z.prn(Gray)

Size: px
Start display at page:

Download "z.prn(Gray)"

Transcription

1 Friedman[1983] Friedman ( ) Dockner[1992] closed-loop Theorem 2 Theorem 4 Dockner ( ) 31

2 Kinoshita, Suzuki and Kaiser [2002] () 1) 2) () VAR 32

3 () Mueller[1986], Mueller ed. [1990] Mueller[1986] OLS AR(1) AR(1) Geroski[1990] Gerosky Mueller ed.[1990] AR(1) Odagiri and Yamawaki[1990] Maruyama and Odagiri[2002] [1999] AR(1) Geroski [1991] AR(1) 1 ( ) VAR VARMA VAR 4 2. VAR 2.1 Sargent[1987](Chapter XI) VAR (a) p 1t = A 01t A 11 q 1t A 12 q 2t + u 1t, p 2t = A 02t A 22 q 2t A 21 q 1t + u 2t, p it t i q it t i u it t 33

4 u it MA(1) u it MA(1) A 01t A 02t (b) i ( ) C it = c 1it q it + (c 2i /2)(q it q it 1 ) 2 + s it q it. s it MA(1) 3) (c) (u it, s it ) (d) i b i (e) i t t κ ji q jt / q it q jt+ j / q it = 0 t closed-loop t open-loop i (1) V it = Σ j=0 b j i {p t+ j q it+ j C it+ j } V it / q it+ j = 0 (2) 1 b 1 c 21 q 1t+ j+1 q 1t+ j (2A 11 + A 12κ21 + c 21 + b 1 c 21 ) + c 21 q 1t+ j 1 = A 01t+ j + c 11t+ j + A 12 q 2t+ j + u 1t+ j + s 1t+ j, 2 b 2 c 22 q 2t+ j+1 q 2t+1 (2A 22 + A 21κ12 + c 22 + b 1 c 22 ) + c 22 q 2t+ j 1 = A 02t+ j + c 12t+ j + A 21 q 2t+ j + u 2t+ j + s 2t+ j. MA(1) 2.2 VAR (2) VARMA (2) t π it (i = 1, 2) (q 1t, q 2t ) 1 i (3) π it = π it + π 1 it (q 1t q 1t ) + π it 2 (q 2t q 2t ), i = 1, 2 π j it π it / q jt qit=qit, i=1,2. q 1t q 2t t i 1 G i t j q it+ j+1 = (2 G i ) q it+ j1. q it+ j+1 (2) π it (3) q 1t q 2t (4) q 1t q 1t = (π 2 2t π + 1t π 2 1t π + 2t )/Ω q 2t q 2t = (π 1 1t π + 2t π 1 2t π + 1t )/Ω π + it π it π it Ω π 1 1t π 2 2t π 2 1 1t π 2t (4) (2) 2 SVARMA structural VARMA SVARMA 34

