Microsoft PowerPoint - logic ppt [互換モード]
|
|
|
- のぶあき かむら
- 6 years ago
- Views:
Transcription
1 述語論理と ( 全称 ) ( 存在 ) 回の講義の概観 : 命題論理 ( 真理値 ) 2 述語論理 ( モデルと解釈 ) 意味論 semantics 命題論理 ( 公理と推論規則 ) 述語論理 ( 公理と推論規則 ) syntax 構文論 preview 述語論理は命題論理よりも複雑 例題 : 次の文は真か偽か? ( 曖昧な文です ) すべての自然数 x に対して x < y を満たすような自然数 y が存在する ( 小野先生の例題 ). 解釈 ( その一 ) すべての x に対して x < y を満たすような y が存在する : x y (x < y) 2. 解釈 ( その二 ) すべての x に対して x < y を満たす ような y が存在する : y x (x < y) 曖昧 2 復習 述語と対象変数 命題とは真理値 ( 真偽 ) が確定している文のこと真偽のいずれかの値 { t, f} をとる : 命題変数 対象変数を含む文の真理値は確定しない例 : x 200 y は素数であるこのような文を扱うために命題関数 P を考える P : D T, ここに T = { t, f } 例 : 対象領域 D として自然数の集合を考える P : D D T, 2 変数 ( 引数 ) の述語 対象変数 individual variable, object variable 命題関数 propositional function 述語 predicate 述語 : 命題関数の具体的な表現例 : Le, Prime Le (x, 200): (x 200 ), 2 変数 ( 引数 ) 述語記号 Prime (y) : y は素数である 対象領域 D の要素を対象 object, individual という対象領域 D の上を動く変数を対象変数 D の定数を対象定数 object (individual) constant という 全称記号, と存在記号 x P(x): すべての x D に対して P(x) が真になる y Q(y): ある y D が存在して Q(y) が真になる 正確な記法を次に述べる と が多重になるときに注意 4 述語論理の項 term 今までに登場したもの : 対象変数 対象定数 さらに必要なもの : 対象領域の上の関数記号関数記号の例 : 自然数の上の +, 項 term の定義 :. 個々の対象定数 対象変数は項である 2. f が n 変数 ( 引数 ) の関数記号で, t, t2,, tn が項であるならば f (t, t2,, tn) は項である 項の例 : 200, x, y, (+x), 6 (x+y). +(,x), (6, +(x, y)) とも書く 5 論理式 formula, wff 述語記号 : 述語を表す記号. P が n 変数 ( 引数 ) の述語記号で t, t2,, tn が項ならば P(t, t2,, tn) は論理式である 2. A, B が論理式ならば A B, A B, A B, Aは いずれも論理式である復習 : は省略してよい. A が論理式で x が対象変数ならば ( x A), ( x A) は論理式である注 : の形の論理式を原子(atomic) 論理式という 例 : x( y( q( r(x=q y+r)))), = は述語記号 6
2 , quantifier 限定記号, 量化記号, 限量子 すべての x に対して R(x, y) を満たす y が存在する という文は曖昧である前出. x y (x < y) すべての自然数 x に対して,x よりも大きな自然数 y ( 例えば x+ ) が存在する ( 真 ) 2. y x (x < y) ある自然数 y が存在して,y は如何なる ( すべての ) 自然数 x よりも大きい ( 偽 ) 7 自由変数と束縛変数 free and bound variables x y (x < y) の変数 x, y は 変数と呼ばれているが 代入の対象にならない z y (z < y) と書いても意味が変わらない 変数には2 種類ある 自由変数と束縛変数 ここで注意するべき事は 同じ変数が自由であり 同時に束縛されることがある例 : y (x = y+y ) z ( y = z+z+ ) x は偶数である y は奇数である 自由変数と束縛変数を出現 occurrence という単位で区別しなければならない 8 出現 occurrence. A が原子論理式であるとき A に含まれる変数 x の出現は すべて自由な出現である 2. A が B C, B C, B C, B のいずれかであるとする