untitled

Size: px
Start display at page:

Download "untitled"

Transcription

1 IS2-26 第 19 回 画 像 センシングシンポジウム, 横 浜,2013 年 6 月 SVM [email protected] Abstract SVM SVM SVM SVM HOG B-HOG HOG SVM 6.1% 17 1 Intelligent Transport System(ITS: ) 2005 Dalal HOG SVM[1] [2] HOG SVM [3][4] [5] HOG [6] GPU[7] GPU fast HOG[8] CPU 95 AdaBoost[9] [10] SVM SVM SVM SVM HOG B-HOG [11] B-HOG HOG 1/8 HOG 2 B-HOG B-HOG 2 Algorithm 1 IS2-26-1

2 第19回画像センシングシンポジウム 横浜 2013年6月 図1 ラスタスキャンベースの物体検出 Algorithm 1 ラスタスキャンによる物体検出 Require: 入力画像 I 1. 画像 I に対して検出ウィンドウをラスタスキャン for k = 1 to K do //K : 検出ウィンドウの総数 2. 検出ウィンドウ I(k) から特徴ベクトル xk を抽出 3. 識別器 F (xk ) の出力値を算出 4. 閾値 th により対象のラベル y に判定 yk = 1 1 if F (xk ) > th otherwise 図2 end for //ラスタスキャン終了 return y1, y2,..., yk HOG 特徴量 θ(x, y) = tan 1 を示す 物体検出を実現するには図 1 に示すように 入 力画像 I に対して検出ウィンドウを網羅的にラスタス キャンする そして ラスタスキャンして得られた全て Ly (x, y) Lx (x, y) Lx (x, y) = L(x + 1, y) L(x 1, y) Ly (x, y) = L(x, y + 1) L(x, y 1) (2) (3) の検出ウィンドウに対して特徴ベクトルを抽出し 事前 算出した勾配方向 θ は の値で算出されるが に統計的学習手法により構築した識別器を用いて ク 180 より大きくなる方向は 180 引いて と ラス yk を検出対象の場合 1 非検出対象の場合-1 とし する これにより 検出対象と背景領域の輝度の明暗 て判別する 関係に依存しない勾配方向を得ることができる 次に 人を検出対象としたラスタスキャンベースの物体検 算出した勾配強度 m と勾配方向 θ を用いて 式 (4) に 出手法には 2005 年に Dalal らが提案した HOG 特徴 よりセル c (M M ピクセル) における勾配方向ヒス 量と線形 SVM による手法 [2] が多く用いられている トグラム V c = {vc (1), vc (2),..., vc (N )} を作成する HOG 特徴量を小規模なハードウェアで実装するために vc (n) = M M m(x, y)δ[f (θ(x, y)), n] (4) HOG 特徴量を 2 値化した B-HOG 特徴量 [11] が提案 されている 本章では HOG 特徴量 B-HOG 特徴量 線形 SVM[1] により構築した識別器とその問題点つい ここで n = 1, 2,..., N はヒストグラムのビンの番号 て述べる f (θ) は勾配方向 θ を N 方向に量子化した値 δ[ ] はク 2.1 x y ロネッカーのデルタ関数を表しており 二つの要素が HOG 特徴量 等しい場合は 1 それ以外は 0 を出力する関数である Histograms of Oriented Gradients(HOG) 特徴量 [2] このように セル c 毎にヒストグラム化することによ は図 2 に示すように 検出ウィンドウからセルと呼ば り 局所領域内の微小な幾何学的変化に対して頑健な れる局所領域毎に作成した勾配方向ヒストグラムを特 特徴量となる 最後に 式 (5) を用いて各セル c で作成 徴量とする また 複数のセルで構成されるブロック した勾配方向ヒストグラム V c を 複数のセルで構成 領域毎に特徴量を正規化することで 照明変化や幾何 されるブロック領域 (R R セル) ごとに正規化する 学的変化の影響を受けにくい特徴量となる vc (n) vc (n) = q vc (k)2 + 算出手順は はじめに検出ウィンドウ中の各ピクセ ルの輝度値 L(x, y) の勾配強度 m と勾配方向 θ を式 (1) 式 (3) より算出する m(x, y) = Lx (x, y)2 + Ly (x, y)2 ( = 1) (5) k=1 (1) ここで q はブロック領域内の勾配方向の数 (R R N ) は分母が 0 になることを防ぐための定数である ブロッ IS2-26-2