5 (5) π 1t+ j+1 = const + α 1 π 2t+ j+1 + β 11 π 1t+ j + β 12 π 1t+ j 1 + γ 11 π 2t+ j + γ 12 π 2t+ j 1 + MA(1) π 2t+ j+1 = const + α 2 π 1t+ j+1 + β 21 π 2t+ j + β 22 π 2t+ j 1 + γ 21 π 1t+ j + γ 22 π 1t+ j 1 + MA(1) SVARMA (5) MA(1) (u it ) (s it ) MA(1) SVARMA π 1t+ j+1 π 2t+ j+1 VARMA (6) π 1t+ j+1 = v 10 + v 11 π 1t+ j+ v 12 π 1t+ j 1 + v 13 π 2t+ j + v 14 π 2t+ j 1 + ε 1t+ j+1 + θ 1 ε 1t+ j, π 2t+ j+1 = v 20 + v 21 π 2t+ j + v 22 π 2t+ j 1 + v 23 π 1t+ j + v 24 π 1t+ j 1 + ε 2t+ j+1 + θ 2 ε 2t+ j, ε it+ j+1 + θ i ε it+ j MA(1) 10 v in i=1,2. n=0,1,,4 1 1 b 1 b 2 b b 1 = b 2 v i2 = 1/b, v i4 = 0 (i = 1, 2) (7) Π 1t+ j+1 = v 10 + v 11 π 1t+ j + v 13 π 2t+ j + ε 1t+ j+1, Π 2t+ j+1 = v 20 + v 21 π 2t+ j + v 23 π 1t+ j + ε 2t+ j+1, Π it+ j+1 π it+ j+1 v i2 π it+ j 1 θ 1 ε it+ j, ε it i, i, d, Gaussian 1 v 10 H 20 /H 21 (A 02 c 12 )/(b 2 c 22 H 21 ) H 20 /(b 2 H 21 ) + A 21 H 10 /(b 2 c 22 H 21 ) + (2A 22 + c 22 + b 2 c22 + A 21 κ 12 )H 20 /(b 2 c 22 H 21 ) (1/(H 21 H))[H 22 {H 21 (H 10 + (A 01 c 11 )/(b 1 c 21 ) + H 10 /b 1 (2A 11 + c 21 + b 1 c 21 + A 12 κ 21 )H 10 /(b 1 c 21 ) A 12 H 20 /(b 1 c 21 )) H 11 (H 20 +(A 02 c 12 )/(b 2 c 22 )+ H 20 /b 2 A 21 H 10 /(b 1 c 21 )) H 11 (H 20 + (A 02 c 12 )/(b 2 c 22 ) + H 20 /b 2 A 21 H 10 /(b 2 c 22 ) (2A 22 + c 22 + b 2 c 22 + A 21 κ 12 )H 20 /(b 2 c 22 ))}], v 11 A 21 H 11 /(b 2 c 22 H 21 ) + (2A 22 + c 22 + b 2 c 22 + A 21 κ 12 )H 21 /(b 2 c 22 H 21 ) (1/H 21 H)[H 22 {H 21 ( (2A 11 + c 21 + b 1 c 21 + A 12 κ 21 )H11/(b 1 c 21 ) A 12 H 21 /(b 1 c 21 )) H 11 ( A 21 H 11 /(b 2 c 22 ) (2A 22 + c 22 + b 2 c22 + A 21 κ 12 )H 21 /(b 2 c 22 ))}], v 12 1/b 2 H 22 H 11 (1/b 1 1/b 2 )/H, v 13 A 21 H 12 /(b 2 c 22 H 21 )+(2A 22 +c 22 +b 2 c22+ A 21 κ 12 )H 22 /(b 2 c 22 H 21 ) (1/H 21 H)[H 22 {H 21 ( (2A 11 +c 21 +b 1 c 21 + A 12 κ 21 )H 12 /(b 1 c 21 ) A 12 H 22 /(b 1 c 21 )) H 11 ( A 21 H 12 /(b 2 c 22 ) (2A 22 + c 22 + b 2 c22 + A 21 κ 12 )H22/(b 2 c 22 ))}], v 14 H 22 /(b 2 H 21 ) H 22 (H 12 H 21 /b 1 H 11 H 22 /b 2 )/(H 21 H), v 20 (1/H)[H 21 {H 10 + (A 01 c 11 )/(b 1 c 21 ) + H 10 /b 1 (2A 11 + c 21 + b 1 c 21 + A 12 κ 21 )H 10 /(b 1 c 21 ) A 12 H 20 /(b 1 c 21 )} H 11 {H 20 + (A 02 c 12 )/(b 2 c 22 ) + H 20 /b 2 A 21 H 10 /(b 2 c 22 ) (2A 22 + c 22 + b 2 c22 + A 21 κ 12 )H 20 /(b 2 c 22 )}], v 21 (1/H)[H 21 { (2A 11 + c 21 + b 1 c 21 + A 12 κ 21 )H 12 /(b 1 c 21 ) A 12 H 22 /(b 1 c 21 )} H 11 { A 21 H 12 /(b 2 c 22 ) (2A 22 + c 22 + b 2 c22 + A 21 κ 12 )H 22 /(b 2 c 22 )}], v 22 (H 21 H 12 /b 1 H 11 H 22 /b 2 )/H, 35

