1 AdaBoost [8], [10] 2001 Viola Jones [8], [10] [11], [12] (a) (b) 2
|
|
|
- こうざぶろう つなかわ
- 9 years ago
- Views:
Transcription
1 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. [], [email protected], [email protected], [email protected] Abstract [Survey paper] Human Detection Based on Statistical Learning Yuji YAMAUCHI, Takayoshi YAMASHITA, and Hironobu FUJIYOSHI, Chubu University 1200 Matsumoto-cho, Kasugai, Aichi, Japan Omron Corporation Nishikusatsu, Kusatsu, Shiga, Japan [email protected], [email protected], [email protected] Object detection is detecting and localizing generic in an image. In object detection, the basis is face detection, which has been researched since early times. In recent years, the detection target has changed to the human image in various different appearances. Under these circumstances, a lot of methods have been proposed for resolving the factors that complicate detecting humans. In this paper, we discuss the factors that complicate human detection and survey human detection methods from the viewpoint of two approaches, feature extraction and classification by statistical learning, to overcome these factors. In addition, we summarize the evaluation methodologies and image databases that spurred development of human detection. Key words Survey, Human detection, Feature, Statistical learning Sakai [1] [2] [4] 1990 [5] [8] Neural Network [6] SVM [9] Naive Bayes [7] 1
2 1 AdaBoost [8], [10] 2001 Viola Jones [8], [10] [11], [12] (a) (b) 2
3 1 - HOG [13] CSS [14] HOF [15] - Joint Haar-like [16], CoHOG [17] Joint HOG [18] - Cluster Boosted Tree [19] - Deformable Parts Model [20], Hough Forest [21] - [22] - [23], [24] 1 1(d) 1 1(e) Mean Shift [25] ( ) 4 3
4 [8], [26] [13], [27], [28] Chen Edge of Orientation Histograms(EOH) [27] [29] EOH 2(a) Wu 2(b) Edgelet [28], [30] 2(c) 2 Local Binary Pattern(LBP) [31] [22], [32] [34] Dalal Histograms of Oriented Gradients(HOG) [13] HOG ( ) ( HOG 1987 [35] HOG [14], [15], [20], [22], [36] HOG Extended HOG(EHOG) [37] HOG Pyramid HOG(P-HOG) [38] Color-HOG(C-HOG) [39] Edge Similarity-based-HOG(ES-HOG) [40] Dollar [8] [41] LUV [42] [14] Walk 2 Color Self-Similarity(CSS) 2 3(a) CSS CSS HOG CS-HOG [43] CSS 4
5 4 [50] 3 CSS [14] [44] [44] Yao [45] [44] 3(b) STpatch [12], [15], [46] Viola 2 Haarlike [12] Dalal 2 [15] HOF(Histogram of Flow) Dalal STpatch [47] [48] STpatch [49] TOF 4 Relational Depth Similarity Feature(RDSF) [50] 4 2 RDSF Shotton 2 [51] Xia Chamfer Matching 3D [52] TOF Kinect 3. 2 () Ω 5
6 5 CoHOG [53] Watanabe Co-occurrence Histograms of Oriented Gradients (CoHOG) [17], [53] CoHOG 5 2 [54] Local Binary Pattern(LBP) [31] [55] Tuzel [56] [16], [18], [57] [59] Joint Haar-like [16] Haar-like 2 2 Joint Haar-like AdaBoost 2 [60] Sabzmeydani 4 AdaBoost Shapelet [57] Sabzmeydani 2 AdaBoost 1 AdaBoost 6 4 Shapelet 2 AdaBoost 6 Shapelet [57] Shapelet AdaBoost Shapelet Joint Haar-like Shapelet Joint HOG [18] Rowley [61] [62], [63] Rowley [37], [64], [65] 6
7 7 Cluster Boosted Tree [19] Wu Cluster Boosted Tree(CVT) [19] CVT 7 h k-means [66] Joint Boosting Joint Boosting 4. 2 ( ) [67] 4 [30], [68] 3 5 [21], [69] [20], [70] Bourdev Poselet [70] 8 Poselet Poselet Latent SVM [20] 7
8 8 Poselet [67] Poselet( ) Mohan 2 Adaptive Combination of Classifiers(ACC) [67] Mohan Multi-Instance Learning(MIL) [71] [72] [74] MIL 9 Deformable Parts Model [20] (a) (b) (c) (d) 2 Xia Star Model [75] Xia Star Model Star Model Constellation Model [76] [77] Felzenszwalb Deformable Parts Model [20], [78] Deformable Parts Model 9 Star Model Latent SVM Deformable Parts Model 8
9 10 Leibe [84] Deformable Parts Model [79] [81] [82], [83] Leibe Implicit Shape Model(ISM) [69], [84], [85] Leibe 10 Leibe Space-Time patch [47] [46] Gall Hough Forests [21] Hough Forests Randam Forest [86] Hough Forests [87] [89] 4. 3 Wang 11 Wang [22] [22] Wang Mean Shift [25] 11 Wang HOG LBP TOF [50] Enzweiler [90] 4. 4 Hoiem [23] 12(a) 12(c) Hoiem ( ) ( 12(b)) 3 3 9
