E Riemann-Stieltjes 65 teaching.html (epsilon-delta )

Size: px
Start display at page:

Download "E Riemann-Stieltjes 65 teaching.html (epsilon-delta )"

Transcription

1 A Goursat 56 B 56 6 D 62

2 E Riemann-Stieltjes 65 teaching.html (epsilon-delta ) [] Richard A. Silverman, Introductory omplex Analysis, 985, Dover. [2] S. Lang, omplex Analysis, 3rd edition, 998, Springer. [3], (23). [4] S. G. Krantz and H. R. Parks, The Implicit Function Theorem, 22, Birkhäuser. (**) (*) 2

3 θ e iθ = cos θ + i sin θ * (Euler s formula) ( ) θ {, /2, /3, /4,... } (generating function) f(t) f(t) = t 2 t2 + 3 t3 4 t f (t) = t + t 2 t 3 + = t + x = f(x) = x dt = log(x + ). t = log 2 x = i f(i) = (i) 2 ( ) + 3 ( i) 4 () + 5 (i) 6 ( ) + 7 ( i) +... = i ( ) ( ) i = 2e πi/4 f(i) = log(i + ) = log 2 + log e πi/4 = 2 log 2 + π 4 i = π 4 * s_formula 3

4 (*). 2 ( ) = = ( )( ) = = i 2 =. a + ib i 2 i 2 = a + ib (a, b) (a, b) (a, b) + (a, b ) = (a + a, b + b ), (a, b)(a, b ) = (aa bb, ab + a b) (a, ) a (, ) (, ) (a, b) (a, b ) (a, b) + (a, b ) = (a, b ) + (a, b) = (, ) (a, b) (a, b) = ( a, b) (a, b) (x, y) x, y (a, b)(x, y) = (x, y)(a, b) = (, ) ax by =, bx + ay = a 2 + b 2 (a, b) (a, b) (a,b) ( ) a (a, b) = a 2 + b 2, b a 2 + b 2 (a, ) a (, ) = i (a, b) = a + ib (, ) 2 = (, ) i 2 = 4

5 2. 3. (x, y)(x, y) = (, ) (x, y) 4 (*). i 2 = αi + β (α, β ) n z n = z z z n z n if n >, z n = if n =, (/z) n if n < m, n z z m z n = z m+n, (z m ) n = z mn 5. a (x, y) (ax, ay) π π/2 i x + iy ( ) x y y x 2 z = x + iy x = Re z, y = Im z, z (real part, imaginary part) z = x 2 + y 2 (modulus) z = x iy z (complex conjugate) z + w = z + w, zw = z w, z = z, z + w z + w, z 2 = zz, zw = z w Remark. i j i z ± 5

6 i i i i z = x + iy 6. zw = z w zw = z w z + w z + w 7. z = x + iy, w = u + iv zw 2 = z 2 w 2 8. a, a,..., a n a + a z + + a n z n = z = x + iy z z = x + iy (x, y) *2 (complex plane) (polar coordinates) (r, θ) z = r(cos θ + i sin θ) (polar form) z = re iθ. r z z θ z (argument *3 ) θ = arg z 2π 2 e iθ e iθ = e i(θ+θ ) zz = z z, arg(zz ) = arg z + arg z mod 2πZ e iθ θ 9. (*). z + z + z z n = zn z *2 2 *3 argument variable parameter argument argument phase phase 6

7 z = e iθ. a + ib (a, b R) z 2 = a + ib z a n n z n = a a = a e iα z = re iθ z n = a z = a /n (cos θ k + i sin θ k ), r n = a, nθ = α + 2πk, k Z. k n θ k = α + 2πk, k =,,..., n n 2.. n 2 n z n = z = e 2πik/n ( k n) n n n 2 (*). z 3 = i 2.2. z, z 2, z 3, z 4 z 4 z z 2 z z 2 z 3 z 4 z 3 = z 4 z z 2 z 3 z 2 z z 4 z a = + i, b = 2 i, c = x + iy c x, y cos θ = eiθ + e iθ 2, sin θ = eiθ e iθ. 2i cos(nθ) t = cos θ z = e iθ n = 2, 3 2(cos θ) 2 = 2 ( z + ) 2 = (z 2 + z ) z = cos(2θ) +. (z 2 + z ) 2 2 = 2t 2 cos(2θ) = 2 cos 2 θ. z + z z 3 + z 3 = 4t 3 3t 2 cos(3θ) = 4 cos 3 θ 3 cos θ. 7

8 t = cos θ n (hebyshev polynomial) T n (t) 2tT n (t) = (z + z ) zn + z n = T n+ (t) + T n (t), T =, T (t) = t 2 cos(nθ) = T n (cos θ) *4 4. sin(nθ) 5 (**)., z 3 + az 2 + bz + c = ζ = z + d d ζ 3 + 3aζ + 2b = 2, 3 (Niccolò Fontana Tartaglia) ζ = u + v u 3 + v 3 + 2b + 3(uv + a)(u + v) = ζ u, v u, v uv + a = ζ u, v u 3 + v 3 = 2b, uv = a u 3 v 3 = a 3 u 3, v 3 t 2 + 2bt a 3 = u, v λ ± = b ± b 2 + a 3 uv = a λ ± µ ± (µ + µ ) 3 = λ + λ = a 3 µ + µ = aω k (k =,, 2), ω 2 + ω + = *4 8

9 u, v (u, v) = (µ + ω k, µ ), (µ + ω k, µ ω 2 ), (µ + ω 2 k, µ ω) ζ = µ + ω k + µ, µ + ω k + µ ω 2, µ + ω 2 k + µ ω a, b b 2 + a 3 λ ± µ ± µ + µ = a ζ = µ + + µ, µ + ω + µ ω 2, µ + ω 2 + µ ω. µ + = µ b 2 +a 3 = µ + +µ = 2b /3, µ + = b /3 ζ 3 + 3aζ + 2b = (ζ + 2b /3 )(ζ b /3 ) 2 b 2 + a 3 < λ ± µ ± a < µ + µ = a µ = µ + ζ = µ + µ, µω + µω, µω 2 + µω 2 µ, µω, µω 2 µ 3 = λ + Rafael Bombelli Joseph Louis Lagrange *5 3 (topology) {z n = x n + iy n } n z = x + iy lim z n z = n lim x n = x, lim y n = y n n *5 J.L. Lagrange, Réflexions sur la résolution algébrique des équations, 77. 9

10 z {z n } n z = lim n z n 6. x + y 2 z x + y 3.. {a n }, {b n } a, b lim a nb n = ab. n a b n lim = b n a n a. Proof. a n b n ab a n a b n + a b n b a n a ( b n b + b ) + a b n b a n a = a n a a n a a a n a ( a a n a ) 7. z z < + z + z z n = zn z ( lim + z + z z n ) n n n z n + a z n + + a n = 3.2 ( ). f(z) = z n + a z n + + a n (i) f(ζ) = ζ (ii) c,..., c n f(z) = (z c ) (z c n ) (iii) f(z) f(z)