3 x sv x SVM F (x) x (D ) w = J j=1 y jα j x sv j (8) 3 B-HOG 1 V c V c = {v c(1),v c(2),..., v c(q)} {(64/M ) (R 1)} {(128/M ) (R 1)} M =8 R =2 N =8 105 HOG = 3, 360 x 2.2 B-HOG B-HOG [11] 3 HOG 2 HOG V c (6) th bhog 2 P c = {p c(1),p c(2),..., p c(q)} p c(n) = { 1 if v c(n) >th bhog 0 otherwise (6) th bhog HOG B-HOG M =8 R =2 N =8 3,360 HOG 1/8 B-HOG HOG SVM Support Vector Machine(SVM)[1] SVM SVM (7) F (x) F (x) = J j=1 y j α j < x sv j, x > (7) J α y < x sv, x > F (x) = w T x (8) D = w i x i (9) x k F (x k ) y k 2.4 VGA ( ) I l w l h l s l m K K = (640 l w l s 1) (480 l h l s 1) l 2 m (10) (l w,l h ) = (64, 128) l s = l m =4 2 F (x k ) GPU HOG [8] SVM SVM SVM 3 SVM SVM HOG B-HOG IS2-26-3

4 3.1 SVM SVM F (x) (8) x w Hare [12] SVM SVM w β b { 1, 1} D Algorithm 2 w Algorithm 2 w 4 N b w Require: w N b 1. : SVM w r r = w 2. w β b for i =1toN b do //N b : 2.1 r {-1,1} 2 b i b i = sign(r) 2.2 r b i β i = < r, bi > b i r r r β i b i end for return {β i} N b {bi}n b SVM F (x) w β b F (x) f(x) = N b β ib T i x b b + {0, 1} D b + (b = b + b + ) (11) SVM < b + i, x > x f(x) = = = N b N b N b β i b T i x β i (< b + i, x > < b + i, x >) β i (2 < b + i, x > x ) (11) x B-HOG x {0, 1} D < b + i, x > x 5 SVM SSE4.2 CPU POPCNT 3.2 N b SVM N b 4 w β b N b w N b SVM N b N b 5 N b SVM 5 SVM N b N b SVM IS2-26-4

5 5 2 SVM 2 y th SVM N b N b th 3.3 N b N b Algorithm 3 Algorithm 3 Require: I 1. I for k =1toK do //K : 2. I(k) x k 3. f(x k ) 0 4. for i =1toN b do //N b : 4.1 SVM : β i(2 < b + i, x k > x k ) f(x k )+=β i(2 POPCNT(b + i & x k ) POPCNT(x k )) 4.2 if f(x k ) >th pos or f(x k ) <th neg then break // end if end for //N b 5. th y { 1 if f(xk ) >th y k = 1 otherwise end for // return y 1,y 2,..., y K th pos th neg y =1 y = 1 ( ±1.0) th pos <f(x) <th neg 6 SVM N b SVM 6 SVM SVM HOG B-HOG B-HOG HOG 2 B-HOG 2 B-HOG P c1 P c2 (12) (14) (AND) (OR) (XOR) P and c 1,c 2 = P c1 & P c2 (12) P or c 1,c 2 = P c1 P c2 (13) P xor c 1,c 2 = P c1 ˆ P c2 (14) R =2 6 P operator = {P c1,c 2, P c1,c 3, P c1,c 4, P c2,c 3, P c2,c 4, P c3,c 4 } AND 2 1 OR XOR IS2-26-5