10 5. 12 [23] 13 [24] Hoiem Pang [24] 2 1 Boosting h m 13 h m 2 h m α m Covariate Boost [8] [41] [91] Zhu HOG HOG [91] Integral Channel Features [42] [8] Zhu HOG SVM [91] [29], [75], [79] Graphics Processing Unit(GPU) GPU [92] [94] GPU GPU HOG
11 14 CG [96] [95] [96] [98] Mar [96] 14 CG CG Yamauchi [97] 5. 3 Li y [99] Li Smart Window Transform [100] FPGA ODEN(Object Detect ENgine) 2011 LSI Web MIT CBCL Pedestrian Data [101] MIT CBCL Pedestrian Data Dalal HOG SVM INRIA Person Dataset [13] HOG SVM MIT CBCL Pedestrian Data INRIA Person Dataset 11
12 2 MIT [101] INRIA [13] 2,416 1, , USC-A [30] USC-B [30] USC-C [19] ETH [102] 1,578-1,803 9,380 - Daimler2006 [103] 14, ,000-1, ,000 Daimler2009 [104] 15,660 6,744 21,800 56,492 - NICTA [105] 18,700 5,200-6,900 50,000 TUD [106] Caltech [107] 192,000 61,000 56, ,000 5,600 INRIA Person Dataset INRIA Person Dataset INRIA Person Dataset [103], [104], [107] Caltech Pedestrian Detection Benchmark [107] Miss rate VS. False Positive Per Window(FPPW) [13] 2 Miss rate VS. False Positive Per Image(FPPI) [107] (1) FPPW 1 FPPW (2) FPPI 1 FPPI 2 (2) FPPI (1) (2) Detection Error Tradeoff(DET) () Dalal HOG SVM [20] [108] [111] [1] T. Sakai, et al., Line Extraction and Pattern Detection in a Photograph, Journal of the Pattern Recognition, vol.1, pp , [2] V.Govindaraju, et al., A Computational Model for Face 12
13 Location, ICCV, pp , [3] G. Yang, et al., Human Face Detection in a Complex Background, Journal of the Pattern Recognition, vol.27, no.1, pp.53 63, [4] C. Kotropoulos, et al., Rule-Based Face Detection in Frontal Views, International Conference on Acoustics, Speech, and Signal Processing, vol.4, pp , [5] K.-K. Sung, et al., Example-Based Learning for View- Based Human Face Detection, Technical Report MIT AI Lab, [6] H.A. Rowley, et al., Neural Network-Based Face Detection, CVPR, pp , [7] H. Schneiderman, et al., A Statistical Method for 3D Object Detection Applied to Faces and Cars, CVPR, [8] P. Viola, et al., Rapid Object Detection Using a Boosted Cascade of Simple Features, CVPR, pp , [9] E. Osuna, et al., Training Support Vector Machines: an Application to Face Detection, CVPR, pp , [10] P. Viola, et al., Robust Real-Time Object Detection, IJCV, vol.57, no.2, pp , [11] C. Papageorgiou, et al., A Trainable System for Object Detection, IJCV, vol.38, no.1, pp.15 33, [12] P. Viola, et al., Detecting Pedestrians Using Patterns of Motion and Appearance, ICCV, pp , [13] N. Dalal, et al., Histograms of Oriented Gradients for Human Detection, CVPR, vol.1, pp , [14] S. Walk, et al., New Features and Insights for Pedestrian Detection, CVPR, pp , [15] N. Dalal, et al., Human Detection Using Oriented Histograms of Flow and Appearance, ECCV, vol.2, pp , [16] T. Mita, et al., Discriminative Feature Co-Occurrence Selection for Object Detection, PAMI, vol.30, no.7, pp , [17] T. Watanabe, et al., Co-occurrence Histograms of Oriented Gradients for Human Detection, Information Processing Society of Japan Transactions on Computer Vision and Applications, vol.2, pp.39 47, [18] Joint 2 Boosting vol.j92-d no.9 pp [19] B. Wu, et al., Cluster Boosted Tree Classifier for Multi- View, Multi-Pose Object Detection, ICCV, pp.1 8, [20] P.F. Felzenszwalb, et al., Object Detection with Discriminatively Trained Part Based Models, PAMI, vol.32, no.9, pp , [21] J. Gall, et al., Class-Specific Hough Forests for Object Detection, CVPR, [22] X. Wang, et al., An HOG-LBP Human Detector with Partial Occlusion Handling, ICCV, [23] D. Hoiem, et al., Putting Objects in Perspective, IJCV, vol.80, no.1, pp.3 15, [24] J. Pang, et al., Transferring boosted detectors towards viewpoint and scene adaptiveness, IEEE Transactions on Image Processing, vol.20, no.5, pp , [25] D. Comaniciu, et al., Mean Shift : A Robust Approach Toward Feature Space Analysis, PAMI, vol.24, no.5, pp , [26] SSII 2004 [27] K. Levi, et al., Learning Object Detection from a Small Number of Examples: the Importance of Good Features, CVPR, vol.2, pp.53 60, [28] B. Wu, et al., Detection and Segmentation of Multiple, Partially Occluded