6 v 23 [H 21 { (2A 11 + c 21 + b 1 c 21 + A 12 κ 21 )H 11 /(b 1 c 21 ) A 12 H 21 /(b 1 c 21 )} H 11 { A 21 H 11 /(b 2 c 22 ) (2A 22 + c 22 + b 2 c 22 + A 21 κ 12 )H 21 /(b 2 c 22 )}], v 24 H 21 H 11 (1/b 1 1/b 2 )/H, H H 11 H 22 H 12 H 21, H 10 [e π2 {e π2 q 1 ( c 12 /(q 2 p 2 ) + A 21 ( c 12 q 1 0.5c 22 (1 G 2 )q 22 )/(q 2 p 2 2 )) + e π2 q 2 (A 22 ( c c 22 (1 G 2 )q 2 )/p c 22 (1 G 2 )/p 2 ) π 2 }]/{ c 12 /(q 2 p 2 )+A 21 ( c 12 q 1 0.5c 22 (1 G 2 )q 2 2 )/(q 2 p 2 2 )}+D/E D { 0.5c 22 (1 G 2 )/p 2 + A 22 ( c c 22 (1 G 2 )q 2 )/p 2 2 }[ e π2 { c 12 /(q 2 p 2 ) + A 21 ( c 12 q 1 0.5c 22 (1 G 2 )q 2 2 )/(q 2 p 2 2 )}{e π1 q 2 A 12 ( c c 21 (1 G 1 )q 1 )/p 2 1 +e π1 q 1 (A 11 ( c 11 o.5c 21 (1 G 1 )q 1 )/p c 21 (1 G 1 )/p 1 ) π 1 }+e π1 {A 11 ( c c 21 (1 G 1 )q 1 )/p c 21 (1 G 1 )/p 1 }{e π2 q 1 ( c 12 /(q 2 p 2 )+ A 21 ( c 12 q 1 0.5c 22 (1 G 2 )q 22 )/(q 2 p 2 2 )) + e π2 q 2 (A 22 ( c c 22 (1 G 2 )q 2 /p c 22 (1 G 2 )/p 2 ) π 2 )}] E { c 12 /(p 2 q 2 ) + A 21 ( c 12 q 1 0.5c 22 (1 G 2 )q 2 2 )/q 2 p 2 2 }[ e π1 π2 A 12 { c c 21 (1 G 1 )q 1 }(1/p 2 1 ){ c 12 /(q 2 p 2 ) + A 21 ( c 12 q 1 0.5c 22 (1 G 2 )q 2 2 )/q 2 p 2 2 } e π1 π2 {A 11 ( c c 21 (1 G 1 )q 1 )/p c 21 (1 G 1 )/p 1 }{A 22 ( c c 22 (1 G 2 )q 2 )/p c 22 (1 G 2 )/p2}], H 11 [ 0.5c 22 (1 G 2 )/p 2 + A 22 { c c 22 (1 G 2 )q 2 }]( e π2 )[ c 12 /(q 2 p 2 ) + A 21 { c c 22 (1 G 2 )q 2 2 }/(q 2 p 2 2 )]/F F [ c 12 /(q 2 p 2 )+A 21 { c 12 q 1 0.5c 22 (1 G 2 )q 2 2 }/q2p2 2 ](e π1 π2 )[A 12 { c c 21 (1 G 1 )q 1 }/p 2 1 ][ c 12 /(q 2 p 2 )+ A 21 { c 12 q 1 0.5c 22 (1 G 2 )q 2 2 }/q 2 p 2 2 ] (e π1 π2 )[A 11 { c 11 q 1 0.5c 22 (1 G 1 )q 2 2 }/p c 21 (1 G 1 )/p 1 ][A 22 { c c 22 (1 G 2 )q 2 }/p c 22 (1 G 2 /p 2 ], H 12 e π2 /[ c 12 /(q 2 p 2 ) + A 21 { c 12 q 1 0.5c 22 (1 G 2 )q 2 2 }/(q 2 p 2 2 )}] + [ 0.5c 22 (1 G 2 )/p 2 + A 22 { c c 22 (1 G 2 )q 2 }/p 2 2 ]( e π1 )[A 11 { c c 21 (1 G 1 )q 1 }/p c 21 (1 G 1 )/p 1 ]/L, L [ c 12 /(q 2 p 2 ) + A 21 { c 12 q 1 0.5c 22 (1 G 2 )q 2 2 }/(q 2 p2 2 )](e π1 π2 )[A 12 { c 11 q 1 0.5c 21 (1 G 1 )p 2 1 }/p 2 1 { c 12 /(q 2 p 2 ) + A 21 ( c 12 q 1 0.5c 22 (1 G 2 )q 2 2 )} {A 11 ( c c 21 (1 G 1 )q 1 )/p c 21 (1 G 1 )/p 1 }{A 22 ( c c 22 (1 G 2 )q 2 )/p c 22 (1 G 2 )/p 2 }], H 20 [ e π2 { c 12 /(q 2 p 2 ) + A 21 ( c 12 q 1 0.5c 22 (1 G 2 )q 2 2 )/(q 2 p 2 2 )}{e π1 q 2 (A 12 ( c c 21 (1 G 1 )q 1 )/p 2 1 ) + e π1 q 1 (A 11 ( c c 21 (1 G 1 )q 1 )/p c 21 (1 G 1 )/p 1 ) π 1 }+e π1 {A 11 ( c c 21 (1 G 1 )q 1 )/p c 21 (1 G 1 )/p 1 }{e π2 q 1 ( c 12 /(q 2 p 2 ) + A21( c 12 q 1 0.5c 22 (1 G 2 )q 2 2 )/(q 2 p 2 2 )) + e π2 q 2 (A 22 ( c c 22 (1 G 2 )q 2 )/p c 22 (1 G 2 )/p 2 ) π 2 }]/M, M (e π1 π2 )A 12 { c c 21 (1 G 1 )q 1 }/p 2 1 { c 12 /(q 2 p 2 ) + A 21 ( c 12 q 1 0.5c 22 (1 G 2 )q 2 2 )/q 2 p 2 2 } (e π1 π2 ){A 11 ( c c 21 (1 G 1 )q 1 )/p c 21 (1 G 1 )/p 1 }{A 22 ( c c 22 (1 G 2 )q 2 )/p c 22 (1 G 2 )/p 2 }, H 21 e π2 { c 12 /(q 2 p 2 ) + A 21 ( c 12 q 1 0.5c 22 (1 G 2 )q 2 2 )/q 2 p 2 2 }/N, N (e π1 π2 ){A 12 ( c c 21 (1 G 1 )q 1 )/p 1 2 }{ c 12 /(q 2 p 2 ) + A 21 ( c 21 q 1 0.5c 22 (1 G 2 )q 2 2 )/(q 2 p 2 2 }} (e π1 π2 ) {A 11 ( c c 21 (1 G 1 )q 1 )/p c 21 (1 G 1 )/p 1 }{A 22 ( c c 22 (1 G 2 )q 2 )/p c 22 (1 G 2 )/p 2 }, 36