6 7 B-HOG 0 7 B-HOG M =8 R =2 N =8 3,360 B-HOG 5,040 8,400 B-HOG 8,400 x INRIA Person Dataset[2] 2,416 13,161 1, ,306, INRIA Person Dataset DET 4.2 HOG + SVM B-HOG + SVM ( ) B-HOG SVM B-HOG AND OR XOR Detection Error Trade-off(DET) DET OS:Windows Server 2008 Enterprise x64 CPU:Intel Xeon CPU 2.67GHz RAM:256GB PC SVM SVM Light[13] M =8 R =2 N =8 SVM N b = DET 8 DET SVM B-HOG HOG (AND) (OR) B-HOG HOG (XOR) 0.1% HOG + SVM 6.1% XOR B-HOG 9 B-HOG IS2-26-6

7 9 1 [%] [ms] [%] [ms] SVM (N b =16) (N b =2) XOR AND OR 27 AND OR 19 XOR 0 AND OR XOR 1 N b =16 SVM SVM 3 SVM N b =2 VGA ( ) (l w,l h ) = (64, 128) l s = l m =4 SVM 674.2[ms](1.48[fps]) 39.66[ms](25.21[fps]) (a) (b) (c) (d) (N b = 16) 9 1 ( ) ( ) 11 N b SVM SVM IS2-26-7

8 2 [Byte] [%] [ms] [Byte] [%] [ms] HOG B-HOG (XOR) Random Projection /3 GPU fast HOG[8] 12 Random Projection 4.5 Random Projection[14] 12 Random Projection HOG Random Projection HOG 23,520 2 (XOR) 6.1% 8,400 (XOR) 1.576[ms] HOG 1.554[ms] SVM 2. B-HOG 1. SVM B-HOG [1] C.Cortes and V.Vladimir, Support-Vector Networks, Machine Learning, vol.20, no.3, pp , [2] N. Dalal, and B. Triggs, Histograms of Oriented Gradients for Human Detection, Computer Vision and Pattern Recognition, vol.1, pp , [3] X.Wang, T. X. Han and S. yan, An HOG-LBP human detector with partial occlusion handling, International Conference on Computer Vision, pp.32 39, [4] C.Wojek, S. Walk, S. Roth and B. Schiele, Monocular 3D scene understanding with explicit occlusion reasoning, Computer Vision and Pattern Recognition, pp , [5] P.F.Felzenszwalb, R.B. Girshick, D.McAllester, and D.Ramanan, Object Detection with Discriminatively Trained Part Based Models, Pattern Analysis and Machine Intelligence, vol.32, no.9, pp , [6] Q.Zhu, S.Avidan, M.Yeh and K.Cheng, Fast Human Detection Using a Cascade of Histograms of Oriented Gradients, Computer Vision and Pattern Recognition, pp , [7] V.Prisacariu and I.Reid, Fast Human Detection with Cascaded Ensembles on the GPU, Intelligent Vehicles Symposium, pp , [8] V.Prisacariu and I.Reid, fasthog - a real-time GPU implementation of HOG, Departmentof Engineering Science, no.2310/9, [9] Y. Freund, and R. E. Schapire, Experiments with a new boosting algorithm, International Conference on Machine Learning, pp , [10] P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, Computer Vision and Pattern Recognition, vol.1, pp , [11],,,, Relational HOG, D, vol.j94-d, no.8, pp , [12] S. Hare, A. Saffari and P. H. S. Torr, Efficient online structured output learning for keypoint-based object tracking, Computer Vision and Pattern Recognition, pp , [13] T. Joachims, SVM light, [14] M.X.Goemans, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, Journal of the ACM, vol.42, pp , IS2-26-8

色の類似性に基づいた形状特徴量CS-HOGの提案

色の類似性に基づいた形状特徴量CS-HOGの提案 IS3-04 第 18 回 画 像 センシングシンポジウム, 横 浜, 2012 年 6 月 CS-HOG CS-HOG : Color Similarity-based HOG feature Yuhi Goto, Yuji Yamauchi, Hironobu Fujiyoshi Chubu University E-mail: [email protected] Abstract

More information

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

(MIRU2008) HOG Histograms of Oriented Gradients (HOG) (MIRU2008) 2008 7 HOG - - E-mail: [email protected], {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human

More information

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3) (MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost

More information

HOG HOG LBP LBP 4) LBP LBP Wang LBP HOG LBP 5) LBP LBP 1 r n 1 n, 1

HOG HOG LBP LBP 4) LBP LBP Wang LBP HOG LBP 5) LBP LBP 1 r n 1 n, 1 1 1 1 Shwartz Histgrams of Oriented Gradients HOG PLS PLS KPLS INRIA PLS KPLS KPLS PLS Pedestrian Detection Using Kernel Partial Least Squares Analysis Takashi Abe, 1 Takayuki Okatani 1 and Kouichiro Deguchi

More information

,,.,.,,.,.,.,.,,.,..,,,, i

,,.,.,,.,.,.,.,,.,..,,,, i 22 A person recognition using color information 1110372 2011 2 13 ,,.,.,,.,.,.,.,,.,..,,,, i Abstract A person recognition using color information Tatsumo HOJI Recently, for the purpose of collection of

More information

Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution

Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution Convolutional Neural Network 2014 3 A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolutional Neural Network Fukui Hiroshi 1940 1980 [1] 90 3

More information

2 4 2 3 4 3 [12] 2 3 4 5 1 1 [5, 6, 7] [5, 6] [7] 1 [8] 1 1 [9] 1 [10, 11] [10] [11] 1 [13, 14] [13] [14] [13, 14] [10, 11, 13, 14] 1 [12]

2 4 2 3 4 3 [12] 2 3 4 5 1 1 [5, 6, 7] [5, 6] [7] 1 [8] 1 1 [9] 1 [10, 11] [10] [11] 1 [13, 14] [13] [14] [13, 14] [10, 11, 13, 14] 1 [12] Walking Person Recognition by Matching Video Fragments Masashi Nishiyama, Mayumi Yuasa, Tomokazu Wakasugi, Tomoyuki Shibata, Osamu Yamaguchi ( ), Corporate Research and Development Center, TOSHIBA Corporation

More information

100326_セミナー資料_物体認識.pptx

100326_セミナー資料_物体認識.pptx !! "#! "#"! "#$! "#%! $#! $#"! $#$! $#%! $#&! % 物体認識 検出 について '()*++,-./#,0121#3)+,04.50+6789+":; '()*++)010;216,#3)+9,+0;.?>65.6#'@4A 物体検出は簡単か 多様な変動要素が存在して難しい 変動要素に対応する特徴量 学習手法がキー カメラの角度 姿勢

More information

[1] SBS [2] SBS Random Forests[3] Random Forests ii

[1] SBS [2] SBS Random Forests[3] Random Forests ii Random Forests 2013 3 A Graduation Thesis of College of Engineering, Chubu University Proposal of an efficient feature selection using the contribution rate of Random Forests Katsuya Shimazaki [1] SBS

More information

1 (PCA) 3 2 P.Viola 2) Viola AdaBoost 1 Viola OpenCV 3) Web OpenCV T.L.Berg PCA kpca LDA k-means 4) Berg 95% Berg Web k-means k-means

1 (PCA) 3 2 P.Viola 2) Viola AdaBoost 1 Viola OpenCV 3) Web OpenCV T.L.Berg PCA kpca LDA k-means 4) Berg 95% Berg Web k-means k-means Web, Web k-means 62% Associating Faces and Names in Web Photo News Akio Kitahara and Keiji Yanai We propose a system which extracts faces and person names from news articles with photographs on the Web

More information

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s 1 1 1, Extraction of Transmitted Light using Parallel High-frequency Illumination Kenichiro Tanaka 1 Yasuhiro Mukaigawa 1 Yasushi Yagi 1 Abstract: We propose a new sharpening method of transmitted scene

More information

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C) (MIRU2011) 2011 7 890 0065 1 21 40 105-6691 1 1 1 731 3194 3 4 1 338 8570 255 346 8524 1836 1 E-mail: {fukumoto,kawasaki}@ibe.kagoshima-u.ac.jp, [email protected], [email protected],

More information

BDH Cao BDH BDH Cao Cao Cao BDH ()*$ +,-+.)*$!%&'$!"#$ 2. 1 Weng [4] Metric Learning Weng DB DB Yang [5] John [6] Sparse Coding sparse coding DB [7] K

