McCain & McCleary (1979) The Statistical Analysis of the Simple Interrupted Time-Series Quasi-Experiment

Size: px
Start display at page:

Download "McCain & McCleary (1979) The Statistical Analysis of the Simple Interrupted Time-Series Quasi-Experiment"

Transcription

1 Quasi-Experimenaion Ch.6 005/8/7 ypo rep: The Saisical Analysis of he Simple Inerruped Time-Series Quasi-Experimen INTRODUCTION () THE PROBLEM WITH ORDINAR LEAST SQUARE REGRESSION OLS (Ordinary Leas Square) OLS AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODELS inerruped ime-series ARIMA Box-Jenkins ARIMA MANOVA or GG ANOVA OLS ANOVA ( ) The Deerminisic and Sochasic Componens of a Time Series p.35 - Defining ARIMA (p, d, q) ARIMA p, d, q idenificaion ARIMA(,0,0) =.7 56% 6.0 (p.35 )

2 Saionariy ARIMA nonsaionary in he homogeneous sense nonsaionary in he homogeneous sense,, 3, 4, 5,, N (),,,,, ( ) No. = + θ 0 = θ 0 d Auoregressive Models p p 0 p = ARIMA(,0,0) p = ARIMA(,0,0) + a + a + φ < + < φ 3 a a ~ NID(0, σ ) Moving Average Models q φ + φ < 3 p = φ φ < φ <

3 ARIMA(0,0,) ARIMA(0,0,) θ = a a = a θ a θa θ < + < Mixed Models ARIMA(,0,) + a θa mixed AR MA Noise Model Idenificaion ACF PACF p.4 ACF Lag Lag Lag Lag Lag k ACF, rk r k N k = = N ( )( = + k ( ) ) for k =,, 3,.. () ACF ACF PACF, rkk ACF ule-walker

4 ACF PACF ACFPACF ACFPACF ACF PACF ARIMA(p,d,q) Figure 6.(ah ) Nonsaionary Processes Whie Noise Process Auoregressive Processes Moving Average Processes Mixed Processes Auocorrelaions Parial auocorrelaions lag lag p p q lag q q - p p - q ACF 4 k r j j= Q Q = N. d. ACFPACF 3. p q p q = - 5 underesimae overesimae

5 Esimaion of and Values ARIMA(p,d,q) - << + Diagnosis Q ACF Q ACF lag lag lag ARIMA SEASONAL MODELS Muliplicaive ARIMA Seasonal Models. Figure 6. ARIMA(p,d,q) N N + a

6 regular auocorrelaion seasonal auocorrelaion seasonal auocorrelaion P D Q S ARIMA (p, d, q) (P, D, Q) s regular seasonal ARIMA (,0,0)(,0,0) φ φ + a + φ + a + φ φφ 3 Idenifying he Seasonal Model ARIMA ACFPACF,4 4,8 seasonal regular seasonal ARIMA ARIMA (,0,0)(,0,0)S ARIMA (,0,0)(,0,0)S ARIMA (0,0,)(0,0,)S ARIMA (0,,)(0,0,)S ARIMA (0,,)(0,,)S

7 Auocorrelaions Parial auocorrelaions Seasonal Nonsaionary Seasonal Auoregressive Seasonal Moving Average ACF regular p+sp p p = 0 = 0 Q = lag q S q S + q Q q =, Q =, S =,,, 3, 3, 4, 5. ACFPACF ACFPACF. lag ACFPACF lag 4 ACF 3. regular PACF ACF 4. THE INTERVENTION COMPONENT ARIMA = noise = noise + inervenion p.6

8 Box-Jenkins ransfer funcions 6 Abrup, Consan Change = ω noise () I + I = 0 before he inervenion, < i = afer he inervenion, i prereamen : posreamen prereamen : posreamen Gradual, Consan Change δ + = noise (3) ()0 0 n δ = δ (0) + ω() = ω i = i i δ = i = δ ( ω) + ω() = δω + ω = δi + = δ ( δω + ω) + ω() = δ ω + δω + ω n n n = δ ω + δ ω δ ω + δω + ω 6 i-3 i- i- i 3

9 ω change in level = -δ Box & Tiao(975) Hibbs(977) Abrup, Temporary Change (3)I I = 0 before he inervenion, < i = a he momen of inervenion, = i = 0 hereafer, > i n δ = δ (0) + ω() = ω i = i i δ = δ ( ω) + ω(0) = δω = i = δi + + = δ ( δω) + ω(0) i = δ ω = δ n ω n i-3 i- i- i 3 Which Transfer Funcion Should Be Used?. I (3)