7 H 22 e π1 {A 11 ( c (1 G 1 )q 1 )/p c 21 (1 G 1 )/p 1 }/R, R (e π1 π2 )A 12 { c c 21 (1 G 1 )q 1 }(1/p 2 1 ){ c 12 /(q 2 p 2 )+A 21 ( c 12 q 1 0.5c 22 (1 G 2 )q 2 2 )/(q 2 p 2 2 )} (e π1 π2 ) {A 11 ( c c 21 (1 G 1 )q 1 )/p c 21 (1 G 1 )/p 1 }{A 22 ( c c 22 (1 G 2 )q 2 )/p c 22 (1 G 2 )/p 2 }, 3. 2 ( ) ) CAPM 1971 = (60 ) + β 60 β β 1977 = 10 +β ( ) β 1 ( ) () (5) v i j (6) v 10 v 20 37

8 Chen 3 ADF F ADF F 4 (6) VAR F VAR F VAR, VAMA 1 3 univariate AR, univariate ARMA VAR VAMA univariate AR, univariate ARMA (5) (5) (5) VARπ =MA VAR 2 L( ) 2 2 MA MA(1) 1 2 π (5) (5) π =(VAR) 1 MA, (VAR) 1 VAR L 4 VAR (5) univariate ARMA(4,3) 4.1 3) Lumsdaine and Papell [1997] 1 Zivot and Andrews[1992] ) ADF T(ρ µ 1) T ρ µ ADF ADF 1 2 (k) t 1.6 5) 4 i T(ρ µ 1) T(ρ µ 1)/(1 Σ k π ik ) 2 38