Objects by Grouping, Merging, Assigning Part Detection Responses, IJCV, vol.82, no.2, pp , [29] Y.T. Chen, et al., A Cascade of Feed-Forward Classifiers for Fast Pedestrian Detection, ACCV, pp , [30] B. Wu, et al., Detection of Multiple, Partially Occluded Humans in a Single Image by Bayesian Combination of Edgelet Part Detectors, ICCV, pp.90 97, [31] W. Li, et al., Texture Classification Using Texture Spectrum, Journal of the Pattern Recognition, vol.23, no.8, pp , [32] Y.D. Mu, et al., Discriminative local binary patterns for human detection in personal album, CVPR, pp.1 8, [33] CVIM 2010 [34] vol.57 no.3 pp [35] vol.70-d no.7 pp [36] Z. Lin, et al., A Pose-Invariant Descriptor for Human Detection and Segmentation, ECCV, [37] C. Hou, et al., Multiview Pedestrian Detection Based on Vector Boosting, ACCV, pp , [38] A. Bosch, et al., Representing Shape with a Spatial Pyramid Kernel, International Conference on Image and Video Retrieval, [39] P. Ott, et al., Implicit Color Segmentation Features for Pedestrian and Object Detection, ICCV, [40] MIRU pp [41] F. Porikli, Integral Histogram: a Fast Way to Extract Histograms in Cartesian Spaces, CVPR, vol.1, pp , [42] P. Dollár, et al., Integral Channel Features, British Machine Vision Conference, [43] CS-HOG SSII 2012 [44] J. Yao, et al., Fast Human Detection from Videos Using Covariance Features, Visual Surveillance Workshop(in conjunction with ECCV2008), [45] J. Yao, et al., Multi-Layer Background Subtraction Based on Color and Texture, Computer Vision and Pattern, Recognitionisual Surveillance Workshop, [46] Space-Time Patch CVIM vol.1 no.2 pp [47] E. Shechtman, et al., Space-Time Behavior-Based Correlation-OR-How to Tell if Two Underlying Motion Fields are Similar without Computing Them?, PAMI, vol.29, no.11, pp , [48] PRMU pp [49] Y. Yamauchi, et al., People Detection Based on Cooccurrence of Appearance and Spatio-temporal Features, National Institute of Informatics Transactions on Progress in Informatics, vol.1, no.7, pp.33 42, [50] vol.93-d no.3 pp [51] J. Shotton, et al., Real-time human pose recognition in parts from single depth images, CVPR, June [52] L. Xia, et al., Human Detection Using Depth Information by Kinect, International Workshop on Human Activity Understanding from 3D Data(in conjunction with CVPR), pp.15 22, [53] T. Watanabe, et al., Co-occurrence Histograms of Oriented Gradients for Pedestrian Detection, Pacific-Rim Symposium on Image and Video Technology, pp.37 47, [54] H. Hattori, et al., Stereo-Based Pedestrian Detection Using Multiple Patterns, British Machine Vision Conference, vol.243, [55] R. Nosaka, et al., Feature Extraction Based on Cooccurrence of Adjacent Local Binary Patterns, Pacific-Rim Symposium on Image and Video Technology,
14 [56] O. Tuzel, et al., Pedestrian Detection via Classification on Riemannian Manifolds, PAMI, vol.30, no.10, pp , [57] P. Sabzmeydani, et al., Detecting Pedestrians by Learning Shapelet Features, CVPR, pp.1 8, [58] C. Huang, et al., Learning Sparse Features in Granular Space for Multi-View Face Detection, International Conference on Automatic Face and Gesture Recognition, pp , [59] G. Duan, et al., Boosting Associated Pairing Comparison Features for Pedestrian Detection, International Workshop on Visual Surveillance(in conjunction with Internationa Conference on Computer Vision), [60] Boosting vol.j92-d no.8 pp [61] H.A. Rowley, et al., Rotation Invariant Neural Network- Based Face Detection, CVPR, pp.38 44, [62] M. Jones, et al., Fast Multi-View Face Detection, Mitsubishi Electric Research Lab Technical Report, [63] S.Z. Li, et al., Multi-view face pose estimation based on supervised ISA learning, International Conference on Automatic Face and Gesture Recognition, pp , [64] S.Z. Li, et al., Statistical Learning of Multi-View Face Detection, ECCV, [65] C. Huang, et al., Vector boosting for rotation invariant multi-view face detection, ICCV, vol.1, pp , [66] Boosting PRMU pp [67] A. Mohan, et al., Example-Based Object Detection