10 ..9 I 3.. () SUMMAR OF THE MODELING STRATEG Inervenion Hypohesis Tes ARIMA 7 / THREE EXAMPLES ARIMA ARIMA(0,,0)(0,,) ARIMA(0,,0) ACFPACF Deusch and Al(977) ARIMA 7

11 variance " unexplained" funcion ransfer = CONCLUSION ;

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls

More information

時系列データ解析による予測と最適化 ~エネルギー需要、発電、価格のモデリング~

時系列データ解析による予測と最適化 ~エネルギー需要、発電、価格のモデリング~ MATLAB による時系列データ解析と予測 MahWorks Japan アプリケーションエンジニアリング部テクニカルコンピューティング 中川慶子 2015 The MahWorks, Inc. 1 アジェンダ 需要予測 : 時系列データモデリング 1. データの準備 データの取得 生データの前処理 2. 機械学習 非線形重回帰 ニューラルネットワーク RNN 3. 自己回帰系モデル ARIMA/GARCHモデル

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: [email protected] 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

時系列データ解析による予測と最適化 ~エネルギー需要、発電、価格のモデリング~

時系列データ解析による予測と最適化 ~エネルギー需要、発電、価格のモデリング~ 時系列データ解析による予測と最適化 ~ エネルギー需要 発電 価格のモデリング ~ MahWorks Japan アプリケーションエンジニアリング部テクニカルコンピューティング 中川慶子 2015 The MahWorks, Inc. 1 アジェンダ 需要予測 : 時系列データモデリング 1. 機械学習ニューラルネットワーク データの取得 生データの前処理 ニューラルネットワークによるモデリング 2.

More information

揃 24 1681 0 20 40 60 80 100 0 21 42 63 84 Lag [hour] Lag [day] 35

揃 24 1681 0 20 40 60 80 100 0 21 42 63 84 Lag [hour] Lag [day] 35 Forecasting Model for Electricity Consumption in Residential House Based on Time Series Analysis * ** *** Shuhei Kondo Nobayasi Masamori Shuichi Hokoi ( 2015 7 3 2015 12 11 ) After the experience of electric

More information

時系列解析と自己回帰モデル

時系列解析と自己回帰モデル B L11(2017-07-03 Mon) : Time-stamp: 2017-07-03 Mon 11:04 JST hig,,,.,. http://hig3.net ( ) L11 B(2017) 1 / 28 L10-Q1 Quiz : 1 6 6., x[]={1,1,3,3,3,8}; (. ) 2 x = 0, 1, 2,..., 9 10, 10. u[]={0,2,0,3,0,0,0,0,1,0};

More information

43-03‘o’ì’¹‘®”q37†`51†i„¤‰ƒ…m†[…g†j.pwd

43-03‘o’ì’¹‘®”q37†`51†i„¤‰ƒ…m†[…g†j.pwd n 808 3.0 % 86.8 % 8.3 % n 24 4.1 % 54.0 % 37.5 % 0% % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 0% 37.4 % 7.2 % 27.2 % 8.4 % n 648 13.6 % 18.1% 45.4 % 4.1% n 18 0% % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90

More information

-- o C inter Arctic Oscillation Index Sapporo Air-Temp Matlab randn (red n

-- o C inter Arctic Oscillation Index Sapporo Air-Temp Matlab randn (red n --.........................4..3. (autoregressive process)...5..4....6..5. (MA)...8..6. (ARMA)...8..7. (ARIMA)...8..8....8.3....8.3......4....3...4.. - (persistency) (serial correlation) m amias (988) 970

More information

橡ボーダーライン.PDF

橡ボーダーライン.PDF 1 ( ) ( ) 2 3 4 ( ) 5 6 7 8 9 10 11 12 13 14 ( ) 15 16 17 18 19 20 ( ) 21 22 23 24 ( ) 25 26 27 28 29 30 ( ) 31 To be or not to be 32 33 34 35 36 37 38 ( ) 39 40 41 42 43 44 45 46 47 48 ( ) 49 50 51 52

More information

TOPIX30 2 / 37

TOPIX30 2 / 37 W707 [email protected] 1 / 37 TOPIX30 2 / 37 1 2 TOPIX30 3 / 37 2000 3000 4000 5000 6000 x 1992 1993 1994 1995 1996 1997 1998 Time 4 / 37 t {X t } t i.i.d. t 5 / 37 Definition ( ) {X t } t. t 1,...,

