γ γ CsI RIBF SAMURAI CsI(Tl),CsI(Na) APD γ
|
|
|
- まいか いさやま
- 9 years ago
- Views:
Transcription
1 /02/24
2 γ γ CsI RIBF SAMURAI CsI(Tl),CsI(Na) APD γ
3 i γ γ γ γ CsI(Tl)-A γ CsI(Tl),CsI(Na)
4 ii
5 iii Sn Sn SRC SAMURAI RIBF SAMURAI θ γ θ γ PMT,APD CATANA PMT(R11265U R580),APD CsI PMT APD [11, 12] CsI(Tl) CsI(Na) Cs, 22 Na, 60 Co Cs, 22 Na, 60 Co γ HV CsI(Na)
6 iv 5.6 CsI(Tl)-B CsI(Na)-C CsI(Tl)-A.B CsI(Na)-C,D ESR PMT A,B,C,D,E x, y, z x γ γ γ Na PMT A,B,C,D,E ?? x,y,z A A B C A,B,C
7 v 3.1 CATANA CsI(Tl),CsI(Na),NaI(Tl),BGO PMT(R11265U), PMT(R580), APD(S ) PMT(R11265U,R580) APD (%) CsI(Tl) CsI(Tl)-A,B CsI(Na) CsI(Na)-C,D
8
9 (GDR :Giant Dipole Resonance) GDR E x A E x 80 A 1/3 MeV 3 4 MeV [1] (E1) 1 E1 ˆf 1 H A M S S = 1 2 < 0 [ ˆf 1, [H, ˆf 1 ] ] 0 >= 3A 32πM (1.1.1) (sum rule) 100% [2] GDR (E1 ) Sn MeV 25 MeV GDR [3] GDR 5-7 MeV PDR 1970
10 Sn [3] [4] 1.2 (Z) (N) [5] ,132 Sn 130 Sn 1.3 GDR GDR PDR 10 MeV PDR 15 MeV GDR [3] % PDR PDR 130 Sn, 132 Sn 68 Ni 10.1(7) MeV, 9.8(7) MeV, 9.55(17) MeV 68 Ni 0.17(2) fm 2.8(5) % [6, 7]
11 (Z) (N) [5] Sn GDR PDR PDR [3]
12 4 1 PDR γ 2 RIBF PDR 3 γ γ
13 Ca 2015 Ca PDR 48 Ca 54 Ca 2p 3/2 2p 1/2 52 Ca, 54 Ca PDR [8] RI (RIBF) SAMURAI(Superconducting Analyzer for MUlti-particle from RAdioIsotope beams) 70 Zn(345 AMeV) 48,50,52 Ca γ 48,50,52 Ca Ca γ γ SAMURAI NaI(Tl) γ DALI2 20% γ ,50,52 Ca Ca Pb (Z) (E1 ) B(E1)
14 6 2 E x σ coul B(E1) dσ coul de x = 16π3 9ħc N E1(E x ) db(e1) de x (2.2.1) Pb Pb (Z=82) Pb Z C (Z=6) Ca Pb ( ) Ca Ca 51 Ca 52 Ca PDR GDR 1 51 Ca 51 Ca γ 51 Ca m 51Ca, p 51Ca, E 51Ca, m n, p n, E n γ E γ 52 Ca M M = (E 51Ca + E n ) 2 (p 51Ca + p n ) 2 (2.2.2) E rel = M (m 51Ca + m n ) (2.2.3)
15 2.3 7 γ 52 Ca E x E x = S n + E rel + E γ (2.2.4) E x E rel E γ E rel SAMURAI Ca γ E γ γ 2.2 ( ) γ ( ) 52 Ca 51 Ca* 52 Ca* γ 52 Ca 2.3 RI (RIBF) SAMURAI SAMURAI NEBULA(NEutron detection system for Breakup of Unstable nuclei with Large Acceptance) γ RIBF SAMURAI 2.3,2.4 (SRC) SAMURAI SAMURAI 70 Zn(345 AMeV) 2 52 Ca
16 SRC SAMURAI RIBF 1 ( 70 Zn) Be ( 52 Ca) 2 BigRIPS SAMURAI SAMURAI 52 Ca 51 Ca γ 2.4 γ 60% γ γ γ θ E lab γ = E cm γ 1 γ(1 β cos θ) (2.4.1)
17 2.4 γ 9 β = 0.6, E cm γ = 1 MeV θ 2.5 γ 2.5 β = 0.6 E γ cm = 1 MeV θ γ γ γ I cm γ I lab I lab = (1 + β cos θ)2 1 β 2 I cm (2.4.2) β = 0.6, I cm = 1 γ θ β = 0.6 I cm = 1 θ γ θ E lab, I lab γ γ (θ) θ γ θ SAMRAI β E lab E cm
18
19 11 3 γ 2015 γ CATANA CAlorimeter for γ-ray Transition in Atomic Nuclei at high isospin Asymmetry γ CATANA 3.1 γ γ NaI(Tl),CsI(Tl) Ge Ge CATANA γ γ 3.1 γ γ γ α β γ [9] γ E γ = ħω E e = ħω I(I: )