11 Remark. Proof. z n + c z n + + c n = c n = z = c n r > z = r iθ f(r iθ ) = r n e inθ + c r n e i(n )θ + + c n r, θ r > θ 2π r c n r f(r iθ ) = r n e inθ ( + c e iθ r + + c n e inθ ) r n c e iθ r e inθ + + c n r n r r n (r ) r ( = max{ c k }) r n e inθ ( θ 2π) z = r n n < r < f(r iθ ) = re iθ 8. (ii), (iii) (i) 9 (**). f(z) f(ζ) = ζ (i) lim z f(z) = f(z) z ζ (ii) f(z) z ζ f(z) = f + f l (z ζ) l + f l+ (z ζ) l+ + + f n (z ζ) n, f l (iii) f z ζ z ζ f(z) < f (iv) f = f(ζ) = 2. x P (x) P (x) (x R) x Q(x) P (x) = Q(x)Q(x) Q(x) = j c jx j Q(x) = j c jx j ( e x = lim + x ) n n n

12 2. log( + t) lim ( n log + x ) = x n n z = x + iy ( e x (cos y + i sin y) = lim + z ) n n n *6 e z + z n = r n(cos θ n + i sin θ n ), r 2 n = ( + x ) 2 y 2 + n n 2, tan θ n = y n + x ( + z n) n = r n n (cos(nθ n ) + i sin(nθ n )) n log r n = n ( 2 log + 2x n + x2 + y 2 ) n 2 = n 2 ( 2x n + y2 x 2 ) n 2 + x lim n rn n = e x tan θ θ n (n ) lim = θ θ lim nθ n = lim n tan θ ny n = lim n n n n + x = y 3.3. e z e w = e z+w {e z ; z } = = \ {} re iθ (r > ) {z ; e z = re iθ } = log r + iθ + 2πiZ = {log r + iθ + 2πin; n Z} *7 t z(t) z(t) t z(t) = x(t) + iy(t) x(t), y(t) 22 (*). < r < z(t) = e it + re 2it *6 s_formula *7 2

13 z (t) = lim h z(t + h) z(t) h z (t) = x (t) + iy (t) d dt (z(t)w(t)) = z (t)w(t) + z(t)w (t). 23. w(t) = u(t) + iv(t) z(t)w(t) z(t) t x(t), y(t) t b a z(t) dt = lim + j= z(τ j )(t j t j ), = max{ t j t j ; j n}, τ j [t j, t j ] b a z(t) dt = b a x(t) dt + i b a y(t) dt b a z (t) dt = z(b) z(a) 3.4. c d dt ect = ce ct e ct dt = c ect. Proof. a, b c = a + ib e ct = e at (cos(bt) + i sin(bt)) d dt ect = ae at (cos(bt) + i sin(bt)) + e at ( b sin(bt) + ib cos(bt)) = ce ct e ct dt = c ect = e at cos(bt) dt = eat a 2 (a cos(bt) + b sin(bt)), + b2 a cos(bt) + b sin(bt) + ia sin(bt) ib cos(bt) a 2 + b 2 e at e at sin(bt) dt = eat a 2 (a sin(bt) b cos(bt)). + b2 3

14 24 (*). te ct te at sin(bt) dt z (t) a < t < b lim t a+ z (t), lim t b z (t) z(t) (a t b) * 8 b a z (t) dt = b a (x (t)) 2 + (y (t)) 2 dt 25. z(t) = e a t(cos(bt) + i sin(bt)) ( t ) b b z(t) dt z(t) dt, a b a a λ b z(t) dt = b a a z(τ j )(t j t j ) j= λz(t) dt, λ z(τ j ) (t j t j ) j= λ z(τ j )(t j t j ) = λz(τ j )(t j t j ) j= j= 26. b b z(t) dt = e iθ z(t) dt a a * 9 Re(e iθ z(t)) = x(t) cos θ + y(t) sin θ x(t) 2 + y(t) 2 27 (**). ( 2 ( 2 b b x(t) dt) + y(t) dt) b a a a x(t)2 + y(t) 2 dt *8 *9 4

15 * D f(x, y) dxdy D f(x, y) dxdy f(x, y) f() f() = f (t) dt f (t) dt 28. f(t) ( t ) f() f() f (t) ( < t < ) 29 (**). f(t) (a < t < b) f (t) φ(s, t) (a < s, t < b) φ(s, t) = φ { f(s) f(t) s t if s t, f (t) if s = t z (t) z (t) f (t) d = A + dt. z n (t). z n (t). f n (t) a a 2... a n a 2 a a 2n A = a n a n2... a nn f j (t) z j (t) f j (t) = ( j n) z j (t) z (t). = e λt z n (t) ζ.. ζ n λ ζ. = A ζ n ζ.. ζ n * 5

16 λ A ζ A n v,..., v n A A v j = λ j vj f (t) z (t), f (t) z (t) = n j= c j (t)e λ jt vj, f (t) = g j (t) v j j c j(t)e λ jt vj = j j g j (t) v j c j (t) = t g j (s)e λjs ds + c j () 3.6. A = ( ) ω ω A v ± = ±iω v ±, ( ) v ± = ±i ( ) f (t) = g f 2 (t) + (t) v + + g (t) v g ± (t) ( ) ( t ) ( t ) z (t) = g z 2 (t) + (s)e iω(t s) ds + c + e iωt + g (s)e iω(t s) ds + c e iωt. 4 D * z z * { z c < r} D D 6

17 4.. (i) f(z) = q(z), D = {z ; p(z) }. p(z), q(z) z p(z) p(z) = p (ii) f(z) = e z, D =. cos z = eiz + e iz, sin z = eiz e iz 2 2i z R (iii) z = re iθ (r >, π < θ < π) Logz = log r + iθ, D = \ (, ] (iv) α z α = e αlogz, D = \ (, ] 3. z (, ] e Logz = z, Loge z = z ( π < Imz < π) 3. e z = e z, cos z = cos z, sin z = sin z Logz = Logz 32. z = re iθ ( r < ) Log( + z) 33. (z α ) β = z αβ 34 (*). z z z z = x + iy D f(z) = u(x, y) + iv(x, y) f u(x, y), v(x, y) 4.2. (i) f(z) = z 2 u(x, y) = x 2 y 2, v(x, y) = 2xy. (ii) f(z) = z u(x, y) = x, v(x, y) = y. (iii) f(z) = z 2 u(x, y) = x 2 + y 2, v(x, y) =. (iv) f(z) = /z (D = \ {}) u(x, y) = x y x 2, v(x, y) = + y2 x 2 + y 2. f z D w w = f(z) 4.3. c φ f(z) = e iφ z + c (D = ) 35. φ f(z) = e iφ z 36 (**). z z < w = + z + z 2 D z z 2 + z + w = z < w z = w 7

18 4.4. D f(z) c D lim f(z) = f(z) z c 4.5. D f(z) c D f (c) = lim z c f(z) f(c) z c f (z) D f * 2 (holomorphic * 3 function) 4.6. n (z n ) = nz n. n < D = {z } x, y e x+iy lim =. (x,y) (,) x + iy Proof. * 4 e a+ib = a + ib e x+iy x + iy e t(a+ib) dt a + ib e ta dt a + ib e a = (e t(x+iy) ) dt e t(x+iy) dt x + iy 4.8. (i) (e z ) = e z (z ). (ii) (Logz) = z (z (, ]). te t x dt x + iy e x 2 *2 ( Goursat ) *3 holos = whole morphe = shape *4 e x = + x + O(x 2 ), cos y = + O(y 2 ), sin y = y + O(y 3 ) 8