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( mwp-037 regress - regress 1. 1.1 1.2 1.3 2. 3. 4. 5. 1. regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( 2, 71) = 69.75 Model 1619.2877 2 809.643849 Prob > F = 0.0000 Residual

More information

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2)

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) LA-VAR 1 1 1973 4 2000 4 Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) E-mail [email protected] 2 Toda, Hiro Y. and Yamamoto,T.(1995) 3

More information

1

1 1 5% 4% 11% 8% 13% 12% 10% 6% 17% 6% 8% 4% 6% 6% 2% 17% 17% 12% 14% 16% 6% 37% 11% 17% 35% 2 (N=6,239) 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 1,585 1,126 950 494 345 296 242 263 191 150 131 116

More information

2 [email protected] http://www.econ.tohoku.ac.jp/~fukui/site.htm 200 7 Cookbook-style . (Inference) (Population) (Sample) f(x = θ = θ ) (up to parameter values) (estimation) 2 3 (multicolinearity)

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

1

1 1 2 3 4 5 0% 20% 40% 60% 80% 100% 6 7 8 0% 20% 40% 60% 80% 100% 9 0% 20% 40% 60% 80% 100% 10 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 2529 (n=17) 3034 35 (n=21) (n=17) 2529 (n=19) 3034 35 (n=34) (n=64)

More information

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63>

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63> Gretl OLS omitted variable omitted variable AIC,BIC a) gretl gretl sample file Greene greene8_3 Add Define new variable l_g_percapita=log(g/pop) Pg,Y,Pnc,Puc,Ppt,Pd,Pn,Ps Add logs of selected variables

More information

dvi

dvi 2017 65 2 185 200 2017 1 2 2016 12 28 2017 5 17 5 24 PITCHf/x PITCHf/x PITCHf/x MLB 2014 PITCHf/x 1. 1 223 8522 3 14 1 2 223 8522 3 14 1 186 65 2 2017 PITCHf/x 1.1 PITCHf/x PITCHf/x SPORTVISION MLB 30

More information

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100 7 7., ) Q, 7. Q ) 7. Z = R +jx Z / Z 7. 7. Abs. admittance x -3 S) 5 4 3 R Series ircuit Y R = Ω = mh = uf Q = 5 5 5 V) Z = R + jx 7. Z 7. ) R = Ω = mh = µf ) 7 V) R Z s = R + j ) 7.3 R =. 7.4) ) f = π.

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: [email protected] May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology, 65 6 6.1 No.4 1982 1 1981 J. C. Kaimal 1993 1994 Turbulence and Diffusion in the Atmosphere : Lectures in Environmental Sciences, by A. K. Blackadar, Springer, 1998 An Introduction to Boundary Layer Meteorology,

More information

橡最終原稿.PDF

橡最終原稿.PDF GIS Simulation analysis of disseminate of disaster information using GIS * ** *** Toshitaka KATADAJunsaku ASADA and Noriyuki KUWASAWA GIS GIS AbstractWe have developed the simulation model expressing the

More information

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I (missing data analysis) - - 1/16/2011 (missing data, missing value) (list-wise deletion) (pair-wise deletion) (full information maximum likelihood method, FIML) (multiple imputation method) 1 missing completely

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

Multivariate Realized Stochastic Volatility Models with Dynamic Correlation and Skew Distribution: Bayesian Analysis and Application to Risk Managemen

Multivariate Realized Stochastic Volatility Models with Dynamic Correlation and Skew Distribution: Bayesian Analysis and Application to Risk Managemen Multivariate Realized Stochastic Volatility Models with Dynamic Correlation and Skew Distribution: Bayesian Analysis and Application to Risk Management 2019 3 15 Dai Yamashita (Hitotsubashi ICS) MSV Models

More information

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル 時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

最小2乗法

最小2乗法 2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

z.prn(Gray)

z.prn(Gray) 1. 90 2 1 1 2 Friedman[1983] Friedman ( ) Dockner[1992] closed-loop Theorem 2 Theorem 4 Dockner ( ) 31 40 2010 Kinoshita, Suzuki and Kaiser [2002] () 1) 2) () VAR 32 () Mueller[1986], Mueller ed. [1990]

More information

Clustering in Time and Periodicity of Strong Earthquakes in Tokyo Masami OKADA Kobe Marine Observatory (Received on March 30, 1977) The clustering in time and periodicity of earthquake occurrence are investigated