in Images by Components, PAMI, vol.23, no.4, pp , [68] Z. Lin, et al., Hierarchical Part-Template Matching for Human Detection and Segmentation, ICCV, [69] B. Leibe, et al., Interleaved Object Categorization and Segmentation, British Machine Vision Conference, pp , [70] L. Bourdev, et al., Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations, ICCV, [71] T.G. Dietterich, et al., Solving the Multiple Instance Problem with Axis-Parallel Rectangles, Artificial Intelligence Journal, vol.89, pp.31 71, [72] Z. Lin, et al., Multiple Instance Feature for Robust Partbased Object Detection, CVPR, pp.1 8, [73] P. Dollár, et al., Multiple Component Learning for Object Detection, ECCV, pp , [74] Y.-T. Chen, et al., Multi-Class Multi-Instance Boosting for Part-Based Human Detection, International Workshop on Visual Surveillance(in conjunction with ICCV2009), pp , Sept [75] X. Xia, et al., Part-Based Object Detection using Cascades of Boosted Classifiers, ACCV, [76] M. Burl, et al., Recognition of Planar Object Classes, CVPR, pp , [77] R. Fergus, et al., Object Class Recognition by Unsupervised Scale-Invariant Learning, CVPR, vol.2, pp , [78] P.F. Felzenszwalb, et al., A Discriminatively Trained, Multiscale, Deformable Part Model, CVPR, [79] P.F. Felzenszwalb, et al., Cascade Object Detection with Deformable Part Models, CVPR, pp , [80] P. Ott, et al., Shared Parts for Deformable Part-Based Models, CVPR, [81] M. Pedersoli, et al., A Coarse-to-Fine Approach for Fast Deformable Object Detection, CVPR, [82] L.L. Zhu, et al., Latent Hierarchical Structural Learning for Object Detection, CVPR, [83] M.A. Sadeghi, et al., Recognition Using Visual Phrases, CVPR, pp , [84] B. Leibe, et al., Robust Object Detection with Interleaved Categorization and Segmentation, IJCV, vol.77, no.1-3, pp , [85] B. Leibe, et al., Combined object categorization and segmentation with an implicit shape model, Statistical Learning in Computer Vision, (in conjunction with ECCV), [86] L. Breiman, Random Forests, Machine Learning, vol.45, no.1, pp.5 32, [87] K. Vijay, et al., A Discriminative Voting Scheme for Object Detection using Hough Forests, British Machine Vision Conference Postgraduate Workshop, [88] Joint Hough Forests: MIRU 2011 [89] Hough Forests SSII 2011 [90] M. Enzweiler, et al., Multi-Cue Pedestrian Classification with Partial Occlusion Handling, CVPR, pp , [91] Q. Zhu, et al., Fast Human Detection Using a Cascade of Histograms of Oriented Gradients, CVPR, pp , [92] B. Bilgic, et al., Fast Human Detection with Cascaded Ensembles on the GPU, IEEE Intelligent Vehicles Symposium, pp , [93] V.A. Prisacariu, et al., fasthog - a Real-Time GPU Implementation of HOG, Technical Report Oxford University, [94] R. Benenson, et al., Pedestrian Detection at 100 Frames per Second, CVPR, pp , [95] CVIM vol.46 no.15 pp [96] J. Marín, et al., Learning Appearance in Virtual Scenarios for Pedestrian Detection, CVPR, pp , [97] Y. Yamauchi, et al., Automatic Generation of Training Samples and a Learning Method Based on Advanced MIL- Boost for Human Detection, ACPR, pp , [98] PRMU pp [99] Y. Li, et al., Human Detection by Searching in 3D Space Using Camera and Scene Knowledge, ICPR, [100] Smart Window Transform 2011 [101] M. Oren, et al., Pedestrian Detection Using Wavelet Templates, CVPR, pp , [102] A. Ess, et al., Depth and Appearance for Mobile Scene Analysis, ICCV, [103] S. Munder, et al., An Experimental Study on Pedestrian Classification, PAMI, vol.28, pp , [104] M. Enzweiler, et al., Monocular pedestrian detection: survey and experiments, PAMI, vol.31, no.12, pp , [105] G. Overett, et al., A New Pedestrian Dataset for Supervised Learning, The Intelligent Vehicles Symposium, [106] M. Andriluka, et al., People-Tracking-by-Detection and People-Detection-by-Tracking, CVPR, [107] P. Dollár, et al., Pedestrian Detection: An Evaluation of the State of the Art, PAMI, vol.34, no.4, pp , [108] M. Wang, et al., Automatic adaptation of a generic pedestrian detector to a specific traffic scene, CVPR, pp , [109] P. Sharma, et al., Unsupervised Incremental Learning for Improved Object Detection in a Video, CVPR, pp , [110] M. Wang, et al., Transferring a Generic Pedestrian Detector Towards Specific Scenes, CVPR, pp , [111] X. Wang, et al., Detection by Detections : Non-parametric Detector Adaptation for a Video, CVPR, pp ,