もし x が B または C における自由な出現であるならば その x は A において自由である もし x が B または C における束縛された出現であるならば その x は A において束縛されている. A が ( z B) または ( z B) であるとする もし z が x であるときは Aにおける x の出現は束縛されている z が x と異なる場合には もし x が B における自由な出現であるならば その x の出現は A において自由である もし x が B における束縛された出現であるならば その x の出現は A において束縛されている 9 自由変数と束縛変数 ( 例 ) 例 : y (x = y+y ) z( y = z+z+ ) 論理式が自由変数を一つも含まない時閉論理式 closed formula という 論理式 A に含まれる自由変数 x に項 t を代入して得られる論理式を A[t/x] と表す 代入をめぐる珍現象 : ( 小野先生の例題 ) z(x=y z) : x は y の倍数である z(x=00 z) : x は 00 の倍数である z(x=z z) : x は平方数である これを避けるために自由変数と束縛変数の記号の種類を分ける流儀の教科書もある 0 代入の方法 A は zb または zb の形の論理式とする A[t/x] は z が x のとき A[t/x] は A 自身 ( 束縛変数に代入不可 ) z が x とは異なる変数のとき t に z が出現しなければ A[t/x] は za[t/x] または za[t/x] t に z が出現する場合は A[t/x] は w((a[w/z])[t/x]) または w((a[w/z])[t/x] ) ただし w は A にも t にも現れない新しい対象変数 i.e. 項 t に変数 w が現れることがない 代入に関する補足説明 前のスライドの変数 w は新しい変数である これは対象変数の集合が無限集合であることを意味する つまり必要があれば いつでも 新しい変数 を選ぶことができる 前のスライドの面倒な操作を一言で表現すれば 束縛変数が項 t に出現する場合には 束縛変数を新しい変数に あらかじめ書き換えておく ということである 2 2
3 論理式の意味 述語論理の論理式の意味を考えるには 対象領域 domain を定める必要がある ( 解釈 interpretation, モデル model, 構造 structure) 空でない集合 D を定める 対象定数に D の要素 ( 元 ) を対応づける対象変数は D の上を動く関数記号に D の上の関数を対応づける述語記号に D の上の述語を対応づける 単なる記号に具体的な要素 関数 述語を対応 ただし述語記号 = ( 等号 ) の解釈は通常の等号とする 解釈 閉論理式 M A 解釈 M において論理式 A が真 M A 解釈 M において論理式 A が偽. A が原子論理式のとき M P(t, t2,, tn) となるのは Pの解釈が項 t, t2,, tn の解釈において真になる場合である. 2. M A B となるのは (M A かつ M B ),. M A B となるのは (M A または M B), 4. M A B となるのは (M A ならば M B), 5. M A となるのは M A の時である. M: Lucida Calligraph : MSゴシック (UTF) 4 ( 続 ) 解釈 閉論理式 6. M x A となるのは すべての D の要素 u に対して M A[u/x] となるとき, 7. M x A となるのは D のある要素 u が存在して M A[u/x] となるときである. 論理式 B に対して B に含まれる自由変数が x, x2,, xm であるとき x x2 xm B を B の閉包 universal closure という. B C と書く 8. M B となるのは M B C となるときである. 恒真な (valid) 論理式 いかなる解釈 ( モデル ) に対しても真になる論理式を恒真な valid 論理式という 述語論理におけるトートロジー ということもある どのような解釈をしても真になるということは 個別の対象要素 関数記号 述語記号の解釈に依存しないという意味であるすなわち論理式の形 ( 構造 ) により 恒真であるか否かが定まる M: Lucida Calligraph : MS ゴシック (UTF) 5 6 恒真な論理式の例 ( その一 ) A は x を自由変数として含まない. x A A, x A A 2. x B y(b[y/x]), x B y (B[y/x]) ここに y は B に含まれていない新しい変数. A x B x (A B), A x B x (A B) 4. A x B