More information

日立金属技報 Vol.34

日立金属技報 Vol.34 Influence of Misorientation Angle between Adjacent Grains on Magnetization Reversal in Nd-Fe-B Sintered Magnet Tomohito Maki Rintaro Ishii Mitsutoshi Natsumeda Takeshi Nishiuchi Ryo Uchikoshi Masaaki Takezawa

More information

pc725v0nszxf_j

pc725v0nszxf_j PC725NSZXF PC725NSZXF PC725NSZXF PC725 DE file PC725 Date Jun. 3. 25 SHARP Corporation PC725NSZXF 2 6 5 2 3 4 Anode Cathode NC Emitter 3 4 5 Collector 6 Base PC725NSZXF PC725YSZXF.6 ±.2.2 ±.3 SHARP "S"

More information

fiš„v6.dvi

fiš„v6.dvi (2001) 49 2 305 315 EXCEL E-Decomp 1 2001 4 26 2001 7 27 E-Decomp E-Decomp Microsoft EXCEL 1 Web Web Decomp 2 R R-(D)COM Interface Web Decomp Decomp EXCEL. 1. E-Decomp E-Decomp Microsoft EXCEL (1997) Web

More information

第11回:線形回帰モデルのOLS推定

第11回:線形回帰モデルのOLS推定 11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i

More information

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yuichiro KITAGAWA Department of Human and Mechanical

More information

1. 2. (Rowthorn, 2014) / 39 1

1. 2. (Rowthorn, 2014) / 39 1 ,, 43 ( ) 2015 7 18 ( ) E-mail: [email protected] 1 / 39 1. 2. (Rowthorn, 2014) 3. 4. 5. 6. 7. 2 / 39 1 ( 1). ( 2). = +. 1. g. r. r > g ( 3).. 3 / 39 2 50% Figure I.1. Income inequality in the

More information

y[n] y[n 1], y[n 2] v[n] R k c m y(t) Figure 1: series.r series <- function(n,delta,k,c,m,y0,y1) { a1 <- (2* m/delta^2 - k) / (m/delta^2 + 0.5*c/delta

y[n] y[n 1], y[n 2] v[n] R k c m y(t) Figure 1: series.r series <- function(n,delta,k,c,m,y0,y1) { a1 <- (2* m/delta^2 - k) / (m/delta^2 + 0.5*c/delta ARMA 1 (AIC) ARMA 2 ARMA dy(t) = f(t, y), y(0) = y 0 dt f(t, y) y 0 f(t, y) LCR (Fig. 1) k c m t y(t) F = ma F = θ(t) ky(t) c dy(t), ma = m d2 y(t) dt dt 2 m d2 y(t) dt 2 + c dy(t) dy(0) + ky(t) = v(t),

More information

自由集会時系列part2web.key

自由集会時系列part2web.key spurious correlation spurious regression xt=xt-1+n(0,σ^2) yt=yt-1+n(0,σ^2) n=20 type1error(5%)=0.4703 no trend 0 1000 2000 3000 4000 p for r xt=xt-1+n(0,σ^2) random walk random walk variable -5 0 5 variable

More information

23_02.dvi

23_02.dvi Vol. 2 No. 2 10 21 (Mar. 2009) 1 1 1 Effect of Overconfidencial Investor to Stock Market Behaviour Ryota Inaishi, 1 Fei Zhai 1 and Eisuke Kita 1 Recently, the behavioral finance theory has been interested

More information

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k 4.6 (E i = ε, ε + ) T Z F Z = e ε + e (ε+ ) = e ε ( + e ) F = kt log Z = kt loge ε ( + e ) = ε kt ln( + e ) (4.8) F (T ) S = T = k = k ln( + e ) + kt e + e kt 2 + e ln( + e ) + kt (4.20) /kt T 0 = /k (4.20)

More information

過電流保護用/突入電流抑制用/過熱検知用"ポジスタ"

過電流保護用/突入電流抑制用/過熱検知用ポジスタ r rr r r! r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r 9 8 7 9 8 7 6 5 4 6 5 4 3 3-3 4 5 6-3 4 5 6 4 8 6 4 8 6 4-3

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’« 2016/3/11 Realized Volatility RV 1 RV 1 Implied Volatility IV Volatility Risk Premium VRP 1 (Fama and French(1988) Campbell and Shiller(1988)) (Hodrick(1992)) (Lettau and Ludvigson (2001)) VRP (Bollerslev

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: [email protected]., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

082_rev2_utf8.pdf

082_rev2_utf8.pdf 3 1. 2. 3. 4. 5. 1 3 3 3 2008 3 2008 2008 3 2008 2008, 1 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997)

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information