if e 1 then e 2 else e 3 let x = e 1 in e 2 x let rec x y 1... y n = e 1 in e 2 e e 1... e n (e 1,..., e n ) let (x 1,..., x

e ::= c op(e 1,..., e n ) if e 1 then e 2 else e 3 let x = e 1 in e 2 x let rec x y 1... y n = e 1 in e 2 e e 1... e n (e 1,..., e n ) let (x 1,..., x e ::= c op(e 1,..., e n ) if e 1 then e 2 else e 3 let x = e 1 in e 2 x let rec x y 1... y n = e 1 in e 2 e e 1... e n (e 1,..., e n ) let (x 1,..., x n ) = e 1 in e 2 Array.create e 1 e 2 e 1.(e 2 ) e

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα = 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a + b α (norm) N(α) = a + b = αα = α α (spure) (trace) 1 1. a R aα = aα. α = α 3. α + β = α + β 4. αβ = αβ 5. β 0 6. α = α ( ) α = α

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

24 201170068 1 4 2 6 2.1....................... 6 2.1.1................... 6 2.1.2................... 7 2.1.3................... 8 2.2..................... 8 2.3................. 9 2.3.1........... 12

More information

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) 1 PCF (Programming language for Computable Functions) PCF adequacy adequacy

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) 1 PCF (Programming language for Computable Functions) PCF adequacy adequacy 1 PCF (Programming language for Computable Functions) PCF adequacy adequacy 2 N X Y X Y f (x) f x f x y z (( f x) y) z = (( f (x))(y))(z) X Y x e X Y λx. e x x 2 + x + 1 λx. x 2 + x + 1 3 PCF 3.1 PCF PCF

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

VDM-SL VDM VDM-SL Toolbox VDM++ Toolbox 1 VDM-SL VDM++ Web bool

VDM-SL VDM VDM-SL Toolbox VDM++ Toolbox 1 VDM-SL VDM++ Web bool VDM-SL VDM++ 23 6 28 VDM-SL Toolbox VDM++ Toolbox 1 VDM-SL VDM++ Web 2 1 3 1.1............................................... 3 1.1.1 bool......................................... 3 1.1.2 real rat int

More information

Coq/SSReflect/MathComp による定理証明 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Coq/SSReflect/MathComp による定理証明 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. Coq/SSReflect/MathComp による定理証明 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/006241 このサンプルページの内容は, 初版 1 刷発行時のものです. i 1611 400 Coq/SS- Reflect/MathComp 1 1 Coq/SSReflect/MathComp

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

listings-ext

listings-ext (6) Python (2) ( ) ohsaki@kwansei.ac.jp 5 Python (2) 1 5.1 (statement)........................... 1 5.2 (scope)......................... 11 5.3 (subroutine).................... 14 5 Python (2) Python 5.1

More information

: gettoken(1) module P = Printf exception End_of_system (* *) let _ISTREAM = ref stdin let ch = ref ( ) let read () = (let c =!ch in ch := inp

: gettoken(1) module P = Printf exception End_of_system (* *) let _ISTREAM = ref stdin let ch = ref ( ) let read () = (let c =!ch in ch := inp 7 OCaml () 1. 2. () (compiler) (interpreter) 2 OCaml (syntax) (BNF,backus normal form ) 1 + 2; let x be 2-1 in x; ::= ; let be in ; ::= + - ::= * / ::= 7.1 ( (printable characters) (tokens) 1 (lexical

More information

6-1

6-1 6-1 (data type) 6-2 6-3 ML, Haskell, Scala Lisp, Prolog (setq x 123) (+ x 456) (setq x "abc") (+ x 456) ; 6-4 ( ) subtype INDEX is INTEGER range -10..10; type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

コンピュータ概論

コンピュータ概論 4.1 For Check Point 1. For 2. 4.1.1 For (For) For = To Step (Next) 4.1.1 Next 4.1.1 4.1.2 1 i 10 For Next Cells(i,1) Cells(1, 1) Cells(2, 1) Cells(10, 1) 4.1.2 50 1. 2 1 10 3. 0 360 10 sin() 4.1.2 For