9 2 T(ρ µ 1) (1) 1 (2) 2 1% 2.5% 5% 10% 1% 2.5% 5% 10% ADF ADF T(ρ µ 1) = (k = 0) % (k = 0) 4.7% (k = 1) 0.05% ADF 8.40 (k = 0) % (k = 1) 0.4% (k = 1) 0.07% Chen Chen Chen and Tiao[1990] ARMA ARIMA ARMA ARIMA Chen 2 1 Chen

10 ADF F ADF ADF π it = +ρπ it 1 + α 1 π it 1 + α 2 π it 2 + α 3 π it 3 + ε it ε it i.i.d.gaussian π ip p = 3 ADF α i F F F OLS F α VAR F (7) VAR b = 0.9 Π 1t+ j+1 (6) MA(1) MA univaliate ARMA(4, 3) Π 1t+ j+1 = v 11 π 1t+ j + v 13 π 2t+ j + ε 1t+ j+1, Π 2t+ j+1 = v 21 π 2t+ j + v 23 π 1t+ j + ε 2t+ j+1, VAR F 1968 v v v v 21 v 23 = 0 F 1994 v 23 F Chen AR(2) ( ) 40

11 6) 5. (6) (7) ARMA(4,3) MA(3) i.i.d. ARMA(4,3) (6) univariate ARMA(4,3) b 1 = b 2 = 0.9 π it+ j+1 v i2 π it+ j 1 v i2 = 1/0.9, 1 (6) (6) (7) 1 2 VAR OLS SUR (7) (7) t t (61,62,63 64 ) π it ARMA(4,3) i.i.d. MA(3) (-1/0.9)π it 2 π it Π it v (5.8549) ( ) (1.7512) v (2.5751) v (2.8921) 73 v (1.9858) 73 v ( ) 90 v (4.4542) SBIC R v (9.4862) v (1.3804) ( ) ( ) ( ) 90 v (2.8879) 98 v ( ) 66 v ( ) 70 v ( ) 95 v ( ) 98 v (3.2457) SBIC R v i0 v i1 v i3 v i0 v i1 v i3 3 v i0, v i1, v i3 v i0, v i1, v i3 1 (8) v i j = v i j, i = 1, 2, j = 0, 1, 3, 3 (6) (7) v i2 = 1/0.9 v i4 = 0 v i j ( j = 0, 1, 3) 41

12 t π i = π it π i 3 1 π i p t q t (9) t i = {pit q it c 1it q it c 2it (1 G i ) 2 q 2 it /2}/(p it q it ), i = 1, 2, 1 q i+t t j q it+ j+1 = (2 G i )q it+ j (2) q 1t = (A 02 c 12 )/(A 21 G 1 ) [b 2 c 22 {1 + G 2 2 /b 2 G 2 (2A 22 + c 22 + b 2 c 22 + A 21 κ 12 )/(b 2 c 22 )}][ A 21 (A 01 c 11 )G 1 /(b 1 b 2 c 21 c 22 ) (A 02 c 12 ){1 + G 2 1 /b 1 G 1 (2A 11 + c 21 + b 1 c 21 + A 12 κ 21 )}/(b 2 c 22 )]/S, q 2t = A 21 G 1 [ A 21 (A 01 c 11 )G 1 /(b 1 b 2 c 21 c 22 ) (A 02 c 12 ){1 + G 2 1 /b 1 G 1 (2A 11 + c 21 + b 1 c 21 + A 12 κ 21 )/(b 1 c 21 )}/(b 2 c 22 )]/S, S A 21 G 1 [A 12 A 21 G 1 G 2 /(b 1 b 2 c 21 c 22 ) {1+G 2 2 /b 2 G 2 (2A 22 +c 22 +b 2 c 22 + A 21 κ 12 )/(b 2 c 22 )}{1+G 2 1 /b 1 G 1 (2A 11 + c 21 + b 1 c 21 + A 12 κ 12 )/(b 1 c 21 )}], i q it = (x it )/p it (10) (x it ) = p it q it, i = 1, 2, A 01, A 02, A 11, A 12, A 21, A 22, c 11, c 12, c 21, c 22, p 1t, p 2t, κ 21, κ 12 ) 10 (8),(9),(10) (a) 12 c 11 = c 12 = 1 12 (8),(9),(10) 2 A 11 = 1, A 12 = 1, A 21 = 1, A 22 = 1, c 21 = 1, c 22 = 1, p 1t = 100, p 2t = 100, κ 21 = 0, κ 12 = 0 Gauss=Newton A(A 11, A 12, A 21, A 22 ) = {0 10 }, c 2 (c 21, c 22 ) = {0 10 }, κ(κ 21, κ 12 ) = {0 10 }, p (p 1t, p 2t ) = {1, 100, 1000} (11) A i1 A i2, c 2i 0, c 2i 0, p it 0, A 11 A 12 A 21 A 22 () A 11 A 21 /H A 11 < A 12 42