x (A B), A x B x (A B) 5. xb x C x (B C), x B x C x (B C) 6. ( xb x C) x (B C), x(b C) ( x B x C) 7 恒真な論理式の例 ( その二 ) 7. x y B y x B, x y B y x B 8. x y B y x B ( 関連の話題が前出 ) 9. x B x B 0. x B x B, x B x B ド モルガンの法則. (A x B) x(a B), (A x B) x(a B) 2. ( x B A) x(b A), ( x B A) x(b A). x(b C) ( x B x C) 4. x(b C) ( x B x C) 5. x(b C) ( x B x C) 8
4 恒真な論理式の説明 ( x B A) x(b A) 2の下 この論理式に含まれる自由変数が y,, ym のとき 任意の解釈 M について次をいえばよい M y ym{( x B A) x(b A)} 上は閉論理式であるから次をいう ( 解釈 4, 6) すべての u,,um D に対して M ( x B A)[u/y,,um/ym] M x(b A) [u/y,,um/ym] 以下の説明では 既に上のような項の代入が済んでいると仮定する 恒真な論理式の説明 (2) M ( x B A) であると仮定する. 解釈 4から (M x B ) ならば (M A) である ということになる 解釈 7から ( ある v D が存在して M B[v/x]) ならば (M A) である ということになる 上は (M B[v/x] を満たすような v D は存在しない ) または (M A) である となる さらに ( すべての v D に対して M B[v/x] ) または (M A) である となる 9 20 恒真な論理式の説明 () 論理式 A は x を自由変数として含まない すべての v D に対して (M B[v/x] または M A[v/x]) である すべての v D に対して (M B[v/x] または M A[v/x]) である ( すべての v D に対して (M B[v/x] A[v/x]) である ( すべての v D に対して (M B[v/x] A[v/x]) である M x(b A) 半分終り 2 恒真な論理式の説明 (4) M x(b A) であると仮定する. 解釈 6と4から すべての v D に対して (M B[v/x] ならば M A[v/x]) である になる 論理式 A は x を自由変数として含まない すべての v D に対して (M B[v/x] または M A ) ( すべての v D に対してM B[v/x]) または (M A) である ), さらに (M B[v/x] を満たす v D は存在しない ) または (M A) である (M B[v/x] を満たすv D が存在する ) ならば (M A) である 終 22 充足可能な論理式 ある解釈 ( モデル ) に対して真になる論理式を充足可能な satisfiable 論理式という 充足可能でない論理式を充足不可能 unsatisfiable という 論理式 A が充足不可能であることは A が恒真であることの必要十分条件である 2 冠頭標準形 prenex normal form 全称記号 と存在記号 が 他の論理記号の外側にあるとき 冠頭論理式という QxQyQz A, Q は あるいは 記号 A は全称記号も存在記号も含まない論理式 論理式 A と同値な冠頭論理式が存在するこれを冠頭標準形という ( 小野先生の説明 ) 恒真な論理式の, 4, 0,, 2 を使って同値変形する ただし A が自由変数 x を含むときは まず 2. により x を新しい変数で置き換えておく 24 4
5 冠頭標準形への同値変形 yp(x,y) y{ zq(x,y,z) R(x,y)} yp(x,y) w{ zq(x,w,z) R(x,w)} y P(x,y) w{ zq(x,w,z) R(x,w)} y w{ P(x,y) ( zq(x,w,z) R(x,w))} y w{ P(x,y) z(q(x,w,z) R(x,w))} { ( ( ( ) ( ))} y w z{ P(x,y) (Q(x,w,z) R(x,w))} さらに y w z{ P(x,y) ( Q(x,w,z) R(x,w))} y w z{( P(x,y) Q(x,w,z)) 分配法則 ( P(x,y) R(x,w))} 訂正 : 廣瀬先生の p.24, z は z です 25 冠頭標準形 ( 廣瀬先生の説明 ) 与えられた述語の中の別の変数が同じ変数の記号で表されているとき すべて異なる変数に書き換える例 : x P(x,y) y Q(y,z) は x P(x,y) w Q(w,z) x P(x) x Q(x, y) は x P(x) z Q(z, y) ド モルガンの法則を用いて否定記号 を内側に移動する (0) 全称記号 と存在記号 を外側に移動する (, 4,, 2) さらに 冠頭標準形と論理和標準形 冠頭標準形と論理積標準形を組合せることができる 26 5