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive AC Moeling an Control of AC Motors Seiji Kono, Member 1. (1) PM 33 54 64. 1 11 1(a) N 94 188 163 1 Dept. of E&E, Nagaoka University of Technology 163 1, Kamitomioka-cho, Nagaoka, Niigata 94 188 (a) 巻数

More information

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α 20 6 18 1 2 2.1 A B α A B α: A B A B Rel(A, B) A B (A B) A B 0 AB A B AB α, β : A B α β α β def (a, b) A B.((a, b) α (a, b) β) 0 AB AB Rel(A, B) 1 2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1

More information

nakata/nakata.html p.1/20

nakata/nakata.html p.1/20 http://www.me.titech.ac.jp/ nakata/nakata.html p.1/20 1-(a). Faybusovich(1997) Linear systems in Jordan algebras and primal-dual interior-point algorithms,, Euclid Jordan p.2/20 Euclid Jordan V Euclid

More information

A A A B A B A B A B A B A B A B A B A B A B *1 A B A B A B 1.3 (1.3) A B B A *1 2

A A A B A B A B A B A B A B A B A B A B A B *1 A B A B A B 1.3 (1.3) A B B A *1 2 Morality mod Science 4 2017 10 19 1 1.1 (1.1) 1 2 A 1, A 2,..., A n B A 1, A 2,..., A n B A 1, A 2,..., A n B A 1, A 2,..., A n B (1.2) 1 A B 2 B A 1.2 A B minao.kukita@gmail.com 1 A A A B A B A B A B

More information

* ἅ ὅς 03 05(06) 0 ἄβιος,-ον, ἄβροτον ἄβροτος ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυ

* ἅ ὅς 03 05(06) 0 ἄβιος,-ον, ἄβροτον ἄβροτος ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυ Complete Ancient Greek 2010 (2003 ) October 15, 2013 * 25 04-23 0 ἅ ὅς 03 05(06) 0 ἄβιος,-ον, 15 99-02 0 ἄβροτον ἄβροτος 15 99-02 0 ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυσσος

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

ID POS F

ID POS F 01D8101011L 2005 3 ID POS 2 2 1 F 1... 1 2 ID POS... 2 3... 4 3.1...4 3.2...4 3.3...5 3.4 F...5 3.5...6 3.6 2...6 4... 8 4.1...8 4.2...8 4.3...8 4.4...9 4.5...10 5... 12 5.1...12 5.2...13 5.3...15 5.4...17

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ), 1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0

More information

shift/reset [13] 2 shift / reset shift reset k call/cc reset shift k shift (...) k 1 + shift(fun k -> 2 * (k 3)) k 2 * (1 + 3) 8 reset shift reset (..

shift/reset [13] 2 shift / reset shift reset k call/cc reset shift k shift (...) k 1 + shift(fun k -> 2 * (k 3)) k 2 * (1 + 3) 8 reset shift reset (.. arisa@pllab.is.ocha.ac.jp asai@is.ocha.ac.jp shift / reset CPS shift / reset CPS CPS 1 [3, 5] goto try/catch raise call/cc [17] control/prompt [8], shift/reset [5] control/prompt, shift/reset call/cc (continuationpassing

More information

# let st1 = {name = "Taro Yamada"; id = };; val st1 : student = {name="taro Yamada"; id=123456} { 1 = 1 ;...; n = n } # let string_of_student {n

# let st1 = {name = Taro Yamada; id = };; val st1 : student = {name=taro Yamada; id=123456} { 1 = 1 ;...; n = n } # let string_of_student {n II 6 / : 2001 11 21 (OCaml ) 1 (field) name id type # type student = {name : string; id : int};; type student = { name : string; id : int; } student {} type = { 1 : 1 ;...; n : n } { 1 = 1 ;...; n = n

More information

3 3.1 algebraic datatype data k = 1 1,1... 1,n1 2 2,1... 2,n2... m m,1... m,nm 1 m m m,1,..., m,nm m 1, 2,..., k 1 data Foo x y = Alice x [y] B