13 A A A A c c p 1t p 2t κ κ closed-loop b i 2 b i 0.9 b i Federal Reserve Board s Quarterly Model b i c 11 = c 12 = 1 A 0i MA 3 Worthington[1990] 2 ()

14 (et) 1 y t y t = y t 1 + e t, 225 y t y t (y 0 ) 225 y t ADF T(ρ µ 1) T(ρ µ 1) 7 t t = x t t Sales t t D () T T () 1 ln(sales t x t ) = (ln(sales t 1 ) x t 1 ) (ln(sales t 2 ) x t 2 ), x t = D (73 1) D(98 1) T(62 = 1) T (73 = 1) T (90 = 1) T (98 = 1), ln(sales t x t ) = (ln(sales t 1 ) x t 1 ) ln(sales t 2 ) x t 2 ), x t = D (66 1) D (95 1) T(62 = 1) T(66 = 1) T (73 = 1)) T(90 = 1) T(95 = 1) (1999) ( 10 ) NTT. Bresnahan, T. F. (1982) The Oligopoly Solution Concept is Identified, Economic Letters 10, pp Chen, C. and G. C. Tiao (1990) Random Level-Shift Time Series Models, ARIMA Approximation, and Level- Shift Detection, Journal of Business and Economic Statistics, vol.8, no.1, Engelbert, J. D. (1992) A Dynamic Theory of Conjectural Variations, The Journal of Industrial Economics, Vol.XL, No.4, December Friedman, J. W. (1983) Oligopoly and the Theory of Games, North-Holland, Amsterdam. Geroski, P. A. (1990) Modeling Persistent Profitability, in Muller, D. C., ed. The Dynamic of Company Profits: An International Comparison. (1991), Market Dynamics And Entry, Brackwell: Cambridge, MA. Kinoshita, J., N. Suzuki and H. M. Kaiser (2002) Explaining Pricing Conduct in a Product-Differentiated Oligopolistic Market: An Empirical Application of a price Conjectural Variations Model, Agribusiness, vol.18, No.4. Lumsdaine, R. L. and D. H. Papell (1997) Multiple Trend Breaks and the Unit-Root Hypothesis, The Review of Economics and Statistics, vol.79, Maruyama, N. and H. Odagiri (2002) Does the Persistence of Profits Persists?: A Study of Company Profits in Japan , International Journal of Industrial Organization, vol.20, Muller, D. C., ed. (1986) Profits in the Long Run, Cambridge University Press: Cambriege, MA. (1990) The Dynamic of Company Profits: An International Comparison, WZB-Publication: Wissenschaftszentrum, Berlin. Odagiri, H. and H. Yamawaki (1990) The Persistence of Profits in Japan, in Mueller, D. C.,ed. The Dynamic of 44

15 Company Profits: An International Comparison. Roberts, M. L. and Samuelson (1988) An Empirical Analysis of Dynamic, Nonprice Competition in an Oligopolistic Industry, Rand journal of Economics, Vol.19, No.2. Seldon, B. J., S. Banerjee and R. G. Boyd (1993) Advertizing Conjectures and the Nature of Advertizing Competition in an Oligopoly, Managerial and Decision Economics, Vol.14, Sergeant, T. J. (1987) Macroeconomic Theory, Academic Press, San Diego:CA. Worthington, P. R. (1990) Strategic Investment and Conjectural Variations, International Journal of Industrial Organization, Vol.8, Zivot, E. and D. W. K. Andrews (1992) Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit- Root Hypothesis, Journal of Business and Economic Statistics, vol.10, no.3. 45