19 Proof. c (, ] z = ce x+iy z c (x, y) (, ) Log(c x+iy ) = Log c + x + iy Logz Logc z c = x + iy c(e x+iy ) c f(z) = 2x = z + z, f(z) = x iy = z (x = Rez, y = Imz) z 4.. f(z), g(z) f(z)g(z), /f(z), f(g(z)) (f(z)g(z)) = f (z)g(z) + f(z)g (z), ( ) = f (z) f(z) f(z) 2, (g(f(z))) = g (f(z))f (z). Proof. w = f(z), b = f(a) g(f(z)) g(f(a)) z a = g(w) g(b) f(z) f(a) w b z a z a w b F (z) = { f(z) f(a) z a z a, f (a) otherwise f(z) f(a) = (z a)f (z) lim z a F (z) = f (a) G(w) g (f(a)) (w f(a)) g(f(z)) g(f(a)) z a 4. ( ). α = F (z)g(f(z)) f (a)g (f(a)) (z α ) = αz α, z (, ]. x = z + z 2, y = z z 2i z = x z x + y z z = x z x + y z y = ( 2 y = 2 x i ), y ( x + i ). y 9

20 4.2. f(z) 38. z z = z z =, d f f(z(t)) = dt z (z(t))z (t) + f z (z(t))z (t). z z = z z =, z z = z z = ( ) 2 4 x y (auchy-riemann * 5 ). u(x, y), v(x, y) u(x, y) + iv(x, y) f(x + iy) = f(x, y) f f z = u x = v y, u y = v x Proof. chain rule f(z) f(c) = = = f z d f(tz + ( t)c) dt dt f (tz + ( t)c)(z c) dt + z f (c)(z c) + (c)(z c) + (z c) + (z c) z ( f h f (tz + ( t)c) z f (tz + ( t)c)(z c) dt z ) z (c) ) ( f f (tz + ( t)c) z z (c) (h(tz + ( t)c) h(c)) dt max{ h(w) h(c) ; w c z c } ( z c ) (z c)/(z c) = e 2i arg(z c) Remark. f = f z z z dt dt 39 (*). f(x + iy) = e x (a cos y + i sin y) a *5 auchy Riemann (d Alembert, ) 752 d Alembert 2

21 4. f(x + iy) = u(x, y) + iv(x, y) u(x, y), v(x, y) ( ) ( ) 2 x y 2 u = x y 2 v = 4. f (z) f(z) 42. f(z) f(z) auchy-riemann f(z) = u(x, y) + iv(x, y) ( x φ : y) φ ( ) ux u y = v x v y ( ) u(x, y) v(x, y) ( ) ux u y (conformal mapping, conformal transformation) * 6 u y ( ) ( ) a b a b, b a b a det(φ ) = f f = = f(z) f(z) z z f(z) c = a + ib f (a + ib) = f (c) c = a + ib u, v u = f (c) (X 2 Y 2 )/2, v = f (c) XY X, Y (x a, y b) (a, b) u, v 3 π/4 ( X Y z n, z + /z ) ( cos θ sin θ sin θ cos θ u x ) ( x a y b ). *6 conformal 2

22 5 z(t) [ ] (smooth curve) z(t) (a t b) * 7 (i) z(t) (a, b) (ii) z (t) (a < t < b) z (a) lim t a+ z (t), z (b) lim t b z (t) (iii) t (piece-wise smooth curve) z(t) (a t b) [a, b] a = c < c < < c n = b z(t) (c j t c j ) (closed curve) (simple curve) Remark. { t 2 + it 4 t, z(t) = t 2 it 4 t w(t) = { t + it 2 t, t it 2 t 43., a, ib (a >, b > ) w(t) z(t) D f(z) D : z(t) (a t b) b a f(z(t)) dz dt dt *7 22

23 f(z k )(z k z k ), z k = z(t k ), a = t < t < < t n = b k= * 8 * 9 f(z) dz f(z) (line integral) (path) (contour integral) f(z) dz b a dz dt dt z k z k k= 2 n f(z) dz = f(z)dz + + f(z) dz. n : z(ta + ( t)b) ( t ) f(z)dz = f(z)dz. f(z)dz f(z) dz max{ f(z) ; z } (**). z(t) z (t) tk z(t k ) z(t k ) = z (t k )(t k t k ) + (t k s)z (s) ds t k *8 z (t) Riemann-Stieltjes *9 23

24 5.. r > : z(t) = re it ( t 2π) { z n 2πi if n =, dz = otherwise. /z 46. a b f(z) f (z)dz = f(b) f(a) D = \ {} f (z) = /z f(z) 47 (*)., + i 2, + i 3 f(z) = z 2, f(z) = e z, f(z) = x + y f(z)dz + f(z)dz, 2 3 f(z)dz 48 (*). z 2 + = i ( 2 z + i ) z i z 2 + dz \ {±i} Remark. f(z) = u(x, y) + iv(x, y) (z = x + iy) : z(t) = x(t) + iy(t) f(z) dz = b a (ux (t) vy (t)) dt + i (u(x, y)dx v(x, y)dy), b a (uy (t) + vx (t)) dt (u(x, y)dy v(x, y)dx) (u(x, y), v(x, y)), (v(x, y), u(x, y)) (x(t), y(t)) (a t b) 6 (i) Green (ii) (homotopy invariance) * 2 *2 24

25 6.. * 2 f(s, t) d ds f(s, t)dt = Proof. f(s, t)dt x ( ) f (s, t)dt ds = s = = f (s, t)dt. s ( x f s [ f(s, t) ) (s, t)ds dt ] s=x f(x, t)dt dt s= f(, t)dt f (s, t)dt s {(s, t); s, t } D z(s, t) < s, t < z(s, t) = s z t (u, t) du + z(, t) = s z (s, u) du + z(s, ) t z(t, ), z(, t), z( t, ), z(, t) ( t ) 6.2. D f(z) f(z) dz =. Proof. s z(s, t) ( t ) s d f(z)dz = d ds s ds = = = [ = f(z(s, t)) z (s, t)dt t ( f(z(s, t)) z ) (s, t) dt s t ( f (z(s, t)) z (s, t) z s t (s, t) + f(z(s, t)) 2 z s t ( f(z(s, t)) z ) (s, t) dt t s f(z(s, t)) z (s, t) s ] t= t= = f(z(s, )) z (s, ) f(z(s, )) z (s, ). s s s ) (s, t) dt 49 (*). D -homotopy *2 f(s, t) g(s, t) s 25

26 6.3. (i) a, b, c D [a,b] f(z) dz + f(z) dz + f(z) dz =. [b,c] [c,a] (ii) D : z(t) ( t ) c D sz(t) + ( s)c D ( s, t ) f(z) dz = L z() z() (iii) D L f(z) dz =. f(z) dz. 6.4 (auchy ). D D D D f(z) D f(z)dz =. D D Proof. D D = + + n j L j L j f(z) D f(z) dz = j= j f(z) dz = j= L j f(z) dz = {z ; Im z } {z ; z R} f(z) M(r) = max{ f(z) ; z = r} lim M(r) = t > r lim e itz f(z)dz = r r r : z = re iθ ( θ π). Proof. π e itz f(z) dz rm(r) e rt sin θ dθ 2rM(r) r π/2 e 2rtθ/π dθ = π t M(r)( e rt )