20 12 3 γ K σ photon (K) σ phton (K) = { ϕ 0 α 4 Z ζ 7/2 (ζ 1) ϕ 0 α 4 Z 5 ζ 1 e πα+2α2 (1 ln α) (ζ 1) (3.1.1) ϕ, ζ, α ϕ 0 = 8π 3 ( e 2 m e c 2 ) cm 2 (3.1.2) ζ = hν 0 m e c 2 (3.1.3) α = e2 4πħc = (3.1.4) Z 5 L,M σ photon σ photon 5 4 σ phton(k) (3.1.5) E γ γ E γ E e γ ϕ γ θ E γ E γ = 1 + ζ(1 cos θ) 2ζ cos 2 ϕ E e =E γ (1 + ζ) 2 ζ 2 cos 2 ϕ tan ϕ = cot(θ/2) 1 + ζ ζ 1 σ comp (3.1.6) (3.1.7) (3.1.8) Z σ comp = Zϕ 0 (1 2ζ + 5.2ζ ζ 3 ) (3.1.9) γ E γ 2m e c 2 = 1.02 MeV
21 3.1 γ 13 E γ 2m e c 2 m e c 2 E γ 137m e c 2 Z 1/3 σ pair σ pair = ϕz 2 ( 28 9 ) 218 ln 2ζ 27 (3.1.10) Z 2 ϕ ( ) e 2 2 ϕ = m e c 2 /137 = (cm 2 ) (3.1.11) γ γ σ 3 σ = σ photon + σ comp + σ pair (3.1.12) 3.1 γ 3 1 MeV 1 MeV [9] 3.1 γ 3 1 MeV 1 MeV
22 14 3 γ I γ dx di di = N Aσ Idx (3.1.13) A I 0 γ x I(x) γ I(x)/I 0 I(x) = I 0 e N A σ A x (3.1.14) γ γ (Photomultiplier Tube ;PMT) Avalanche Photodioide(APD) 3.2 PMT 3.2 [10] PMT (PMT) 1. (Photo Cathode) 2. 1 δ 2
23 3.1 γ 15 N α = α δ N (3.1.15) PMT [10] APD Avalanche Photodioide(APD) PMT 60 80% APD ( ) 3.3 APD [10] 3.3 ( )PMT,( )APD PMT APD
24 16 3 γ 3.2 γ γ CATANA γ β = 0.6 γ CATANA 200 CsI(Tl) CsI(Na) (5 < θ < 111 ) E γ =1 MeV 56 % SAMURAI γ 20 % 100 kev-10 MeV 100 kev-30 MeV θ 9 ϕ Cs γ (661 kev) 10 % CATANA γ 15 cm 9.5 cm CATANA CsI(Tl) CsI(Na) γ ( 3.1.1, 3.1.9, ) Z γ CsI(Tl) CsI(Na) NaI(Tl) BGO 3.2 [12]
25 3.2 γ CATANA ( ) ( ) 3.1 CATANA γ 3.4 ( ) (cm) (PMT) Avalanche Photodiode(APD) CATANA PMT(R11265U,R580) APD(S ) PMT APD
26 18 3 γ 3.2 CsI(Tl),CsI(Na),NaI(Tl),BGO CsI(Tl) CsI(Na) NaI(Tl) BGO (g/cm 3 ) (cm) (nm) (ns) (NaI(Tl) (%)) Z Z Z [11] 3.3 PMT(R11265U), PMT(R580), APD(S ) PMT(R11265U) PMT(R580) APD(S ) (mm 2 ) ϕ (nm) (%) (V) CsI(Tl) CsI(Na) 3.6 PMT APD CsI(Na) PMT CsI(Tl) PMT [11, 12] ESR
27 3.2 γ ( )PMT(R11265U R580), ( )APD 3.6 CsI PMT APD [11, 12]
28
29 γ CATANA CATANA CsI(Tl),CsI(Na) 2 PMT 2 (R11265U,R580) APD S CsI(Tl),CsI(Na) PMT,APD CATANA γ A:CsI(Tl), CATANA ( 4.1) B:CsI(Tl), mm 3 C:CsI(Na), D:CsI(Na), A,B,C,D
30 CsI(Tl) CsI(Na) CATANA PMT(R11265U, R580) APD(S ) 3M ESR [13] PMT APD splitter 2 shaping-amp ADC ADC PC ADC Cs, 22 Na, 60 Co 22 Na A 4.1 N N 0 T 1/2 t t N = N 0 2 T 1/2 (4.2.1) Cs, 22 Na, 60 Co 137 Cs β 137 Ba 661 kev γ 22 Na β +
31 ( )VETO 4.1 (kev) (Bq) ( ) 137 Cs Na 511, Co 1173, Ne 1275 kev γ β kev γ 2 60 Co kev,1333 kev γ 4.3 ( ) 137 Cs,( ) 22 Na,( ) 60 Co 137 Cs 661 kev, 22 Na 511 kev,1275 kev, 60 Co 1173 kev,1333 kev γ
32
33 CsI(Tl)-A PMT(R11265U) HV=850 V, 2.0 µs 60 Co γ 40 K(1461 kev) γ (µ) (σ) 5.2 γ γ CsI(Tl)-A PMT(R11265U) HV 850 V,2.0 µs 3 5 µ(ch) = p0 + p1 E γ (5.2.1)
34 ( ) 137 Cs(661 kev), ( ) 22 Na(511 kev,1275 kev), ( ) 60 Co(1173 kev,1333 kev), ( ), ( ) 60 Co