2013/9 Vol. J96 D No. 9 [12] [14] [15] [17] [15] [16] [17] 2. 3. 4. 5. 6. 7. 2. 2. 1 [18], [19] [20] [11], [14], [21] 2010 Visual Object Classes Chall
a) b) c) Human Detection Based on Statistical Learning from Image Yuji YAMAUCHI a), Takayoshi YAMASHITA b), and Hironobu FUJIYOSHI c) 1. [1] 1969 Sakai [2] [3] [5] Chubu University, 1200 Matsumoto, Kasugai-shi,
(MIRU2008) HOG Histograms of Oriented Gradients (HOG)
(MIRU2008) 2008 7 HOG - - E-mail: [email protected], {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human
色の類似性に基づいた形状特徴量CS-HOGの提案
IS3-04 第 18 回 画 像 センシングシンポジウム, 横 浜, 2012 年 6 月 CS-HOG CS-HOG : Color Similarity-based HOG feature Yuhi Goto, Yuji Yamauchi, Hironobu Fujiyoshi Chubu University E-mail: [email protected] Abstract
IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa
3,a) 3 3 ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransac. DB [] [2] 3 DB Web Web DB Web NTT NTT Media Intelligence Laboratories, - Hikarinooka Yokosuka-Shi, Kanagawa 239-0847 Japan a) [email protected]
3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)
(MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost
HOG HOG LBP LBP 4) LBP LBP Wang LBP HOG LBP 5) LBP LBP 1 r n 1 n, 1
1 1 1 Shwartz Histgrams of Oriented Gradients HOG PLS PLS KPLS INRIA PLS KPLS KPLS PLS Pedestrian Detection Using Kernel Partial Least Squares Analysis Takashi Abe, 1 Takayuki Okatani 1 and Kouichiro Deguchi
untitled
IS2-26 第 19 回 画 像 センシングシンポジウム, 横 浜,2013 年 6 月 SVM E-mail: [email protected] Abstract SVM SVM SVM SVM HOG B-HOG HOG SVM 6.1% 17 1 Intelligent Transport System(ITS: ) 2005 Dalal HOG SVM[1] [2] HOG
,,.,.,,.,.,.,.,,.,..,,,, i
22 A person recognition using color information 1110372 2011 2 13 ,,.,.,,.,.,.,.,,.,..,,,, i Abstract A person recognition using color information Tatsumo HOJI Recently, for the purpose of collection of
[1] SBS [2] SBS Random Forests[3] Random Forests ii
Random Forests 2013 3 A Graduation Thesis of College of Engineering, Chubu University Proposal of an efficient feature selection using the contribution rate of Random Forests Katsuya Shimazaki [1] SBS
% 2 3 [1] Semantic Texton Forests STFs [1] ( ) STFs STFs ColorSelf-Simlarity CSS [2] ii
2012 3 A Graduation Thesis of College of Engineering, Chubu University High Accurate Semantic Segmentation Using Re-labeling Besed on Color Self Similarity Yuko KAKIMI 2400 90% 2 3 [1] Semantic Texton
Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution
Convolutional Neural Network 2014 3 A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolutional Neural Network Fukui Hiroshi 1940 1980 [1] 90 3
LBP 2 LBP 2. 2 Local Binary Pattern Local Binary pattern(lbp) [6] R
DEIM Forum 24 F5-4 Local Binary Pattern 6 84 E-mail: {tera,kida}@ist.hokudai.ac.jp Local Binary Pattern (LBP) LBP 3 3 LBP 5 5 5 LBP improved LBP uniform LBP.. Local Binary Pattern, Gradient Local Auto-Correlations,,,,
1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2
CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for
& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro
TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato
Microsoft PowerPoint - SSII_harada pptx
The state of the world The gathered data The processed data w d r I( W; D) I( W; R) The data processing theorem states that data processing can only destroy information. David J.C. MacKay. Information
) 1 2 2[m] % H W T (x, y) I D(x, y) d d = 1 [T (p, q) I D(x + p, y + q)] HW 2 (1) p q t 3 (X t,y t,z t) x t [ ] T x t
1 1 Multi-Person Tracking for a Mobile Robot using Overlapping Silhouette Templates Junji Satake 1 and Jun Miura 1 This paper describes a stereo-based person tracking method for a person following robot.