27 (i) r z R e iz z dz = R sin x lim R x dx = π 2 (ii) r R, θ π/4 e z2 dz = R lim R e ix2 dx = π 2 eπi/4 (Fresnel ) 5 (*). 6.7 (auchy ). auchy 6.4 z D f(z) = f(ζ) 2πi ζ z dζ. Proof. z r > r r f(ζ) ζ z dζ = r f(ζ) ζ z dζ. r f(ζ) ζ z dζ = = r r f(ζ) f(z) dζ + f(z) ζ z r ζ z dζ f(ζ) f(z) dζ + 2πif(z) ζ z f(ζ) dζ 2πif(z) ζ z = r f(ζ) f(z) ζ z dζ ( f (z) + ϵ) r r Remark. D f(z) D 6.8. c r > D f(z) c D z F (z) D F (z) F (z) = f(z) 27

28 Proof. c = z = x + iy F (z) = x f(t) dt + i y f(x + it) dt = i y f(it) dt + x F (z) x, y f(t + iy) dt F y = if(z), F x = f(z). F (z) f(z) F z = f(z) + iif(z) = Remark. c 6.9. f (n) (z) = n! f(ζ) dζ 2πi (ζ z) n+ Proof. a b B D B f(ζ) dz dζ = (ζ z) n+ = = n dζf(ζ) [ f(ζ) B (ζ z) n(ζ z) n ( f(ζ) dz n+ ] z=b z=a dζ (ζ b) n (ζ a) n ) dζ B f(ζ) (ζ z) n dζ z D d dz f(ζ) (ζ z) n dζ = n f(ζ) dζ (ζ z) n+ f(z) z = a ( z a R) 6.7 f(z) z a < R, ζ a = R f(z) = f(ζ) 2πi ζ a =R ζ z dζ. 28

29 z a / ζ a < f(z) = n ζ z = n (z a) n (ζ a) n+ c n (z a) n, z a < R, c n = f(ζ) dζ 2πi ζ a =R (ζ a) n+ n f(z) c k (z a) k = (z a)k f(ζ) dζ k= 2πi ζ a =R (ζ a) k+ k n z a k f(ζ) dζ 2π ζ a k+ ( z a < R ) ζ a =R k n z a k M R k k n M z a n = R z a R n 6. (Taylor expansion). D f(z) f a D D D r > f(z) = n= n! f (n) (a)(z a) n, z a < r z a z a ( ) f(z) (Taylor series) 6.. * 22 (i) z e z = cos z = sin z = n= k= k= n! zn = + z + 2 z2 +, ( ) k (2k)! z2k = 2 z2 4! z4 +, ( ) k (2k + )! z2k+ = z 3! z3 +. *22 29

30 (ii) z < α ( ) n+ Log( + z) = z n = z n 2 z2 + 3 z3 4 z4 +, n= ( ) α ( + z) α = z n α(α ) = + αz + z 2 +. n 2 n= Remark. 7 c k = lim k= c k n k= ( ) {a i } i I A [, ] * 23 A = a i {a i } i I i I (i) {a i } i F a i A i F (ii) A I I = I n n a i = ( i I n i I n a i ). {a i } i I, {b i } i I a i b i (i I) a i b i. i I i I 5 (**). ) {a i } i I i I a i < ϵ > {i I; a i ϵ} {i I; a i > } *23 A = sup{ i F a i; F I } 3

31 + n dx < + α >, xα < α >. nα n= n =. n + x dx n k= n+ k x dx + 2 lim + + n n log n =, log n k k+ k k+ x dx = x k k+ k kx dx k kx dx k 2 γ = lim ( n ) log n n 52. a lim n ( a + + a a + n log a + n ) a a n 2 n(log n) a 54 (*). (k 2 + l 2 ) a k= l= a > 7.. c n n= c n < n 3

32 (converge absolutely) * ( ). c n c n n n Proof. c n n= c n c n = a n b n, a n, b n, c n = a n + b n a n b n n= c n = n a n n b n {c n } c n = x n + iy n (x n, y n R) x n c n, n n y n c n n n n x n, n y n c n = lim k + iy k ) = n n= k=(x x n + i n n c k c k k= Remark. (summable) 7.3. z = x + iy (x, y R) k= e z = e x (cos y + i sin y) = n= n! zn *24 (absolute value) y n 32

33 ( 5.) n n! z n = e z n= zn /n! ( 55 (*). cos π ) n n 56. f(t) z < f(n)z n {c i } i I c i < c i n i I c i c i. i I i I i I 7.4. a n < +, n b n < + n c i < + i I c i = lim i I I = {i = (m, n); m, n }, n a k n k= l= b l = ( lim n k= ) ( a k lim n c i = a m b n ) b l = m l= a m b n. n m,n a m b n 57. z, w m z m m! n w n n! = k (z + w) k k! p q n 33

34 p 2 4 2q (n )p np 2(n )q + 2 2nq () + ( np ) 2nq np 2 4 2np 2 ( ) qn γ n = n log n log(2pn) + γ 2pn 2 (log(pn) + γ pn) 2 (log(qn) + γ qn) = log(2p) 2 log p 2 log q + γ 2pn 2 γ pn 2 γ qn n log(2p) 2 log p 2 log q = log(2 p/q) = log 2, = 3 log (**). B. Riemann {c n } n z c n z n n= 34

35 z (power series) * 25 (domain of convergence) D = {z ; lim n k= c k z k } e z = + z + 2 z2 + 3! z3 +, cos z = 2 z2 + 4! z4 6! z6 +, sin z = z 3! z3 + 5! z5 7! z {z ; z < }. z = + z + z (i) r > c k r k < = {z ; z r} D. k (ii) z D r < z c k r k <. k D ρ { z < ρ} D { z ρ} ρ c k z k k (radius of convergence) 59 (*). n= n zn S n = + z + + z n z n = S n S n (Abel transformation) *25 série entière entier naturel entier relatif quatre-vingt 35

36 Bachmann-Landau {c n } n { n } n M > N c n M n, n N c n = O( n ) 6. n = c n = O( n ) c n 6 (**). k c kz k ρ = sup{r > ; c n = O(/r n )} n log n, n a, r n, n! * a > r > log n n a lim n n a = lim n r n = lim r n n n! =. n log n, n a, r n, n! 62. r n << n! 8.5. n= nz n2 z = ρ < r < nr n2 /2 (n ) nr n2 = nr n2 /2 r n2 /2 n= r n2/2 k= n= nr n2 r k/2 < < r ρ r < ρ ρ =. 63. n c nz n, n c nz n 64. a > n n a zn *