35 Egamma χ 2 / ndf / 3 p ± p ± channel 5.2 γ E 1 p1 E(%) = σ(ch) p1 E γ (5.2.2) 5.3 CsI(Tl)-B( ) CsI(Na)-C D( ) PMT APD (HV) (sht) HV HV 5.3 CsI(Tl)-B 137 Cs 661 kev 60 Co 1173 kev 60 Co 1333 kev γ R1165U, R580, APD PMT:2.0 µs, APD:1.0 µs PMT R11265U HV R V APD
36 V HV PMT(R11265U):+850 V,PMT(R580):+1200 V, APD:+390 V resolution(%) Cs661 Co1173 Co1333 resolution(%) Cs661 Co1173 Co HV(V) HV(V) resolution(%) Cs661 Co1173 Co HV(V) 5.3 HV R11265U R580U APD 3 γ
37 HV 5.4 CsI(Tl)-B R1165U, R580, APD HV PMT(R11265U) 850 V,PMT(R580) V, APD +390 V PMT(R580) sht=2.0 µs PMT(R11265U),APD PMT(R11265U),APD sht=2.0 µs sht=2.0 µs resolution(%) Cs661 Co1173 Co1333 resolution(%) Cs661 Co1173 Co shaping-time(us) shaping-time(us) resolution(%) Cs661 Co1173 Co shaping-time(us) 5.4 R11265U R580U APD
38 PMT(R11265U,R580) APD (%) R11265U R580 APD 137 Cs(661keV) Co(1173keV) Co(1333keV) PMT APD PMT APD HV sht= 2.0 µs (%) 5.1 PMT(R11265U) PMT(R580) APD HV +850 V,+1200 V,+390 V 137 Cs APD 60 Co R Cs 0.7 % CATANA A CsI(Tl) CsI(Na) CsI(Tl) CsI(Na) 3.2 NaI(Tl) 45 %,85 % CsI Tl Na CsI(Na) PMT(R11265U) PMT CsI(Tl)-B CsI(Na)-C(1 ) PMT HV +850 V CsI(Na) sht = 2.0 µs CsI(Tl) CsI(Na) 5.6 CsI(Tl)-B, CsI(Na)-C CsI(Tl) sht = 2.0 µs CsI(Tl) CsI(Na)
39 resolution(%) Cs661 Co1173 Co1333 resolution(%) CsI(Tl)-B CsI(Na)-C shaping-time(us) 5.5 CsI(Na) CsI(Tl) Egamma(keV) 5.6 CsI(Tl)-B( ) CsI(Na)-C( ) CsI(Tl),CsI(Na) 5.7 CsI(Tl)-A,B CsI(Tl)-C,D CsI(Tl)-A CsI(Tl)-B CsI(Na)-C CsI(Na)-D PMT(R11265U) HV=+850 V, sht=2.0 µs CsI(Tl) CsI(Na) A D B C CsI(Tl) CsI(Na) 5.2 CsI(Tl)-A,B CsI(Na)-C,D PMT A/B, D/C γ A-B,D-C CsI(Na) PMT CsI(Tl) PMT PMT 5.2 ( ) CsI(Tl) % CsI(Na) %
40 32 5 resolution(%) CsI(Tl)-A CsI(Tl)-B resolution(%) CsI(Na)-C CsI(Na)-D Egamma(keV) Egamma(keV) 5.7 CsI(Tl)A.B CsI(Na)C,D CsI(Tl) CsI(Na) CsI(Tl) CsI(Na)-D PMT PMT (ESR) ( ) PMT R11265U,HV=+850 V, sht =2.0 µs %-0.86 % PMT
41 5.4 CsI(Tl)-A 33 resolution(%) ESR absorber Egamma(keV) 5.8 ESR ( ) ( ) 5.4 CsI(Tl)-A CATANA B,C,D CsI(Tl)-A A CsI(Tl)-A PMT ESR ESR PMT(R11265U) CsI(Tl)-A PMT PMT HV=+850 V, sht = 2.0 µs ( ) ( ) PMT 5.9 k 1,k 2,k 3
42 34 5 Egamma(keV) 1400 first second thrid resolution(%) 14 first second thrid channel Egamma(keV) HV, 1 k 1 1 = k 1 2 = k 1 3 = % PMT 2.3 % PMT CsI(Tl)-A PMT PMT PMT 5.10 PMT ( ) ( ) PMT PMT
43 5.5 γ γ ( 6.0 cm 9.0 cm) A,A ( 3.4 cm 5.2 cm) B,B C(6.0 cm 3.4 cm) D(9.0 cm 5.2 cm) A A E E 5.12 x, y, z 5.11 A,B,C,D,E A A B B 5.12 x, y E z E γ cm 1 cm 2 A γ A γ cm 137 Cs A 1 cm HV=+850 V, sht=2.0 µs 5.15 x = z = 0 cm, y = 25 cm γ (529 ch), (10.44 %) z (PMT ) z = 1 3 cm PMT z =4 cm