1970). Baumol, W. J., Panzar, J. C. and R. D. Willig (1982); Contestable Markets and The Theory of Industry Structure, 1982. Caves, R. and M. E. Porter (1977); From entry barriers to mobility barriers:

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

橡同居選択における所得の影響(DP原稿).PDF

橡同居選択における所得の影響(DP原稿).PDF ** *** * 2000 13 ** *** (1) (2) (1986) - 1 - - 2 - (1986) Ohtake (1991) (1993) (1994) (1996) (1997) (1997) Hayashi (1997) (1999) 60 Ohtake (1991) 86 (1996) 89 (1997) 92 (1999) 95 (1993) 86 89 74 79 (1986)

More information

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 9 π 046 Vol.69-1 January 2016 204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 β γ α / α / 048 Vol.69-1 January 2016 π π π / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 049 β 050 Vol.69-1

More information

2 / 24

2 / 24 2017 11 9 1 / 24 2 / 24 Solow, 1957 total factor productivity; TFP 5% 経済成長率の要因分解 4% 3% 2.68% 2.51% 2% 1% 0% 1.63% 1.50% 0.34% 0.42% 0.55% 0.97% 1.14% 0.86% 0.13% -0.59% -0.59% -0.09% 0.01% -1% 1970-80

More information

bottleneckjapanese.dvi

bottleneckjapanese.dvi 1 M&A Keywords:,. Address: 742-1, Higashinakano, Hachioji-shi, Tokyo 192-09,Japan fax:+81 426 74 425 E-mail: [email protected] ; [email protected] 1 Yang and Kawashima(2008) 1 2 ( MVI

More information

BB 報告書完成版_修正版)040415.doc

BB 報告書完成版_修正版)040415.doc 3 4 5 8 KW Q = AK α W β q = a + α k + βw q = log Q, k = log K, w = logw i P ij v ij P ij = exp( vij ), J exp( v ) k= 1 ik v i j = X β αp + γnu j j j j X j j p j j NU j j NU j (

More information

Title ベンチャー企業の研究開発支出の決定要因 日本と台湾の事例を中心に Author(s) 蘇, 顯揚 Citation 經濟論叢 (1996), 158(1): Issue Date URL Right

Title ベンチャー企業の研究開発支出の決定要因 日本と台湾の事例を中心に Author(s) 蘇, 顯揚 Citation 經濟論叢 (1996), 158(1): Issue Date URL   Right Title ベンチャー企業の研究開発支出の決定要因 日本と台湾の事例を中心に Author(s) 蘇, 顯揚 Citation 經濟論叢 (1996), 158(1): 54-76 Issue Date 1996-07 URL https://doi.org/10.14989/45083 Right Type Departmental Bulletin Paper Textversion publisher

More information

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Stepwise Chow Test a Stepwise Chow Test Takeuchi 1991Nomura

More information

M&A の経済分析:M&A はなぜ増加したのか

M&A の経済分析:M&A はなぜ増加したのか RIETI Discussion Paper Series 06-J-034 RIETI Discussion Paper Series 06-J-034 M&A の経済分析 :M&A はなぜ増加したのか 蟻川靖浩 宮島英昭 ( 早稲田大学 RIETI) 2006 年 4 月 要旨 1990 年代以降の M&A の急増の主要な要因は 産業や企業の成長性や収益性へのショックである とりわけ M&A を活発に行っている産業あるいは企業の特性としては

More information

受賞講演要旨2012cs3

受賞講演要旨2012cs3 アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α

More information

C. R. McKenzie 2003 3 2004 ( 38 ) 2 2004 2005 (Keio Household Panel Survey) control group treatment group 1

C. R. McKenzie 2003 3 2004 ( 38 ) 2 2004 2005 (Keio Household Panel Survey) control group treatment group 1 KEIO UNIVERSITY MARKET QUALITY RESEARCH PROJECT (A 21 st Century Center of Excellence Project) DP2005-020 * C. R. McKenzie** 2003 3 2004 ( 38 ) 2 2004 2005 (Keio Household Panel Survey) control group treatment