BDH Cao BDH BDH Cao Cao Cao BDH ()*$ +,-+.)*$!%&'$!#$ 2. 1 Weng [4] Metric Learning Weng DB DB Yang [5] John [6] Sparse Coding sparse coding DB [7] K Bucket Distance Hashing Metric Learning 1,a) 1,b) 1,c) 1,d) (DB) [1] DB Cao [2] Cao Metric Learning Cao Cao Cao Cao Cao 100 DB 10% 1. m DB DB DB 1 599 8531 1 1 Graduate School of Engineering, Osaka Prefecture

More information

SICE東北支部研究集会資料(2013年)

SICE東北支部研究集会資料(2013年) 280 (2013.5.29) 280-4 SURF A Study of SURF Algorithm using Edge Image and Color Information Yoshihiro Sasaki, Syunichi Konno, Yoshitaka Tsunekawa * *Iwate University : SURF (Speeded Up Robust Features)

More information

1 AdaBoost [8], [10] 2001 Viola Jones [8], [10] [11], [12] 2 3 4 5 6 7 2. 2. 1 2 2. 1. 1 1(a) 2. 1. 2 1(b) 2

1 AdaBoost [8], [10] 2001 Viola Jones [8], [10] [11], [12] 2 3 4 5 6 7 2. 2. 1 2 2. 1. 1 1(a) 2. 1. 2 1(b) 2 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. [], 487 8501 1200 525 0025 2 2-1 E-mail: [email protected], [email protected], [email protected]

More information

kut-paper-template.dvi

kut-paper-template.dvi 26 Discrimination of abnormal breath sound by using the features of breath sound 1150313 ,,,,,,,,,,,,, i Abstract Discrimination of abnormal breath sound by using the features of breath sound SATO Ryo

More information

1 2 (1) Ω (2) (1) 4 AdaBoost Shapelet [5] (2) AdaBoost Joint Haar-like [6] low-level 2 Real AdaBoost 1(b) Joint Joint [7] 2.1 Joint 2 Joint 2 Joint 2

1 2 (1) Ω (2) (1) 4 AdaBoost Shapelet [5] (2) AdaBoost Joint Haar-like [6] low-level 2 Real AdaBoost 1(b) Joint Joint [7] 2.1 Joint 2 Joint 2 Joint 2 - - 1,a) 1,b) 1,c) 2,d) Joint MILBoost 1. [1], [2] [3] *1 Histograms of Oriented Gradients(HOG) [4] Support Vector Machine(SVM) AdaBoost 1 Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501,

More information

Systems Research for Cyber-Physical Systems

Systems Research for Cyber-Physical Systems 自動運転システムにおける 高性能計算技術の応用 加藤真平 名古屋大学大学院情報科学研究科 准教授 Velodyne HDL-64e (3D LIDAR) Velodyne HDL-32e (3D LIDAR) JAVAD RTK-GNSS (GNSS/GPS) HOKUYO UTM-30LX (LIDAR) Point Grey Ladybug 5 (Camera) IBEO LUX 8L (3D

More information

WISS 2018 [2 4] [5,6] Query-by-Dancing Query-by- Dancing Cao [1] OpenPose 2 Ghias [7] Query by humming Chen [8] Query by rhythm Jang [9] Query-by-tapp

WISS 2018 [2 4] [5,6] Query-by-Dancing Query-by- Dancing Cao [1] OpenPose 2 Ghias [7] Query by humming Chen [8] Query by rhythm Jang [9] Query-by-tapp Query-by-Dancing: WISS 2018. Query-by-Dancing Query-by-Dancing 1 OpenPose [1] Copyright is held by the author(s). DJ DJ DJ WISS 2018 [2 4] [5,6] Query-by-Dancing Query-by- Dancing Cao [1] OpenPose 2 Ghias