28 Horizontal angle correction using straight line detection in an equirectangular image
28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image
258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System
Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.
2 4 2 3 4 3 [12] 2 3 4 5 1 1 [5, 6, 7] [5, 6] [7] 1 [8] 1 1 [9] 1 [10, 11] [10] [11] 1 [13, 14] [13] [14] [13, 14] [10, 11, 13, 14] 1 [12]
Walking Person Recognition by Matching Video Fragments Masashi Nishiyama, Mayumi Yuasa, Tomokazu Wakasugi, Tomoyuki Shibata, Osamu Yamaguchi ( ), Corporate Research and Development Center, TOSHIBA Corporation
(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s
1 1 1, Extraction of Transmitted Light using Parallel High-frequency Illumination Kenichiro Tanaka 1 Yasuhiro Mukaigawa 1 Yasushi Yagi 1 Abstract: We propose a new sharpening method of transmitted scene
1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.,, 464 8601 470 0393 101 464 8601 E-mail: [email protected], {ide,murase,hirayama}@is.nagoya-u.ac.jp,
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. E-mail: {ytamura,takai,tkato,tm}@vision.kuee.kyoto-u.ac.jp Abstract Current Wave Pattern Analysis for Anomaly
(b) BoF codeword codeword BoF (c) BoF Fergus Weber [11] Weber [12] Weber Fergus BoF (b) Fergus [13] Fergus 2. Fergus 2. 1 Fergus [3]
* A Multimodal Constellation Model for Generic Object Recognition Yasunori KAMIYA, Tomokazu TAKAHASHI,IchiroIDE, and Hiroshi MURASE Bag of Features (BoF) BoF EM 1. [1] Part-based Graduate School of Information
2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server
a) Change Detection Using Joint Intensity Histogram Yasuyo KITA a) 2 (0 255) (I 1 (x),i 2 (x)) I 2 = CI 1 (C>0) (I 1,I 2 ) (I 1,I 2 ) 2 1. [1] 2 [2] [3] [5] [6] [8] Intelligent Systems Research Institute,
GID Haar-like Mean-Shift Multi-Viewpoint Human Tracking Based on Face Detection Using Haar-like Features and Mean-Shift Yu Ito (Shizuoka Univers
GID-08-6 Haar-like Mean-Shift Multi-Viewpoint Human Tracking Based on Face Detection Using Haar-like Features and Mean-Shift Yu Ito (Shizuoka University), Atsushi Yamashita, Toru Kaneko (Shizuoka University)
[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing
1,a) 1,b) 1,c) 2012 11 8 2012 12 18, 2013 1 27 WEB Ruby Removal Filters Using Genetic Programming for Early-modern Japanese Printed Books Taeka Awazu 1,a) Masami Takata 1,b) Kazuki Joe 1,c) Received: November
28 TCG SURF Card recognition using SURF in TCG play video
28 TCG SURF Card recognition using SURF in TCG play video 1170374 2017 3 2 TCG SURF TCG TCG OCG SURF Bof 20 20 30 10 1 SURF Bag of features i Abstract Card recognition using SURF in TCG play video Haruka
kut-paper-template.dvi
26 Discrimination of abnormal breath sound by using the features of breath sound 1150313 ,,,,,,,,,,,,, i Abstract Discrimination of abnormal breath sound by using the features of breath sound SATO Ryo
1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +
3 3D 1,a) 1 1 Kinect (X, Y) 3D 3D 1. 2010 Microsoft Kinect for Windows SDK( (Kinect) SDK ) 3D [1], [2] [3] [4] [5] [10] 30fps [10] 3 Kinect 3 Kinect Kinect for Windows SDK 3 Microsoft 3 Kinect for Windows
(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc
1,a) 1,b) Obstacle Detection from Monocular On-Vehicle Camera in units of Delaunay Triangles Abstract: An algorithm to detect obstacles by using a monocular on-vehicle video camera is developed. Since
Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system
Study of Health Monitoring of Vehicle Structure by Using Feature Extraction based on Discrete Wavelet Transform Akihisa TABATA *4, Yoshio AOKI, Kazutaka ANDO and Masataka KATO Department of Precision Machinery
1(a) (b),(c) - [5], [6] Itti [12] [13] gaze eyeball head 2: [time] [7] Stahl [8], [9] Fang [1], [11] 3 -
Vol216-CVIM-22 No18 216/5/12 1 1 1 Structure from Motion - 1 8% Tobii Pro TX3 NAC EMR ACTUS Eye Tribe Tobii Pro Glass NAC EMR-9 Pupil Headset Ville [1] EMR-9 [2] 1 Osaka University Gaze Head Eye (a) deg
IPSJ SIG Technical Report Vol.2015-MUS-107 No /5/23 HARK-Binaural Raspberry Pi 2 1,a) ( ) HARK 2 HARK-Binaural A/D Raspberry Pi 2 1.