論理学補足文書 7. 恒真命題 恒偽命題 1. 恒真 恒偽 偶然的 それ以上分割できない命題が 要素命題, 要素命題から 否定 連言 選言 条件文 双 条件文 の論理演算で作られた命題が 複合命題 である 複合命題は, 命題記号と論理記号を 使って, 論理式で表現できる 複合命題の真偽は, 要素命題
7. 恒真命題 恒偽命題. 恒真 恒偽 偶然的 それ以上分割できない命題が 要素命題, 要素命題から 否定 連言 選言 条件文 双 条件文 の論理演算で作られた命題が 複合命題 である 複合命題は, 命題記号と論理記号を 使って, 論理式で表現できる 複合命題の真偽は, 要素命題の真偽によって, 真になる場合もあれば, 偽になる場合もある 例えば, 次の選言は, A, の真偽によって, 真にも偽にもなる
離散数学
離散数学 ブール代数 落合秀也 前回の復習 : 命題計算 キーワード 文 複合文 結合子 命題 恒真 矛盾 論理同値 条件文 重条件文 論法 論理含意 記号 P(p,q,r, ),,,,,,, 2 今日のテーマ : ブール代数 ブール代数 ブール代数と束 そして 順序 加法標準形とカルノー図 3 今日のテーマ : ブール代数 ブール代数 ブール代数と束 そして 順序 加法標準形とカルノー図 4 ブール代数の法則
オートマトン 形式言語及び演習 1. 有限オートマトンとは 酒井正彦 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110,
オートマトン 形式言語及び演習 1 有限オートマトンとは 酒井正彦 wwwtrscssinagoya-uacjp/~sakai/lecture/automata/ 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110, } 形式言語 : 数学モデルに基づいて定義された言語 認識機械 : 文字列が該当言語に属するか? 文字列 機械 受理
融合規則 ( もっとも簡単な形, 選言的三段論法 ) ll mm ll mm これについては (ll mm) mmが推論の前提部になり mmであるから mmは常に偽となることがわかり ll mmはllと等しくなることがわかる 機械的には 分配則より (ll mm) mm (ll mm) 0 ll m
知識工学 ( 第 5 回 ) 二宮崇 ( [email protected] ) 論理的エージェント (7 章のつづき ) 証明の戦略その 3 ( 融合法 ) 証明の戦略その 1 やその 2 で証明できたときは たしかにKKKK ααとなることがわかるが なかなか証明できないときや 証明が本当にできないときには KKKK ααが成り立つのか成り立たないのかわからない また どのような証明手続きを踏めば証明できるのか定かではない
知識工学 II ( 第 2 回 ) 二宮崇 ( ) 論理的エージェント (7 章 ) 論理による推論 命題論理 述語論理 ブール関数 ( 論理回路 )+ 推論 ブール関数 +( 述語 限量子 ( ) 変数 関数 定数 等号 )+ 推論 7.1 知識
知識工学 II ( 第 回 ) 二宮崇 ( [email protected] ) 論理的エージェント (7 章 ) 論理による推論 命題論理 述語論理 ブール関数 ( 論理回路 )+ 推論 ブール関数 +( 述語 限量子 ( ) 変数 関数 定数 等号 )+ 推論 7. 知識に基づくエージェント知識ベース (knowledge base, KB): 文 の集合 他の 文 から導出されない
論理学入門 講義ノート email: mitsu@abelardfletkeioacjp Copyright c 1995 by the author ll right reserved 1 1 3 2 5 3 7 31 7 32 9 33 13 4 29 41 33 42 38 5 45 51 45 52 47 3 1 19 [ 1] Begin at the beginning [ 2] [
Microsoft PowerPoint - mp11-02.pptx
数理計画法第 2 回 塩浦昭義情報科学研究科准教授 [email protected] http://www.dais.is.tohoku.ac.jp/~shioura/teaching 前回の復習 数理計画とは? 数理計画 ( 復習 ) 数理計画問題とは? 狭義には : 数理 ( 数学 ) を使って計画を立てるための問題 広義には : 与えられた評価尺度に関して最も良い解を求める問題