More information

スライド 1

スライド 1 知能制御システム学 画像追跡 (1) 特徴点の検出と追跡 東北大学大学院情報科学研究科鏡慎吾 swk(at)ic.is.tohoku.ac.jp 2008.07.07 今日の内容 前回までの基本的な画像処理の例を踏まえて, ビジュアルサーボシステムの構成要素となる画像追跡の代表的手法を概説する 画像上の ある点 の追跡 オプティカルフローの拘束式 追跡しやすい点 (Harris オペレータ ) Lucas-Kanade

More information

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF   a m Vol.55 No.1 2 15 (Jan. 2014) 1,a) 2,3,b) 4,3,c) 3,d) 2013 3 18, 2013 10 9 saccess 1 1 saccess saccess Design and Implementation of an Online Tool for Database Education Hiroyuki Nagataki 1,a) Yoshiaki

More information

LBP 2 LBP 2. 2 Local Binary Pattern Local Binary pattern(lbp) [6] R

LBP 2 LBP 2. 2 Local Binary Pattern Local Binary pattern(lbp) [6] R DEIM Forum 24 F5-4 Local Binary Pattern 6 84 E-mail: {tera,kida}@ist.hokudai.ac.jp Local Binary Pattern (LBP) LBP 3 3 LBP 5 5 5 LBP improved LBP uniform LBP.. Local Binary Pattern, Gradient Local Auto-Correlations,,,,

More information

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.

More information

GID Haar-like Mean-Shift Multi-Viewpoint Human Tracking Based on Face Detection Using Haar-like Features and Mean-Shift Yu Ito (Shizuoka Univers

GID Haar-like Mean-Shift Multi-Viewpoint Human Tracking Based on Face Detection Using Haar-like Features and Mean-Shift Yu Ito (Shizuoka Univers GID-08-6 Haar-like Mean-Shift Multi-Viewpoint Human Tracking Based on Face Detection Using Haar-like Features and Mean-Shift Yu Ito (Shizuoka University), Atsushi Yamashita, Toru Kaneko (Shizuoka University)

More information

3 Abstract CAD 3-D ( ) 4 Spin Image Correspondence Grouping 46.1% 17.4% 97.6% ICP [0.6mm/point] 1 CAD [1][2]

3   Abstract CAD 3-D ( ) 4 Spin Image Correspondence Grouping 46.1% 17.4% 97.6% ICP [0.6mm/point] 1 CAD [1][2] 3 E-mail: {akizuki}@isl.sist.chukyo-u.ac.jp Abstract CAD 3-D ( ) 4 Spin Image Correspondence Grouping 46.1% 17.4% 97.6% ICP [0.6mm/point] 1 CAD [1][2] Shape Index [3] [4][5] 3 SHOT [6] [7] Point Pair Feature

More information

24 SPAM Performance Comparison of Machine Learning Algorithms for SPAM Discrimination

24 SPAM Performance Comparison of Machine Learning Algorithms for SPAM Discrimination 24 SPAM Performance Comparison of Machine Learning Algorithms for SPAM Discrimination 1130378 2013 3 9 SPAM SPAM SPAM SPAM SVM AdaBoost RandomForest SPAM SPAM UCI Machine Learning Repository Spambase 4601

More information

IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info

IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Information Science and Technology, Osaka University a) [email protected] 1 1 Bucket R*-tree[5] [4] 2 3 4 5 6 2. 2.1 2.2 2.3

More information

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server a) Change Detection Using Joint Intensity Histogram Yasuyo KITA a) 2 (0 255) (I 1 (x),i 2 (x)) I 2 = CI 1 (C>0) (I 1,I 2 ) (I 1,I 2 ) 2 1. [1] 2 [2] [3] [5] [6] [8] Intelligent Systems Research Institute,

More information

[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis

[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis 1,a) 2 2 2 1 2 3 24 Motion Frame Omission for Cartoon-like Effects Abstract: Limited animation is a hand-drawn animation style that holds each drawing for two or three successive frames to make up 24 frames

More information

Haiku Generation Based on Motif Images Using Deep Learning Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura Scho

Haiku Generation Based on Motif Images Using Deep Learning Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura Scho Haiku Generation Based on Motif Images Using Deep Learning 1 2 2 2 Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura 2 1 1 School of Engineering Hokkaido University 2 2 Graduate