HARK-Binaural Raspberry Pi 2 1,a) 1 1 1 2 3 () HARK 2 HARK-Binaural A/D Raspberry Pi 2 1. [1,2] [2 5] () HARK (Honda Research Institute Japan audition for robots with Kyoto University) *1 GUI ( 1) Python
Gaze Head Eye (a) deg (b) 45 deg (c) 9 deg 1: - 1(b) - [5], [6] [7] Stahl [8], [9] Fang [1], [11] Itti [12] Itti [13] [7] Fang [1],
1 1 1 Structure from Motion - 1 Ville [1] NAC EMR-9 [2] 1 Osaka University [3], [4] 1 1(a) 1(c) 9 9 9 c 216 Information Processing Society of Japan 1 Gaze Head Eye (a) deg (b) 45 deg (c) 9 deg 1: - 1(b)
1 2 (1) Ω (2) (1) 4 AdaBoost Shapelet [5] (2) AdaBoost Joint Haar-like [6] low-level 2 Real AdaBoost 1(b) Joint Joint [7] 2.1 Joint 2 Joint 2 Joint 2
- - 1,a) 1,b) 1,c) 2,d) Joint MILBoost 1. [1], [2] [3] *1 Histograms of Oriented Gradients(HOG) [4] Support Vector Machine(SVM) AdaBoost 1 Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501,
08-特集04.indd
5 2 Journal of Multimedia Aided Education Research 2008, Vol. 5, No. 2, 3543 ICT ICT ICT 2 ICT ICT 1100 2008 ICT ICT 2007 ICT ICT ICT ICT IPtalk2008 2006 LAN TCP/IP 1 35 5 22008 1 Enter 1 IPtalk 2 2 2IPtalk
IPSJ SIG Technical Report Vol.2013-CVIM-187 No /5/30 1,a) 1,b), 1,,,,,,, (DNN),,,, 2 (CNN),, 1.,,,,,,,,,,,,,,,,,, [1], [6], [7], [12], [13]., [
,a),b),,,,,,,, (DNN),,,, (CNN),,.,,,,,,,,,,,,,,,,,, [], [6], [7], [], [3]., [8], [0], [7],,,, Tohoku University a) [email protected] b) [email protected], [3],, (DNN), DNN, [3],
IPSJ SIG Technical Report Vol.2010-GN-74 No /1/ , 3 Disaster Training Supporting System Based on Electronic Triage HIROAKI KOJIMA, 1 KU
1 2 2 1, 3 Disaster Training Supporting System Based on Electronic Triage HIROAKI KOJIMA, 1 KUNIAKI SUSEKI, 2 KENTARO NAGAHASHI 2 and KEN-ICHI OKADA 1, 3 When there are a lot of injured people at a large-scale
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 565-0871 1 5 E-mail: {s-kasihr, wakamiya, murata}@ist.osaka-u.ac.jp PC 70% Design, implementation, and evaluation
2017 (413812)
2017 (413812) Deep Learning ( NN) 2012 Google ASIC(Application Specific Integrated Circuit: IC) 10 ASIC Deep Learning TPU(Tensor Processing Unit) NN 12 20 30 Abstract Multi-layered neural network(nn) has
(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,
[II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail [email protected]
9_18.dvi
Vol. 49 No. 9 3180 3190 (Sep. 2008) 1, 2 3 1 1 1, 2 4 5 6 1 MRC 1 23 MRC Development and Applications of Multiple Risk Communicator Ryoichi Sasaki, 1, 2 Yuu Hidaka, 3 Takashi Moriya, 1 Katsuhiro Taniyama,
29 jjencode JavaScript
Kochi University of Technology Aca Title jjencode で難読化された JavaScript の検知 Author(s) 中村, 弘亮 Citation Date of 2018-03 issue URL http://hdl.handle.net/10173/1975 Rights Text version author Kochi, JAPAN http://kutarr.lib.kochi-tech.ac.jp/dspa
Haiku Generation Based on Motif Images Using Deep Learning Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura Scho
Haiku Generation Based on Motif Images Using Deep Learning 1 2 2 2 Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura 2 1 1 School of Engineering Hokkaido University 2 2 Graduate
経済論集 44‐1(よこ)/2.李
PC PC IT PC IT ! 1 The Archimedes Project 2 1992 TAS Total Access System 3 itaskintelligent Total Access System 4 Ho alauna 5 1 PC IT IT Archimedes at StanfordTASTotal Access System itaskintelligent Total