U( xq(x)) Q(a) 1 P ( 1 ) R( 1 ) 1 Q( 1, 2 ) 2 1 ( x(p (x) ( y(q(x, y) ( z( R(z))))))) 2 ( z(( y( xq(x, y))) R(z))) 3 ( x(p (x) ( ( yq(a, y) ( zr(z))))
4 15 00 ; 321 5 16 45 321 http://abelardfletkeioacjp/person/takemura/class2html 1 1 11 1 1 1 vocabulary (propositional connectives):,,, (quantifires): (individual variables): x, y, z, (individual constatns):
Microsoft PowerPoint - 09re.ppt [互換モード]
3.1. 正則表現 3. 正則表現 : 正則表現 ( または正規表現 ) とは 文字列の集合 (= 言語 ) を有限個の記号列で表現する方法の 1 つ 例 : (01)* 01 を繰り返す文字列 つまり 0(0+1)* 0 の後に 0 か 1 が繰り返す文字列 (01)* = {,01,0101,010101,01010101, } 0(0+1)*={0,00,01,000,001,010,011,0000,
Microsoft PowerPoint - design-theory-6.pptx
設計学 6. 設計の論理によるモデル化武田英明 [email protected] http://www-kasm.nii.ac.jp/~takeda/ @design_theory 設計への論理的アプローチ 設計のモデル化 集合論的アプローチ ( 一般設計学 ) 分類を知識として, その上で設計を考える 数学的に よい 構造 ( 各種の定理の導出 ) ものとものの関係の取り扱いが難しい 論理的アプローチ論理式を知識として,
スライド 1
ブール代数 ブール代数 集合 { 0, 1 } の上で演算 AND, OR, NOT からなる数学的体系 何のため? ある演算をどのような回路で実現すればよいのか? どうすれば回路が小さくなるのか? どうすれば回路が速く動くのか? 3 復習 : 真理値表とゲート記号 真理値表 A B A B 0 0 0 0 1 0 1 0 0 1 1 1 A B A+B 0 0 0 0 1 1 1 0 1 1 1
2015-2018年度 2次数学セレクション(整数と数列)解答解説
015 次数学セレクション問題 1 [ 千葉大 文 ] k, m, n を自然数とする 以下の問いに答えよ (1) k を 7 で割った余りが 4 であるとする このとき, k を 3 で割った余りは であることを示せ () 4m+ 5nが 3 で割り切れるとする このとき, mn を 7 で割った余りは 4 ではないことを示せ -1- 015 次数学セレクション問題 [ 九州大 理 ] 以下の問いに答えよ
DVIOUT-SS_Ma
第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり
2014年度 東京大・文系数学
014 東京大学 ( 文系 ) 前期日程問題 1 解答解説のページへ以下の問いに答えよ (1) t を実数の定数とする 実数全体を定義域とする関数 f ( x ) を f ( x) =- x + 8tx- 1x+ t - 17t + 9t-18 と定める このとき, 関数 f ( x ) の最大値を t を用いて表せ () (1) の 関数 f ( x ) の最大値 を g( t ) とする t が
2011年度 大阪大・理系数学
0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ
<4D F736F F D208CF68BA48C6F8DCF8A C30342C CFA90B68C6F8DCF8A7782CC8AEE967B92E8979D32288F4390B394C529332E646F63>
2. 厚生経済学の ( 第 ) 基本定理 2 203 年 4 月 7 日 ( 水曜 3 限 )/8 本章では 純粋交換経済において厚生経済学の ( 第 ) 基本定理 が成立することを示す なお より一般的な生産技術のケースについては 4.5 補論 2 で議論する 2. 予算集合と最適消費点 ( 完全 ) 競争市場で達成される資源配分がパレート効率的であることを示すための準備として 個人の最適化行動を検討する
オートマトンと言語