44 x A x z cm cm z = 0 1 cm x γ cm 22 Na A 1 1 cm 2 HV=+850 V, sht = 2.0 µs x = 0 cm( ) z =0 8.8 cm x =0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm z=0 cm 1.8 cm 22 Na 511 kev, 1275 kev 2 γ
45 5.5 γ 37 channel resolution(%) z(cm) z(cm) γ ( ) ( ) z γ 5.16,5.17 x = y = 0 cm, z = 15 cm γ, 551 kev 470 ch, % 1275 kev 1124 ch, 7.65 % x x 0 cm, 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm channel channel x=0 450 x= x= x= x= z(cm) x=0 x=0.5 x=1.0 x=1.5 x= z(cm) γ ( 511 kev, 1275 kev) x x z γ x = 0 z z (PMT ) z = 0 2 cm kev z = 0.3 cm 2.8 cm 0.51 % z =2.8 cm 8.8 cm 5.4 % 1275 kev z =0.3 cm 2.8 cm 0.20 % z = 2.8 cm 8.8 cm 2.2 %
46 38 5 resolution(%) x=0 x=0.5 x=1.0 x=1.5 x=2.0 resolution(%) x=0 x=0.5 x=1.0 x=1.5 x= z(cm) γ ( 511 kev, 1275 kev)x x z z = 0 2 cm γ z(cm) x x PMT PMT z < 2 cm ( x = 0, z = 0.8 cm) ( x = 0, z = 8.8 cm) kev, 1275 kev x = 0, z = 6.0 cm PMT z = 6.0 cm x = 0, z = 6.0 cm 511 kev,1275 kev 1.0 %, 3.6 %
47 5.5 γ 39 count count channel Na ( x = 0, z = 0.3 cm x = 0, z = 8.8cm) 511 kev,1275 kev channel
48
49 CsI(Tl),CsI(Na) CsI(Tl)-A,B CsI(Na)-C,D PMT(R11265U) CsI(Tl),CsI(Na) PMT 6.1,6.2 PMT SBA(Super Bialkali) SBA PMT [11][12] PMT N e N photon η 300nm-700nm 300nm-700nm γ E γ 1 kev CsI(Tl) 54 CsI(Na) 45 N phton = λ (N e η) (6.1.1) N eλ N eλ = λ { 54 E γ kev (CsI(Tl)) 45 E γ kev (CsI(Na)) (6.1.2)
50 [12] 6.2 PMT Super Bialkali( ) PMT [11] N photon E(%) = 1 Nphoton (6.1.3) HV=+850 V, sht = 2.0 µs CsI(Tl)-A % 31 % PMT PMT 5.5 γ
51 ( )CsI(Tl) CsI(Tl)-A,B ( )CsI(Na) CsI(Na)- C,D γ (CsI(Tl)) CsI(Tl)-A CsI(Tl)-B 137 Cs(661keV) Co(1173keV) Co(1331keV) (CsI(Na)) CsI(Na)-C CsI(Na)-D 137 Cs(661keV) Co(1173keV) Co(1331keV) PMT ,6.4 E 100% 90% A,B,C,D,E A A B B x, y E z E
52 A,A 1 B 1 C 1 PMT E θ 0 Ω 0 = 1 2 (1 cos θ 0) (6.2.1) 6.5 z cm z = 5, 7 cm x = 4.0, 4.0 cm z = 9 cm x = 4.0, 3.5, 3.5, 4.0 cm 0 PMT z = 1 cm -1 cm< x <1 cm efficiency z=1 z=3 z=5 z=7 z= x(cm) 6.5 z = 0 z x A,A 1 A,A PMT θ 1A θ 1A
53 x = 0 E P,C,H,θ, d P (x, y, z) E (0,y, z) P P C H θ PC PH R P ϕ A A PMT ϕ A = A C PMT a=45 mm r=19 mm 6.6 A 1 z = 0 x, z( ) PMT θ 1A P, C, H, θ, d E y = 0 A,A y E 5.2 cm, 3.4 cm, 9.3 cm y = 1 z {5.2 ( )} (6.2.2) x, y, z, ϕ A, r CH, P H, P C, θ, R CH = z + (y a) cos ϕ A sin ϕ A (6.2.3) P H = (y + a) sin ϕ A (6.2.4) P C = CH 2 + P H 2 + x 2 (6.2.5) 1 CH θ = sin P C (6.2.6) R = r cos(ϕ A θ) (6.2.7) θ A A 1 PMT e
54 46 6 θ A = tan 1 R P C (6.2.8) e = 1 2 (1 cos θ A) (6.2.9) x x (PMT ) z z = 5 cm x x = 0 cm PMT z z PMT cos θ z = 5 cm efficiency z=1 z=3 z=5 z=7 z= x(cm) 6.7 A 1 z x B,B 1 B,B θ 1B x x = 0 cm z z = 7 cm x x = 0 cm x A,A B,B z A,A C 1 C 1 θ 1C x