37 65. n n!zn 8.6. c n z n, n nc n z n n Proof. ρ, ρ n= n c n r r < ρ = r < ρ ρ ρ c + r n c n r n < r < ρ r( + ϵ) < ρ ϵ > N n ( + ϵ) n (n N) r n N n c n r n n N n= c n r n ( + ϵ) n < r ρ Remark. ϵ-δ 8.7. n 2 n(n )c nz n 2 66 (*). p(n) n p n c nz n, n p(n)c nz n 8.8. f(z) = n c nz n f (z) = nc n z n n= Proof. g(z) = n nc nz n f(z) ρ > g(z) w < ρ f(z) z = w f (w) = g(w) w < R < ρ R z < R (z w) z k w k z w z k + z k 2 w + + w k kr k z w, k 37

38 f(z) f(w) g(w) z w c n (z n w n ) + (z n 2 w w n ) + + (zw n 2 w n ) n=2 z w n=2 = z w n 2 ( ) c n (n ) R n 2 n(n ) c n R n 2 2 f(z) f(w) lim = g(w) z w z w f(z) z < ρ f(z) g(z) f (z) = g(z) 67. n Z c n φ(θ) = c n e inθ n Z θ R c n = 2π 2π φ(θ)e inθ dθ 6. D f(z) a D D r f(z) = c n (z a) n, n= z a < r ρ r ρ z a < r D {z n } ( z n a < r) lim f(z n) n ρ = r 8.9. lim log( + ( + /n)) = n log( + z) = z 2 z2 + 3 z3 4 z4 + 38

39 68. /( + z + z 2 ) z = 8. (Ratio Test). f(z) = n c nz n f(z) lim n c n c n+ Proof. ρ = lim n c n / c n+ ϵ > k ρ ϵ c k c k+ ρ + ϵ k = N, k = N +,..., k = n (ρ ϵ) n N c N c n (ρ + ϵ)n N c N (ρ + ϵ) n N c c N n (ρ ϵ) n N, n > N n c nz n z < ρ ϵ z > ρ + ϵ ϵ ρ 8.. α ( α ) ( n α n+ ) = n + (n ) α n ( + z) α = n= ( ) α z n n Taylor Newton (, ) + αx + α(α ) x α(α )(α 2) x ! f(x) f(x) ( + x)f (x) = αf(x) ( + x) α ( ) f(x) ( + x) α = f(x) = ( + x) α ( 4) x = = 39

40 69. e x, sin x, cos x, log( + x) cos x, sin x cos x + i sin x Remark. lim sup c n /n n (auchy-hadamard ) D f(z) 3 (i) f f (z) D (ii) f D D f(z)dz =. (iii) f c D r > {f n } n f(z) = f n (z c) n for z c < r n 9.2. (iii) (analytic function) Remark. f n = f (n) (c)/n! 9.3. f(z) z = c (i) g(z) z = c f(z)g(z) z = c (ii) g(w) w = f(c) g(f(z)) z = c g(z) = /z f(c) /f(z) z = c 4

41 (ring) (formal power series) f(z) = m f mz m g(z) = n g nz n f(z)g(z) = (f g n + f g n + + f n g )z n n f(z), g(z) r, s f(z)g(z) min{r, s} f(z) = n f nz n f(z)g(z) = g(z) f f(z)g(z) = g(z) = f(z) 72. /f(z) 9.4 (). z e z = z n B n n!, n= = ( + 2 z + 3! z )(B + B z + 2 B 2z ) B =, B = 2, B 2 = 6, B 4 = 3, B 6 = 42, B 8 = 3, B = z e z + z 2 = z e z/2 + e z/2 2 e z/2 e z/2 B 2k+ = (k ) 74. z 4 e z + z,, tan z. + z + z2 (composition of power series) f(z) = n f nz n {fl k} k,l (f(z)) k = fl k z l, fl k = l f l... f lk l + +l k =l w = f(z) g(w) = k g kw k ( ) g(f(z)) = g k fl k z l (2) l= k= 4

42 k f = fl k = (k > l) 75. e log(+z) = + z f(z) ρ f, g(w) ρ g f < ρ g f(z) f r = n f n r n r r < ρ f R = sup{r > ; f r ρ g } z < R f(z) n f n z n < ρ g (2) g k fl k z l < k,l 76. f(z) = z + z 2 g(z) = log( + z) log( + z + z 2 ) z + z 2 = (z + z2 ) + (z + z 2 ) 2 (z + z 2 ) 3 + = z + z 3 z ω = ( + 3i)/2 /( + z + z 2 ) f(z) z a z = a (annulus) {r < z a < R} r < z a < R auchy f(z) = 2πi ζ a =R f(ζ) ζ z dζ 2πi ζ a =r f(ζ) ζ z dζ. ζ a = R ζ a = r ζ z = n ζ z = n (z a) n (ζ a) n+, (ζ a) n (z a) n+ f(z) = n Z c n (z a) n, c n = 2πi c n = 2πi ζ a =R ζ a =r f(ζ) dζ, n (ζ a) n+ f(ζ)(ζ a) n, n 42

43 f(z) z = a (Laurent expansion) a f(z) (isolated singularity) (pole) (z a) c f(z) z = a (residue) Res a (f) a f Res a (f) = Res a (f) = (i) n a (ii) z 2 + ez z = a (z a) n e a k (z a)k n k! z = ±i 2 z = ±i i 2 z i i (z i) +..., 8 i 2 z + i + 4 i (z + i) (iii) 79. e /z = n n! z n. ez sin z.2 (). f(z) n a,..., a n f(z)dz = 2πi Res aj (f) j=.3. 2π dθ ( < a < ) + 2a sin θ + a2 43

44 Proof. t = tan θ 2t, sin θ = 2 + t 2, dθ = + t 2 dt 2π z = e iθ, sin θ = z z, dθ = 2i iz dz + 2a sin θ + a 2 dθ = z = (az + i)(z + ia) dz z = ia z = ia w = z + ia (az + i)(z + ia) = w(a(w ia) + i) = w i ia 2 + aw = ( ) w i ia z = Res z= ia = i a 2. (az + i)(z + ia) dz = 2πiRes z= ia = 2π a x 4 + dx Proof. x 4 + : [ R, R] 2 z 4 + = (z ζ)(z ζ 3 )(z ζ 5 )(z ζ 7 ) (ζ = e πi/4 ) z 4 + dz = 2πiRes z=ζ + 2πiRes z=ζ 3. Res z=ζ = Res z=ζ 3 = (ζ ζ 3 )(ζ ζ 5 )(ζ ζ 7 ) = 4ζ 3 = ζ 4, (ζ 3 ζ)(ζ 3 ζ 5 )(ζ 3 ζ 7 ) = 4ζ πi 2 (ζ ζ) = π 2. 2 z 4 + dz 44

45 z = Re iθ z 4 + z 4 = R 4 z 4 + dz 2 R 4 = π R R 4 as R + 2 R lim R R x 4 + dx = π 2 8. (i) (ii) + 2π x 2 dx =. + x + 3 x n + dx.5. n 2 + a 2 = π e πa + e πa 2a e πa e πa 2a 2. n= Proof. π cot πz z = n (n Z) f(z) [ N, N] N 2i f(n) = f(z) cot πzdz. n= N f(z) lim z zf(z) = R: x + y + x y = N + 2 (N ) N R cot πz 2 f(n) = π (f(z) f(z) cot πz ) n= n= n 2 + a 2 = 2 n= n 2 + a 2 2a 2 f(z) = /(z 2 + a 2 ) z = ±(N + 2 ) + iy cot(πz) = eπy e πy e πy, + e πy z = x ± ir (R > ) cot(πz) eπr + e πr e πr e πr. 45