オートマトンと言語 回目 4 月 8 日 ( 水 ) 章 ( 数式の記法, スタック,BNF 記法 ) 授業資料 http://ir.cs.yamanashi.ac.jp/~ysuzuki/public/automaton/ 授業の予定 ( 中間試験まで ) 回数月日 内容 4 月 日オートマトンとは, オリエンテーション 4 月 8 日 章 ( 数式の記法, スタック,BNF) 3 4 月 5 日
PowerPoint プレゼンテーション
コンパイラとプログラミング言語 第 3 4 週 プログラミング言語の形式的な記述 2014 年 4 月 23 日 金岡晃 授業計画 第 1 週 (4/9) コンパイラの概要 第 8 週 (5/28) 下向き構文解析 / 構文解析プログラム 第 2 週 (4/16) コンパイラの構成 第 9 週 (6/4) 中間表現と意味解析 第 3 週 (4/23) プログラミング言語の形式的な記述 第 10 週
2015年度 2次数学セレクション(整数と数列)
05 次数学セレクション問題 [ 千葉大 文 ] k, m, を自然数とする 以下の問いに答えよ () k を 7 で割った余りが 4 であるとする このとき, k を 3 で割った余りは であることを示せ () 4m+ 5が 3 で割り切れるとする このとき, m を 7 で割った余りは 4 ではないことを示せ -- 05 次数学セレクション問題 [ 九州大 理 ] 以下の問いに答えよ () が正の偶数のとき,
Microsoft PowerPoint - LogicCircuits01.pptx
論理回路 第 回論理回路の数学的基本 - ブール代数 http://www.info.kindai.ac.jp/lc 38 号館 4 階 N-4 内線 5459 [email protected] 本科目の内容 電子計算機 computer の構成 ソフトウェア 複数のプログラムの組み合わせ オペレーティングシステム アプリケーション等 ハードウェア 複数の回路 circuit の組み合わせ
Microsoft Word - 微分入門.doc
基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,
OCW-iダランベールの原理
講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す
オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦 正規言語の性質 反復補題正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると
オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ 正規言語の性質 正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると仮定してを使い 矛盾を導く 閉包性正規言語を演算により組み合わせて得られる言語が正規言語となる演算について調べる
アルゴリズムとデータ構造
講義 アルゴリズムとデータ構造 第 2 回アルゴリズムと計算量 大学院情報科学研究科情報理工学専攻情報知識ネットワーク研究室喜田拓也 講義資料 2018/5/23 今日の内容 アルゴリズムの計算量とは? 漸近的計算量オーダーの計算の方法最悪計算量と平均計算量 ポイント オーダー記法 ビッグオー (O), ビッグオメガ (Ω), ビッグシータ (Θ) 2 お風呂スケジューリング問題 お風呂に入る順番を決めよう!
Microsoft PowerPoint - 3.ppt [互換モード]
3. プッシュダウンオートマトンと文脈自由文法 1 3-1. プッシュダウンオートマトン オートマトンはメモリがほとんど無かった この制限を除いた機械を考える 理想的なスタックを利用できるようなオートマトンをプッシュダウンオートマトン (Push Down Automaton,PDA) という 0 1 入力テープ 1 a 1 1 0 1 スタッb 入力テープを一度走査したあと ク2 入力テプを度走査したあと
航空機の運動方程式
可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,
Microsoft Word - K-ピタゴラス数.doc
- ピタゴラス数の代数と幾何学 津山工業高等専門学校 菅原孝慈 ( 情報工学科 年 ) 野山由貴 ( 情報工学科 年 ) 草地弘幸 ( 電子制御工学科 年 ) もくじ * 第 章ピタゴラス数の幾何学 * 第 章ピタゴラス数の代数学 * 第 3 章代数的極小元の幾何学の考察 * 第 章ピタゴラス数の幾何学的研究の動機 交点に注目すると, つの曲線が直交しているようにみえる. これらは本当に直交しているのだろうか.
NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A
NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, AstraZeneca KK 要旨 : NLMIXEDプロシジャの最尤推定の機能を用いて 指数分布 Weibull
02: 変数と標準入出力
C プログラミング入門 基幹 7 ( 水 5) 13: 構造体 Linux にログインし 以下の講義ページを開いておくこと http://www-it.sci.waseda.ac.jp/ teachers/w483692/cpr1/ 2016-07-06 1 例題 : 多角形の面積 n = 5 (5 角形 ) の例 n 1 n 1 1 p 1 T 0 S = i=0 p 0 T i = i=0 2
2011年度 筑波大・理系数学
0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ
東邦大学理学部情報科学科 2014 年度 卒業研究論文 コラッツ予想の変形について 提出日 2015 年 1 月 30 日 ( 金 ) 指導教員白柳潔 提出者 山中陽子
東邦大学理学部情報科学科 2014 年度 卒業研究論文 コラッツ予想の変形について 提出日 2015 年 1 月 30 日 ( 金 ) 指導教員白柳潔 提出者 山中陽子 2014 年度東邦大学理学部情報科学科卒業研究 コラッツ予想の変形について 学籍番号 5511104 氏名山中陽子 要旨 コラッツ予想というのは 任意の 0 でない自然数 n をとり n が偶数の場合 n を 2 で割り n が奇数の場合
振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫
6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫りにするために スペクトルを滑らかにする操作のことをいう 6.1 合積のフーリエ変換スペクトルの平滑化を行う際に必要な 合積とそのフーリエ変換について説明する 6.2 データ
次は三段論法の例である.1 6 は妥当な推論であり,7, 8 は不妥当な推論である. [1] すべての犬は哺乳動物である. すべてのチワワは犬である. すべてのチワワは哺乳動物である. [3] いかなる喫煙者も声楽家ではない. ある喫煙者は女性である. ある女性は声楽家ではない. [5] ある学生は
三段論法とヴェン図 1. 名辞と A, E, I, O 三段論法 (syllogism) は推論の一種であり, そこに含まれる言明の形式は次の四つに分類される. A すべての F は G である ( 全称肯定 universal affirmative) E いかなる F も G ではない ( 全称否定 universal negative) I ある F は G である ( 特称肯定 particular
Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード]
熱力学 Ⅱ 第 章自由エネルギー システム情報工学研究科 構造エネルギー工学専攻 金子暁子 問題 ( 解答 ). 熱量 Q をある系に与えたところ, 系の体積は膨張し, 温度は上昇した. () 熱量 Q は何に変化したか. () またこのとき系の体積がV よりV に変化した.( 圧力は変化無し.) 内部エネルギーはどのように表されるか. また, このときのp-V 線図を示しなさい.. 不可逆過程の例を
4STEP 数学 Ⅲ( 新課程 ) を解いてみた関数 1 微分法 1 微分係数と導関数微分法 2 導関数の計算 272 ポイント微分法の公式を利用 (1) ( )( )( ) { } ( ) ( )( ) ( )( ) ( ) ( )( )
微分法 微分係数と導関数微分法 導関数の計算 7 ポイント微分法の公式を利用 () 7 8 別解 [ ] [ ] [ ] 7 8 など () 6 6 など 7 ポイント微分法の公式を利用 () 6 6 6 など () 9 など () þ î ì など () þ î ì þ î ì þ î ì など 7 () () 左辺を で微分すると, 右辺を で微分すると, ( ) ( ) ( ) よって, (
オートマトン 形式言語及び演習 3. 正規表現 酒井正彦 正規表現とは 正規表現 ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械正規表現 : 言語
オートマトン 形式言語及び演習 3. 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ とは ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械 : 言語を記号列で定義 - 記述しやすい ( ユーザフレンドリ ) 例 :01 + 10 - UNIX の grep コマンド - UNIX の
<4D F736F F F696E74202D2091E6824F82538FCD8CEB82E88C9F8F6F814592F990B382CC8CB4979D82BB82CC82505F D E95848D8682CC90B69