23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h
23 FPGA CUDA Performance Comparison of FPGA Array with CUDA on Poisson Equation ([email protected]), ([email protected]), ([email protected]), ([email protected]),
1 (PCA) 3 2 P.Viola 2) Viola AdaBoost 1 Viola OpenCV 3) Web OpenCV T.L.Berg PCA kpca LDA k-means 4) Berg 95% Berg Web k-means k-means
Web, Web k-means 62% Associating Faces and Names in Web Photo News Akio Kitahara and Keiji Yanai We propose a system which extracts faces and person names from news articles with photographs on the Web
(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)
(MIRU2011) 2011 7 890 0065 1 21 40 105-6691 1 1 1 731 3194 3 4 1 338 8570 255 346 8524 1836 1 E-mail: {fukumoto,kawasaki}@ibe.kagoshima-u.ac.jp, [email protected], [email protected],
1. HNS [1] HNS HNS HNS [2] HNS [3] [4] [5] HNS 16ch SNR [6] 1 16ch 1 3 SNR [4] [5] 2. 2 HNS API HNS CS27-HNS [1] (SOA) [7] API Web 2
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 657 8531 1 1 E-mail: {soda,matsubara}@ws.cs.kobe-u.ac.jp, {masa-n,shinsuke,shin,yosimoto}@cs.kobe-u.ac.jp,
塗装深み感の要因解析
17 Analysis of Factors for Paint Depth Feeling Takashi Wada, Mikiko Kawasumi, Taka-aki Suzuki ( ) ( ) ( ) The appearance and quality of objects are controlled by paint coatings on the surfaces of the objects.
IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-
1 3 5 4 1 2 1,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-View Video Contents Kosuke Niwa, 1 Shogo Tokai, 3 Tetsuya Kawamoto, 5 Toshiaki Fujii, 4 Marutani Takafumi,
2. 2.1 Lytro [11] The Franken Camera [12] 2.2 Creative Coding Community Creative Coding Community [13]-[19] Sketch Fork 2.3 [20]-[23] 3. ourcam 3.1 ou
情 報 処 理 学 会 インタラクション 2013 IPSJ Interaction 2013 2013-Interaction (3EXB-06) 2013/3/2 ourcam: 1 2 ourcam ourcam: On-Site Programming Environment for Digital Photography RYO OSHIMA 1 YASUAKI KAKEHI 2 In these
Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Social Networking
23 An attribute expression of the virtual window system communicators 1120265 2012 3 1 Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual
06’ÓŠ¹/ŒØŒì
FD. FD FD FD FD FD FD / Plan-Do-See FD FD FD FD FD FD FD FD FD FD FD FD FD FD JABEE FD A. C. A B .. AV .. B Communication Space A FD FD ES FD FD The approach of the lesson improvement in Osaka City University
1: 2: 3: 4: 2. 1 Exploratory Search [4] Exploratory Search 2. 1 [7] [8] [9] [10] Exploratory Search
DEIM Forum 2013 D2-1 112 8610 2-1-1 E-mail: {aco,itot}@itolab.is.ocha.ac.jp, [email protected] Exploratory Search A product Search System for women adjusting amount of browsed items Abstract Eriko KOIKE,
fiš„v8.dvi
(2001) 49 2 333 343 Java Jasp 1 2 3 4 2001 4 13 2001 9 17 Java Jasp (JAva based Statistical Processor) Jasp Jasp. Java. 1. Jasp CPU 1 106 8569 4 6 7; [email protected] 2 106 8569 4 6 7; [email protected]
1 3DCG [2] 3DCG CG 3DCG [3] 3DCG 3 3 API 2 3DCG 3 (1) Saito [4] (a) 1920x1080 (b) 1280x720 (c) 640x360 (d) 320x G-Buffer Decaudin[5] G-Buffer D
3DCG 1) ( ) 2) 2) 1) 2) Real-Time Line Drawing Using Image Processing and Deforming Process Together in 3DCG Takeshi Okuya 1) Katsuaki Tanaka 2) Shigekazu Sakai 2) 1) Department of Intermedia Art and Science,