46 .6. e itx x 2 + a 2 dx = π a e t a, t R, a > f(z) (i) f R (ii) f(z) = O(/ z ) (z ) t > + e itx f(x)dx = 2πi Iz> Res z (e itz f(z)) f(z) = f n (z a) n f f(a) f(z) a f f(z) = f k (z a) k, f l, l k=l l a (multiplicity) r > f(z) z a = r f(z) z a l ( f l f l+ z a... ) = r l ( f l f l+ r f l+2 r 2... ) > z a =r f (z) f(z) dz = 2πiRes a(f /f) = 2πl D D f(z) f(z) (z D) f(z) D D D D f (z) dz = 2πi {z D; f(z) = } f(z).7 ( ). f(z) f (a) w = f(a) g(w) g(f(z)) = z, f(g(w)) = w g f Proof. f(z) z = a f (a) f(z) f(a) (< z a r) r > D = {z ; z a < r} D f (z) dz = 2πi f(z) f(a) 46

47 f(z) w z D, w δ > z D, w f(a) < δ = f(z) w w D f (z) f(z) w dz w f(a) < δ 2πi f(z) = w z D g(w) ( w f(a) < δ) g(w) = zf (z) 2πi D f(z) w dz g(w) w w f(a) < δ { f(z) w dw = 2πi if surrounds f( D), otherwise dw dz zf (z) D f(z) w = 2πi g(w) D zf (z) dz = f(g(w)) = w g (f(a)) g(w) g(h(z)) = z, h(a) = f(a) z = a h(z) z a w = h(z) f(a) g(f(z)) = z f(z) = f(g(h(z))) = f(g(w)) = w = h(z) f(z) = n f nz n f g(z) = n g nz n z = f(g(z)) = f n g m z m n m n.8. arctan z = n= ( ) n 2n + z2n+, z < tan z 8. f(z) = 2z + z 2 g(w) + w 47

48 f(z) ( {a n } n a f f(z) z = a f(z) = c + c (z a) + c 2 (z a) f(a f {a n } c = f(a) = lim n f(a n )c = lim n) c n a n a f(a n ) c c (a n a) c m (a n a) m c m = lim n (a n a) m D, D 2 f (z), f 2 (z) a D D 2 f f 2 D D 2 D D 2 f(z) f(z) = { f (z) if z D, f 2 (z) if z D 2 (analytic continuation).. n z n /( z) \ {} 82. f(z) = n 2 n(n ) zn 83. f(x) (auchy transform) F (z) = f(t) t z dt (i) F (z) z \ R (ii) Stieltjes 2πif(x) = lim y (F (x + iy) F (x iy)) (iii) F (z) z = t x = t f(x) = 48

49 2 log x x = log x = (x ) 2 (x )2 + 3 (x )3... z < z log z = (z ) 2 (z )2 + 3 (z )3... < x < 2 {x R; x } D Logz = z D D z D ζ D z 2.. D f(z) D f(z) z ζ dζ f(z)dz = Proof. D c z D g(z) g(z) = z c f(ζ)dζ g (z) = f(z) g(z) f(z) = g (z) z 2.2. Logz z z < z = re iθ (r >, π < θ < π) Logz = log r + iθ Proof. < x < 2 49

50 Logz log z = : z z z 2πiZ ζ dζ (multivalued function) 2.3. z = {ζ ; ζ =, Iζ } log z z = 2.4. r > log z = πi + z + t(z + ) dt πi (z + ) 2 (z + )2 3 (z + )3... r r r r x + i dx x + i dx = z + i dz i r 2 + r r 2θ tan θ = r dz = 2iθ = 2i arctan r z + i r r dx = 2i arctan r x + i ζ \ (, ] ζ + + ( ) m ζ m = + ( )m ζ m+ z 2 z2 + + ( ) m m + zm+ = 5 z + ζ + ( ) m ζ m+ dζ + ζ

51 m = 2n, z = i ( i ) ( )n + ( 2n ) i + ζ 2n+ ( )n+ = dζ. n + ζ it ( t ) n i + ζ dζ = log( + i) = 2 log 2 + π 4 i x a 2πi F (x)dx = e 2πia Res cj (z a F (z)) j < a <, F (z) [, ) c,..., c n F (z) = O(/ z 2 )(z = ), zf (z) = O()(z = ) 2 Proof. r R (, ) ϵ > D D D z a = e a log z ( t) a = e πai f(z) = z a F (z) f(z)dz = 2πi Res cj (f) R f(ρe iϵ )e iϵ dρ + 2π ϵ D j= f(re iθ )ire iθ dθ r ϵ r ϵ R f(ρe i(2π ϵ) )e i(2π ϵ) dρ 2π ϵ f(re iθ )ire iθ dθ F (z) = O(/ z 2 ) (z ), zf (z) = O() (z ) r +, R + + f(ρe iϵ )e iϵ dρ + f(ρe i(2π ϵ) )e i(2π ϵ) dρ f(ρe iβ ) = ρ a e iaβ F (ρe iβ ) ϵ + ( e 2πia ) + ρ a F (ρ)dρ 5

52 2.6. F (z) = z(z+) z = (n =, c = z a /(z + ) z = e (a ) log z z= = e πi(a ) = e πia + x a e πia dx = 2πi x + e 2πia = π sin πa. (Riemann surface) z w w = z {z z ; z }, {w w ; w } z w = = { } 2.7. \ {} /z n \ {} w - w n 2.8. log z meromorphic function {z ; z < } 52

53 3 f(z) = 2πi f(ζ) ζ z dζ = {ζ ; ζ z = r} ζ = z + re iθ ( θ 2π) f(z) = 2π f(z) 2π 2π 2π f(z + re iθ )dθ f(z + re iθ ) dθ f(z) f(ζ) ( ζ z r) f(z) 2π 2π f(z + re iθ ) = f(z), f(z + re iθ ) dθ f(z) θ R f(z) {f(z + r iθ ); θ < 2π} f(z) = f(z + re iθ ) ( θ 2π) r > f(ζ) f(z) f(z) 3. (maximum modulus principle) Proof. f(z) /f(z) lim z f(z) = 3.3. { z < r; Rz > } lim f(z) = z iy for y ( r, r), Proof. h(z) = { f(z) if Rz >, otherwise 53

54 h(z) h(z)dz = h(z) 3.4 ( (three line theorem)). D = {z ; Rz f(z) D M x = sup{ f(x + iy) ; y R}, x M x M x M x, x Proof. M = M = f(z) M, M F (z) = f(z)m z M z F (z) = f(z) M Rz M Rz F (iy) = f(iy) M, F ( + iy) = f( + iy) M lim z F (z) = F (z) f(z) M Rz M Rz n F n (z) = F (z)e (z2 )/n F n (iy) = F (iy) e (y2 +)/n F (iy), F n ( + iy) = F ( + iy) e y2 /n F ( + iy) F n (z) = F (z) e (y2 + x 2 )/n as y with x F n (z) n F (z) = lim n F n(z) 3.5. n a,..., a n, b,..., b n, c,..., c n x j= a x j b x j c j b j c j j= x a j c i j= x 54