More information

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato

More information

SURF,,., 55%,.,., SURF(Speeded Up Robust Features), 4 (,,, ), SURF.,, 84%, 96%, 28%, 32%.,,,. SURF, i

SURF,,., 55%,.,., SURF(Speeded Up Robust Features), 4 (,,, ), SURF.,, 84%, 96%, 28%, 32%.,,,. SURF, i 24 SURF Recognition of Facial Expression Based on SURF 1130402 2013 3 1 SURF,,., 55%,.,., SURF(Speeded Up Robust Features), 4 (,,, ), SURF.,, 84%, 96%, 28%, 32%.,,,. SURF, i Abstract Recognition of Facial

More information

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb " # $ % & ' ( ) * +, -. / 0 1 2 3 4 5 6 7 8 9 : ; < = >? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y " # $ % & ' ( ) * + , -. / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B

More information

Run-Based Trieから構成される 決定木の枝刈り法

Run-Based Trieから構成される  決定木の枝刈り法 Run-Based Trie 2 2 25 6 Run-Based Trie Simple Search Run-Based Trie Network A Network B Packet Router Packet Filtering Policy Rule Network A, K Network B Network C, D Action Permit Deny Permit Network

More information

(fnirs: Functional Near-Infrared Spectroscopy) [3] fnirs (oxyhb) Bulling [4] Kunze [5] [6] 2. 2 [7] [8] fnirs 3. 1 fnirs fnirs fnirs 1

(fnirs: Functional Near-Infrared Spectroscopy) [3] fnirs (oxyhb) Bulling [4] Kunze [5] [6] 2. 2 [7] [8] fnirs 3. 1 fnirs fnirs fnirs 1 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. fnirs Kai Kunze 599 8531 1 1 223 8526 4 1 1 E-mail: [email protected], [email protected],

More information

1 3DCG [2] 3DCG CG 3DCG [3] 3DCG 3 3 API 2 3DCG 3 (1) Saito [4] (a) 1920x1080 (b) 1280x720 (c) 640x360 (d) 320x G-Buffer Decaudin[5] G-Buffer D

1 3DCG [2] 3DCG CG 3DCG [3] 3DCG 3 3 API 2 3DCG 3 (1) Saito [4] (a) 1920x1080 (b) 1280x720 (c) 640x360 (d) 320x G-Buffer Decaudin[5] G-Buffer D 3DCG 1) ( ) 2) 2) 1) 2) Real-Time Line Drawing Using Image Processing and Deforming Process Together in 3DCG Takeshi Okuya 1) Katsuaki Tanaka 2) Shigekazu Sakai 2) 1) Department of Intermedia Art and Science,

More information

- 1 - - 2 - 320 421 928 1115 12 8 116 124 2 7 4 5 428 515 530 624 921 1115 1-3 - 100 250-4 - - 5 - - 6 - - 7 - - 8 - - 9 - & & - 11 - - 12 - GT GT - 13 - GT - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - -

More information

2. 30 Visual Words TF-IDF Lowe [4] Scale-Invarient Feature Transform (SIFT) Bay [1] Speeded Up Robust Features (SURF) SIFT 128 SURF 64 Visual Words Ni

2. 30 Visual Words TF-IDF Lowe [4] Scale-Invarient Feature Transform (SIFT) Bay [1] Speeded Up Robust Features (SURF) SIFT 128 SURF 64 Visual Words Ni DEIM Forum 2012 B5-3 606 8510 E-mail: {zhao,ohshima,tanaka}@dl.kuis.kyoto-u.ac.jp Web, 1. Web Web TinEye 1 Google 1 http://www.tineye.com/ 1 2. 3. 4. 5. 6. 2. 30 Visual Words TF-IDF Lowe [4] Scale-Invarient

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa 3,a) 3 3 ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransac. DB [] [2] 3 DB Web Web DB Web NTT NTT Media Intelligence Laboratories, - Hikarinooka Yokosuka-Shi, Kanagawa 239-0847 Japan a) [email protected]

More information