3 3.1 algebraic datatype data k = 1 1,1... 1,n1 2 2,1... 2,n2... m m,1... m,nm 1 m m m,1,..., m,nm m 1, 2,..., k 1 data Foo x y = Alice x [y] B 3 3.1 algebraic datatype data 1 2... k = 1 1,1... 1,n1 2 2,1... 2,n2... m m,1... m,nm 1 m m m,1,..., m,nm m 1, 2,..., k 1 data Foo x y = Alice x [y] Bob String y Charlie Foo Double Integer Alice 3.14 [1,2],

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

JavaScript 1.! DOM Ajax Shelley Powers,, JavaScript David Flanagan, JavaScript 2

JavaScript 1.! DOM Ajax Shelley Powers,, JavaScript David Flanagan, JavaScript 2 JavaScript (2) 1 JavaScript 1.! 1. 2. 3. DOM 4. 2. 3. Ajax Shelley Powers,, JavaScript David Flanagan, JavaScript 2 (1) var a; a = 8; a = 3 + 4; a = 8 3; a = 8 * 2; a = 8 / 2; a = 8 % 3; 1 a++; ++a; (++

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

 

  1 3 1. 5 2. 5 1. 7 2. 10 3. 11 4. 12 1 12 2) 12 5. 14 1 14 2 14 6. 16 1 16 2 21 3 22 7. 23 1 23 2 24 3 25 4 26 5 27 8. 28 1 28 9. 29 1 29 2 29 3 30 4 30 1. 1 31 1) 31 2 31 3 31 4 32 2. 32 3. 32 4. 1 33

More information

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation

More information

( ) ( ) lex LL(1) LL(1)

( ) ( ) lex LL(1) LL(1) () () lex LL(1) LL(1) http://www.cs.info.mie-u.ac.jp/~toshi/lectures/compiler/ 29 5 14 1 1 () / (front end) (back end) (phase) (pass) 1 2 1 () () var left, right; fun int main() { left = 0; right = 10;

More information

zsj2017 (Toyama) program.pdf

zsj2017 (Toyama) program.pdf 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88

More information

88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88

More information

_170825_<52D5><7269><5B66><4F1A>_<6821><4E86><5F8C><4FEE><6B63>_<518A><5B50><4F53><FF08><5168><9801><FF09>.pdf

_170825_<52D5><7269><5B66><4F1A>_<6821><4E86><5F8C><4FEE><6B63>_<518A><5B50><4F53><FF08><5168><9801><FF09>.pdf 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88

More information

Lecture 12. Properties of Expanders

Lecture 12. Properties of Expanders Lecture 12. Properties of Expanders M2 Mitsuru Kusumoto Kyoto University 2013/10/29 Preliminalies G = (V, E) L G : A G : 0 = λ 1 λ 2 λ n : L G ψ 1,..., ψ n : L G µ 1 µ 2 µ n : A G ϕ 1,..., ϕ n : A G (Lecture

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2 1.500 m X Y 0.200 m 0.200 m 0.200 m 0.200 m 0.200 m 0.000 m 1.200 m m 0.150 m 0.150 m m m 2 24.5 N/ 3 18.0 N/ 3 30.0 0.60 ( ) qa 50.79 N/ 2 0.0 N/ 2 20.000 20.000 15.000 15.000 X(m) Y(m) (kn/m 2 ) 10.000

More information

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9),

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9), ML rgr ML ML ML (,, ) σ τ τ u + + τ σ τ v + + τ τ σ + + (.) uv,,,, σ, σ, σ, τ, τ, τ t (Hook) σ λθ + ε, τ γ σ λθ + ε, τ γ σ λθ + ε, τ γ λ, E ν ν λ E, E ( + ν)( ν) ( + ν) Θ Θ ε + ε + ε (.) ε, ε, ε, γ, γ,

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

susy.dvi

susy.dvi 1 Chapter 1 Why supper symmetry? 2 Chapter 2 Representaions of the supersymmetry algebra SUSY Q a d 3 xj 0 α J x µjµ = 0 µ SUSY ( {Q A α,q βb } = 2σ µ α β P µδ A B (2.1 {Q A α,q βb } = {Q αa,q βb } = 0

More information

浜松医科大学紀要

浜松医科大学紀要 On the Statistical Bias Found in the Horse Racing Data (1) Akio NODA Mathematics Abstract: The purpose of the present paper is to report what type of statistical bias the author has found in the horse

More information