55 b j = c j = (j =,..., n) a x j n x j= j= a j x Proof. z f(z) = j= c j a z j b z j z = x + iy f(z) j= c j a x+iy j b x iy j = f(z) Rz j= ( ) x aj b j c j = f(x) b j f(x + iy) f() x f() x, x, y R y = Remark. x a x j, x a j j= j= a = (a,..., a n ) a + + a n = a x j j= a j a x j a j 3.6 (Hölder s inequality). p, q p + q = n z,..., z n, w,..., w n z j w j z j p j= j= /p w j q Proof. 6.5 a j = z j p, b j = w j q x = /p a j, b j 86. j= /q 55

56 A Goursat Goursat A. Pringsheim * 27 D I = f(z) dz k f(z) dz I k 4 k c g(z) = f(z) f(c) z c f (c) g(z) D L f(z) dz = g(z)(z c) dz k max{ g(z) ; z k} L L k 2 k+ 2 k I L2 2 max{ g(z) ; z k}. k L 2 g(c) /2 = I B f(z) /f(z) F (z) = F n z n f(z) (majorant) f n F n (n ) f(z) ρ > f n = O(R n ) ( < R < ρ) f n M/R n (n ) M > F (z) = f + n Mzn /R n f(z) majorant g(z) g(z) majorant G(z) *27 E. Hille, Analytic Function Theory, volume I, Ginn and ompany, 959,

57 g(z) majorant f(z) f(z)/f f = g n f g n + + f n g + f n g(z) majorant G(z) = n G nz n G =, G n = k= k= M R k G n k, n 87. g n G n n M R k g n k, g = f = G(z) G(z) = = l l= k= k= M R k zk M R k G l kz l = G j z j = j= k= l=k Mz R z G(z) G(z) G(z) = M R k G l kz l = R z R (M + )z k= j= M R K G jz j+k G(z) G(z) z < R/(M + ) ( z < R G(z) g(z) z < R/(M + ) 88. R/(M + ) 6/5 (R = 3, M = 3/2) 2π f(z) f g(z) h l = k g k f k l h(z) = l h lz l R > f f n M/R n (n ) M > F (z) = f + n Mzn /R n f(z) z < R f(z) f n z n f + n= n= M z n R n = f + M z R z 57

58 g(z) ρ fl k z l l l F k l z l = ( z < R + M ) (3) ρ f f + M R n z n n k = ( f + M z ) k R z g k fl k z l ( g k f + M z ) k < R z k,l k l h l = k g k f k l h l z l ( g k f + M z ) k < R z l k (3) g k fl k z l k,l h l z l = g k f(z) k l= k= 89. φ(z) = n φ nz n φ = g(f(z)), g(z) = φ(z) + z, f(z) = φ(z) φ φ 9. f(z) = z + z 2 g(z) = log( + z) log( + z + z 2 ) g(z) g(z) k = l k g k l z l, g k l = f(z) = z + l + +l k =l 58 f k z k k=2 g l g lk, g l = g l, g l l = g l =

59 f(g(z)) l g l = f k gl k (l 2). k=2 g k l (k 2) g 2,..., g l G k l (g 2,..., g l ) ( ) l 2 G l l =, G l l = (l )g 2, G l 2 l = (l 2)g 3 + g 2 g 3, 2 G 2 l = 2g l + g 2 g l g l 2 g 2. f k F k (k 2) G l (l 2) l G l = F k G k l (G 2,..., G l ) k=2 g l G l F k = M/R k (k 2) G(z) z = G l z l = l=2 = = = l l=2 k=2 k=2 l=k k=2 M R k Gk l (G 2,..., G l )z l M R k Gk l (G 2,..., G l )z l M z R k + k G l z l l 2 k=2 = M R M R k G(z)k G(z) 2 R G(z). G(z) = z + l 2 G lz l (M + R)G(z) 2 R(z + R)G(z) + R 2 z = G(z) = R(z + R) R2 2( + 2M/R)(z/R) + (z/r) 2 2(M + R) G(z) D 2(R + 2M)z z 2 < R 2 z R + 2M D z < R 2 R + 2M G(z) R 2 /(R + 2M) 59

60 9. G(z) 92. tan z = sin z cos z R2 /(R + 2M) (curve) (path= ) R n (motion) [a, b] (a < b) R n ϕ R n ( ) ϕ [ϕ] [ϕ] ϕ[a, b] = [ϕ] = [ϕ] ϕ (simple) ϕ(s) = ϕ(t) (a s < t b) s = a, t = b ϕ(a) = ϕ(b) t = h(τ) (α τ β) * 28 ϕ (total variation) l sup{ ϕ(t j ) ϕ(t j ) ; a = t < t < < t l = b} j= x = (x,..., x n ) R n x = (x ) (x n ) 2 x ϕ = [ϕ] = [ϕ].. ϕ = b a dϕ dt dt..2. f(x) = x 2 sin x ϕ(t) = (t, f(t)) (t R) *28 h h (τ) > (α τ β) 6

61 x r > ϕ(t) = (r + e t )(cos(at + b), sin(at + b)) r = s = e t/2 φ(s) = s 2 (cos( 2a log s + b), sin( 2a log s + b)), s > s = s (cos b, sin b) b b ( b < 2π) π * 29 N {,,..., N } N a = (a n ), b = (b n ) a n = b n n N [, ] [a] N = N k a k k= 3 {(2a n ); (a n ) 2 } (antor set) t antor [, ] (antor function) c = [c c 2... ] 3 f(c) c n c j for j n and c n+ = [ c f(c) = 2 c c n 2 ]2 = j= c j 2 j+ + 2 n+ c c j for j [ c f(c) = 2 c ] 2 = j= c j 2 j+ (i) f (ii) [, ] \ f (x) = (the devil s staircase) 2 *29 URL 6

62 2 2 = 2 2 [, ] [.] [, ] \ [, ] [ϕ] [, ] [, ] (Peano curve) * 3 D * 3 D D p D p z p < r D D r >, z D, z \ D, z p < r, z p < r. D D (boundary) D p D (i) p p x D (ii) p p p p p p D x D D D D *3 *3 V.J. Katz, The History of Stokes Theorem, Mathematics Magazine, 52(979) Georg Green Michael Ostrogradsky Stokes Kelvin 62

63 F (x, y)i + G(x, y)j D (F (x, y)dx + G(x, y)dy) = D ( ) G F (x, y) (x, y) dxdy. x y F i + Gj D D (x(t), y(t)) (a t b) D (F (x, y)dx + G(x, y)dy) = b a ( F (x(t), y(t)) dx ) + G(x(t), y(t))dy dt dt dt D D D.. D D D = D D Proof. D * 32 ϕ : [a, b] R 2 ϕ[a, b] R,, R n R + + R n M = max{ ϕ (t) ; a t b} : a = t < < t n = b ϕ(t) ϕ(t j ) M t t j, t [t j, t j ] R j ϕ(t j )±M(t j t j )(, ) ϕ[t j, t j ] R j R j 2 = 4M 2 (t j t j ) 2 4M 2 (t j t j ) = 4M 2 (b a) j= j= j= = max{t j t j ; j n} b F (x, ψ(x)) dx b F (x, φ(x)) dx = b ψ(x) F y (x, y) dydx = a a a φ(x) a x b,φ(x) y ψ(x) F y (x, y) dxdy. D x = y 2 sin(a/y) R = [, ] [, ] φ : (s, t) z(s, t) 2 z s t, 2 z t s * 33 s s z(s, t) ( t ) *32 *33 2 z s t = 2 z t s 63