55 efficiency z=1 z=3 z=5 z=7 z= x(cm) 6.8 B 1 y = 0 cm z x z x z (PMT ) efficiency z=1 z=3 z=5 z=7 z= x(cm) 6.9 C 1 z = 0 cm z x
56 x = z ( ) x 1 cm z 1 A B C 1 A B A,B 2 efficinecy no reflection on A on B on C SUM efficinecy no reflection on A on B on C SUM z(cm) z(cm) A,B,C 1 x = x 1cm z z z z 1 2
57 γ CATANA 48,50,52 Ca PDR 2015 CATANA Ca γ γ CATANA CATANA CsI(Tl) CsI(Na) PMT(R11265U,R580) APD(S ) 4 3 CATANA γ 7.2 CATANA CsI(Tl) PMT(R11265U) CATANA
58 50 7 CsI(Tl),CsI(Na) CATANA γ γ RIBF
59 51 [1] ( 1988 ) [2] 19 ( 1988 ) [3] P.Adrich et al., Evidence for Pygmy and Giant Dipole Resonances in 130 Sn and 132 Sn Phys.Rev.Lett.95,132501(2005) [4] D. Savran, T. Aumann, A. Zilges, Progress in Particle and Nuclear Physics (2013), doi: /j.ppnp [5] LBNL Isotopes Project Nuclear Structure Systematics Home Page [6] D.M.Rossi et al. Measurement of the Dipole Polarizability of the Unstable Neutron- Rich Nucules 68 Ni,Phys.Rev.Lett.111,242503(2013) [7] O.wieland et al., Search for the Pygmy Dipole Resonance in 68 Ni at 600 MeV/nucleon Phys.Rev.Lett.102,092502(2009) [8] Tsunenori Inakura, Takashi Nakatsukasa, Kazuhiro Yabana Low-energy E1 strength in select nuclei: Possible constraints on the neutron skins and the symmetry energy arxiv: (2013) [9] W.R.Leo Techniques for Nuclear and Particle Physics Experiment Second Revised Edition(Springer-Verlag, 1993) [10] Glenn F. Knoll 3 ( 2001 ) [11] [12] Saint-Gobain [13] 3M [14] J.Bea, A.Gadea,L.M.Garicia-Raffi,J.Rico, B.Rubio, J.L.Tain imulation of light collection in scintillators with rough surfaces (Nuclear Instruments and Method in Physics Research A 350 (1994) )
60
61 53 4
1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2..
21 PET 06S2037G 2010 3 1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2........................................
NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter L
19 P6 γ 2 3 27 NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter LaBr 3 (Ce) PMT 662keV 2.9% CsI(Tl) 7.1%
24.15章.微分方程式
m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt
A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6
1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67
Mott散乱によるParity対称性の破れを検証
Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ
untitled
10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10
5 36 5................................................... 36 5................................................... 36 5.3..............................
9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................
03J_sources.key
Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E
1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C
0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,
A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3
π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p
0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,
2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).
42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =
3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u
B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:
B. 41 II: ;; 4 B [] S 1 S S 1 S.1 O S 1 S 1.13 P 3 P 5 7 P.1:.13: 4 4.14 C d A B x l l d C B 1 l.14: AB A 1 B 0 AB 0 O OP = x P l AP BP AB AP BP 1 (.4)(.5) x l x sin = p l + x x l (.4)(.5) m d A x P O
W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge
22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................
CsI(Tl) 2005/03/
CsI(Tl) 2005/03/30 1 2 2 2 3 3 3.1............................................ 3 3.2................................... 4 3.3............................................ 5 4 6 4.1..............................................
高校生の就職への数学II
II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................
7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E
B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................
第85 回日本感染症学会総会学術集会後抄録(III)
β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ
1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e
No. 1 1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e I X e Cs Ba F Ra Hf Ta W Re Os I Rf Db Sg Bh
SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT
3 SPECT SJ SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 9ch MPPC array 3 3 9 3 3 9.mm(sigma) . SPECT..................................................................3............
36 th IChO : - 3 ( ) , G O O D L U C K final 1
36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic
熊本県数学問題正解
00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (
a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a
[] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a
第86回日本感染症学会総会学術集会後抄録(II)
χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α
positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100
positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc
untitled
(1) 100 100 60% (2) (3) - 1 - 1 2 3 4 100 200-2 - 1 2 3-3 - 4 5 6 7......... (1) (2) (3) 1) 2) 3) 8(5) - 4 - 0.5 27.3 3 0.05 27.30 4 0.005 Système International d'unités 7218 1 (1) Pas Pas J/molK J/(molK)
i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................