第 章 誤り検出 訂正の原理 その ブロック符号とその復号 安達文幸 目次 誤り訂正符号化を用いる伝送系誤り検出符号誤り検出 訂正符号 7, ハミング符号, ハミング符号生成行列, パリティ検査行列の一般形符号の生成行列符号の生成行列とパリティ検査行列の関係符号の訂正能力符号多項式 安達 : コミュニケーション符号理論 安達 : コミュニケーション符号理論 誤り訂正符号化を用いる伝送系 伝送システム
学習指導要領
(1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数 の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい ア イ 無理数 整数 ウ 無理数の加法及び減法 乗法公式などを利用した計 算ができる また 分母だけが二項である無理数の 分母の有理化ができる ( 例 1)
ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル
時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル
1 対 1 対応の演習例題を解いてみた 微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h)
微分法とその応用 例題 1 極限 微分係数の定義 () 関数 ( x) は任意の実数 x について微分可能なのは明らか ( 1, ( 1) ) と ( 1 + h, ( 1 + h) ) の傾き= ( 1 + h ) - ( 1 ) ( 1 + ) - ( 1) = ( 1 + h) - 1 h ( 1) = lim h ( 1 + h) - ( 1) h ( 1, ( 1) ) と ( 1 - h,
(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx)
6 章スペクトルの平滑化 スペクトルの平滑化とはフーリエスペクトルやパワ スペクトルのギザギザを取り除き 滑らかにする操作のことをいう ただし 波のもっている本質的なものをゆがめてはいけない 図 6-7 パワ スペクトルの平滑化 6. 合積のフーリエ変換スペクトルの平滑化を学ぶ前に 合積とそのフーリエ変換について説明する 6. データ ウィンドウデータ ウィンドウの定義と特徴について説明する 6.3
Microsoft PowerPoint - 9.pptx
9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍
2018年度 筑波大・理系数学
筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ < < とする 放物線 上に 点 (, ), A (ta, ta ), B( - ta, ta ) をとる 三角形 AB の内心の 座標を p とし, 外心の 座標を q とする また, 正の実数 a に対して, 直線 a と放物線 で囲まれた図形の面積を S( a) で表す () p, q を cos を用いて表せ S( p) () S(
切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. (
統計学ダミー変数による分析 担当 : 長倉大輔 ( ながくらだいすけ ) 1 切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 実際は賃金を就業年数だけで説明するのは現実的はない
PowerPoint Presentation
付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像
Microsoft PowerPoint - 10.pptx
m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる
第2章
第 2 章 企業の行動 : 第二部 ここでは 短期の供給曲線がなぜ右上がりになるのか述べます 企業は利潤を最大化すると仮定します (1) π = TR TC π : 利潤 TR : 総収入 TC : 総費用 企業は自己の生産物の価格 P に影響をしない と仮定します このことは 生 産物市場が完全競争市場であるということを意味します 詳しくは 完全競争 市場の定義について教科書などを参考にしてください
線形代数とは
線形代数とは 第一回ベクトル 教科書 エクササイズ線形代数 立花俊一 成田清正著 共立出版 必要最低限のことに限る 得意な人には物足りないかもしれません 線形代数とは何をするもの? 線形関係 y 直線 yもも 次式で登場する (( 次の形 ) 線形 ただし 次元の話世の中は 3 次元 [4[ 次元 ] 次元 3 次元 4 次元 はどうやって直線を表すの? ベクトルや行列の概念 y A ベクトルを使うと
4 月 東京都立蔵前工業高等学校平成 30 年度教科 ( 工業 ) 科目 ( プログラミング技術 ) 年間授業計画 教科 :( 工業 ) 科目 :( プログラミング技術 ) 単位数 : 2 単位 対象学年組 :( 第 3 学年電気科 ) 教科担当者 :( 高橋寛 三枝明夫 ) 使用教科書 :( プロ
4 東京都立蔵前工業高等学校平成 30 年度教科 ( 工業 ) 科目 ( プログラミング技術 ) 年間授業計画 教科 :( 工業 ) 科目 :( プログラミング技術 ) 単位数 : 2 単位 対象学年組 :( 第 3 学年電気科 ) 教科担当者 :( 高橋寛 三枝明夫 ) 使用教科書 :( プログラミング技術 工業 333 実教出版 ) 共通 : 科目 プログラミング技術 のオリエンテーション プログラミング技術は