64 d f(z) dz = d ds s ds = = = f(z(s, t)) z t dt = f z z z s t dt + f z z z s t dt + f (z, z) z (s, t) f z z z s ( f(z(s, t)) z ) s t t dt + f z z z s t dt + dt + f(z(s, )) z s s f(z) dz = φ( R) dt f(z(s, t)) 2 z s t dt ( f(z(s, t)) z ) t s (s, ) f(z(s, )) z (s, ) s R f (z, z) z (s, t) dsdt. dt f(z(s, t)) z t s dt φ R D φ R D f f(z) dz = dzdz = 2i z D D D D f z dxdy. ( u (udx vdy) = D y + v ) dxdy x D φ : z(t) ( t ) c φ : (s, t) sz(t) + ( s)c (z, z) (s, t) = s(z(t) c)dz s(z(t) c)dz dt dt f(z) dz L f(z) dz = R f (z, z) z (s, t) dsdt f z z(t) c dz φ(r) dt dt. L [z(), c], [c, z()] f z = max{ f (φ(s, t)) φ(r) z ; s, t } D D z(t) ( t ) D z = z(), z = z(t ),..., z n = z(t n ) c j ( j n) z j c j ir, z j c j R z n = z 64

65 z j c j z j z j, z j c j z j z j D = + + n j L j L = L + + L n f(z) dz f(z) dz n f(z) dz f(z) dz L j= j L j f tj z z(t) c j dz j= t j dt dt f z D. = max{ z(t) c j ; j n, t j t t j } z(t) L D L lim D L f z dxdy = f D z dxdy L = D L * 34 Green 93. = lim L E Riemann-Stieltjes f(t) (a t b) δ > H δ = max{ f(s) f(t) ; s t δ} lim δ H δ = * 35 (uniform continuity) *34 Lang IV, 3 *

66 z(t) (a t b) : a = t < < t n = b z k = z(t k ), = max{t k t k ; k n} tk z k z k z (t k )(t k t k ) = (z (t) z (t k )) dt t k ( f(z k ) z k z k z (t k )(t k t k )) k= lim k= (4) f(z k )(z k z k ) = lim k= tk t k z (t) z (t k ) dt H (t k t k ) (4) f(z k ) H (t k t k ) (b a) f H k= f(z(t k ))z (t k )(t k t k ) = b a f(z(t))z (t) dt. z (t k ) (t k t k ) H (t k t k ) z k z k z (t k ) (t k t k ) + H (t k t k ) k z (t k ) (t k t k ) (b a)h k= lim k= z k z k k= z k z k = lim k= z (t k ) (t k t k ) + (b a)h k= z (t k ) (t k t k ) = b a z (t) dt 66

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

No. No. 4 No f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9

No. No. 4 No f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9 4 4 No. pdf pdf II Fourier No. No. 4 No. 4 4 38 f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9 4 9 i = imaginary unit z = x + iy x, y R x real

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

Email: kawahiraamath.titech.ac.jp (A=@) 27 2 25 . 2. 3. 4. 5. 3 4 5 ii 5 50 () : (2) R: (3) Q: (4) Z: (5) N: (6) : () α: (2) β: (3) γ, Γ: (4) δ, : (5) ϵ: (6) ζ: (7) η: (8) θ, Θ: (9) ι: (0) κ: () λ, Λ:

More information

CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 )

CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 ) III203 00- III : October 4, 203 Version :. Kawahira, Tomoki TA (Takahiro, Wakasa 3 ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/3w-kansuron.html pdf 0 4 0 0 8 2 0 25 8 5 22 2 6 2 3 2 20 0 7 24 3

More information

, ( ) 2 (312), 3 (402) Cardano

, ( ) 2 (312), 3 (402) Cardano 214 9 21, 215 4 21 ( ) 2 (312), 3 (42) 5.1.......... 5.2......................................... 6.2.1 Cardano................................... 6.2.2 Bombelli................................... 6.2.3

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = 1 2π f(t)e iωt d

y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = 1 2π f(t)e iωt d 8. y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = π f(t)e iωt dt. : ϕ(x, y) x + ϕ(x, y) y = ( ).. . : 3. (z p, e z, sin z, sinh

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0 Tips KENZOU 28 7 6 P no problem 2 w = f(z) z w w z w = (z z ) b b w = log (z z ) z = z 2π 2 z = z w = z /2 z = re iθ θ (z = ) 2π 4π 2 θ θ 2π 4π z r re iθ re i2π = r re i4π = r w r re iθ/2 re iπ = r re

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

2

2 p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k f(x) f(z) z = x + i f(z). x f(x) + R f(x)dx = lim f(x)dx. R + f(x)dx = = lim R f(x)dx + f(x)dx f(x)dx + lim R R f(x)dx Im z R Re z.: +R. R f(z) = R f(x)dx + f(z) 3 4 R f(x)dx = f(z) f(z) R f(z) = lim R

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

main.dvi

main.dvi 2 f(z) 0 f(z 0 ) lim z!z 0 z 0 z 0 z z 1z = z 0 z 0 1z z z 0 1z 21 22 2 2 (1642-1727) (1646-1716) (1777-1855) (1789-1857) (1826-1866) 18 19 2.1 2.1.1 12 z w w = f (z) (2.1) f(z) z w = f(z) z z 0 w w 0

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r) ( : December 27, 215 CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x f (x y f(x x ϕ(r (gradient ϕ(r (gradϕ(r ( ϕ(r r ϕ r xi + yj + zk ϕ(r ϕ(r x i + ϕ(r y j + ϕ(r z k (1.1 ϕ(r ϕ(r i

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n [ ]. A = IC X n 3 expx = E + expta t : n! n=. fx π x π. { π x < fx = x π fx F k F k = π 9 s9 fxe ikx dx, i =. F k. { x x fx = x >.3 ft = cosωt F s = s4 e st ftdt., e, s. s = c + iφ., i, c, φ., Gφ = lim

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a, [ ] 8 IC. y d y dx = ( dy dx ( p = dy p y dx ( ( ( 8 ( s8. 3 A A = ( A ( A (3 A P A P AP.3 π y(x = { ( 8 ( s8 x ( π < x x ( < x π y(x π π O π x ( 8 ( s83.4 f (x, y, z grad(f ( ( ( f f f grad(f = i + j

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

i 978 3 3 Riemann Stein 2 3 n 2n n Cauchy Riemann Dolbeault 3 Dolbeault 2 Čech ii 2009 3 5 TEX 3 2009 3 iii i ii 4 20. C n....................................2.....................................3.....................................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

main.dvi

main.dvi 9 5.4.3 9 49 5 9 9. 9.. z (z) = e t t z dt (9.) z z = x> (x +)= e t t x dt = e t t x e t t x dt = x(x) (9.) t= +x x n () = (n +) =!= e t dt = (9.3) z

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information