2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy
ボールねじ
A A 506J A15-6 A15-8 A15-8 A15-11 A15-11 A15-14 A15-19 A15-20 A15-24 A15-24 A15-26 A15-27 A15-28 A15-30 A15-32 A15-35 A15-35 A15-38 A15-38 A15-39 A15-40 A15-43 A15-43 A15-47 A15-47 A15-47 A15-47 A15-49
3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α
2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,
一般演題(ポスター)
6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A
チュートリアル:ノンパラメトリックベイズ
{ x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ
(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a
1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0
,..,,.,,.,.,..,,.,,..,,,. 2
A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,
日本糖尿病学会誌第58巻第2号
β γ Δ Δ β β β l l l l μ l l μ l l l l α l l l ω l Δ l l Δ Δ l l l l l l l l l l l l l l α α α α l l l l l l l l l l l μ l l μ l μ l l μ l l μ l l l μ l l l l l l l μ l β l l μ l l l l α l l μ l l
29
9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n
受賞講演要旨2012cs3
アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α
1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :
9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log
( )
18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................
取扱説明書 [F-02F]
F-02F 4. 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 a b c d a b c d a b cd 9 e a b c d e 20 2 22 ab a b 23 a b 24 c d e 25 26 o a b c p q r s t u v w d h i j k l e f g d m n a b c d e f g h i j k l m n x 27 o
物理化学I-第12回(13).ppt
I- 12-1 11 11.1 2Mg(s) + O 2 (g) 2MgO(s) [Mg 2+ O 2 ] Zn(s) + Cu 2+ (aq) Zn 2+ (aq) + Cu(s) - 2Mg(s) 2Mg 2+ (s) + 4e +) O 2 (g) + 4e 2O 2 (s) 2Mg(s) + O 2 (g) 2MgO(s) Zn(s) Zn 2+ (aq) + 2e +) Cu 2+ (aq)
1 1 2 2 3 3 RBS 3 K-factor 3 5 8 Bragg 15 ERDA 21 ERDA 21 ERDA 21 31 31 33 RUMP 38 42 42 42 42 42 42 4 45 45 Ti 45 Ti 61 Ti 63 Ti 67 Ti 84 i Ti 86 V 90 V 99 V 101 V 105 V 114 V 116 121 Ti 121 Ti 123 V
1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10
1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 14 m) ( 10 10 m) 2., 3 1 =reaction-text20181101b.tex
C:/KENAR/0p1.dvi
2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x
さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1
... 0 60 Q,, = QR PQ = = PR PQ = = QR PR = P 0 0 R 5 6 θ r xy r y y r, x r, y x θ x θ θ (sine) (cosine) (tangent) sin θ, cos θ, tan θ. θ sin θ = = 5 cos θ = = 4 5 tan θ = = 4 θ 5 4 sin θ = y r cos θ =
2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l
ABCDEF a = AB, b = a b (1) AC (3) CD (2) AD (4) CE AF B C a A D b F E (1) AC = AB + BC = AB + AO = AB + ( AB + AF) = a + ( a + b) = 2 a + b (2) AD = 2 AO = 2( AB + AF) = 2( a + b) (3) CD = AF = b (4) CE
= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds
76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(
3 3.1 3.1.1 1 1 A P a 1 a P a P P(a) a P(a) a P(a) a a 0 a = a a < 0 a = a a < b a > b A a b a B b B b a b A a 3.1 A() B(5) AB = 5 = 3 A(3) B(1) AB = 3 1 = A(a) B(b) AB AB = b a 3.1 (1) A(6) B(1) () A(
http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n
http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ
( ) 2003 Report on Activies in (JCPRG) HENDEL NRDF DARPE EXFOR Web HENDEL HENDEL NRDF EXFOR EXFOR NRDF IAEA IAEA
2003 Report on Activies in 2003 2003 (JCPRG HENDEL NRDF DARPE EXFOR Web HENDEL HENDEL NRDF EXFOR EXFOR NRDF IAEA 2003 4 14 1 5 26 2 6 17 19 IAEA Nuclear Reaction Data Centers Meeting 2003 ( 6 30 3 7 28
Microsoft Word - Wordで楽に数式を作る.docx
Ver. 3.1 2015/1/11 門 馬 英 一 郎 Word 1 する必要がある Alt+=の後に Ctrl+i とセットで覚えておく 1.4. 変換が出来ない場合 ごく稀に以下で説明する変換機能が無効になる場合がある その際は Word を再起動するとまた使えるようになる 1.5. 独立数式と文中数式 数式のスタイルは独立数式 文中数式(2 次元)と文中数式(線形)の 3 種類があ り 数式モードの右端の矢印を選ぶとメニューが出てくる