More information

濱田弘潤 : 多角化企業の利潤分析 77 多角化企業の利潤分析 多角化ディスカウントの寡占理論による説明 * 濱田弘潤 (diversification discount) Keywords: JEL classifications: D43, L13, L22, G

濱田弘潤 : 多角化企業の利潤分析 77 多角化企業の利潤分析 多角化ディスカウントの寡占理論による説明 * 濱田弘潤 (diversification discount) Keywords: JEL classifications: D43, L13, L22, G 濱田弘潤 : 多角化企業の利潤分析 77 多角化企業の利潤分析 多角化ディスカウントの寡占理論による説明 * 濱田弘潤 (diversification discount) Keywords: JEL classifications: D43, L13, L22, G34 950-2181 2 8050 Tel. and fax: 025-262-6538 E-mail: [email protected]

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

The Institute for Economic Studies Seijo University 6 1 20, Seijo, Setagaya Tokyo 157-8511, Japan The Institute for Economic Studies Green Paper No. 59 Consumers Decision on the Choice of Small Payment

More information

untitled

untitled * 2009 6 15 2006 10 24 MNP MNP MNP MNP MNP 18% 2.6% Keywords: Mobile Number Portability (MNP), Switching Cost, Nested Logit Model, Choice-based Sampling JEL Classification: D12, L96 1. 2006 10 24 (Mobile

More information

DGE DGE 2 2 1 1990 1 1 3 (1) ( 1

DGE DGE 2 2 1 1990 1 1 3 (1) ( 1 早 稲 田 大 学 現 代 政 治 経 済 研 究 所 ゼロ 金 利 下 で 量 的 緩 和 政 策 は 有 効 か? -ニューケインジアンDGEモデルによる 信 用 創 造 の 罠 の 分 析 - 井 上 智 洋 品 川 俊 介 都 築 栄 司 上 浦 基 No.J1403 Working Paper Series Institute for Research in Contemporary Political

More information

開発金融増刊号

開発金融増刊号 4 6 Y = f (, E, Y E ( Y E = α ( E α we py α 0 β E ( ( E β ( E β 6 ( = ( α β ( E β 8 i Y i f i, E i, i 9 Y = α α ( α E α S E 0 ( β β E β E( β E β β6 ( we Y = = = α β E py E β ( β Y Y B Y A r / pr p Y

More information

59-1・2 鳥居昭夫・春日教測 .pwd

59-1・2 鳥居昭夫・春日教測 .pwd logit JEL Classifications: D10, M30, L82 Wilbur 2008 Shishikura et al. 2018 and de Gracia 2012 Bayraktaroglu et al. 2018 Carare and Zentner 2012 Carare and Zentner 2012 Train et al. 1987 Hendel 1999 Spence

More information

時間割引:双曲割引と弱加法性

時間割引:双曲割引と弱加法性 Discussion aper No. 666 June 2006 The Institute of Social and Economic Research Osaka University 6-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan Time Discounting: Declining Impatience and Interval Effect

More information

1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030

1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030 1 913 9001030 A B C D E F G H J K L M 9:00 1A0900 9:15 1A0915 9:30 1A0930 9:45 1A0945 10 : 00 1A1000 10 : 15 1B0900 1B0915 1B0930 1B0945 1B1000 1C0900 1C0915 1D0915 1C0930 1C0945 1C1000 1D0930 1D0945 1D1000

More information

表紙_目次.PDF

表紙_目次.PDF JIL 2 1980 vol.3 15 3 1 3 15 18 IT 26 28 33 20 OECD 80 90 (1998) (2000) 2 Aghion et al. (1999) OECD 1970 1 2 70 1980 90 1.1 Kuznets U inverted U-shaped hypothesis GNP U 1 18901940 6 3 Kuznets(1955) (1963)

More information

(CFW ) CFW 1

(CFW ) CFW 1 DSGE * 1 * 2 2012 11 *1 2012 11 22 25 ( ) ( ) *2 3 (CFW ) CFW 1 1 3 1.1....................................... 3 1.2.................................. 5 2 DSGE 6 2.1.............................. 6 2.2.....................................

More information

2 I- I- (1) 2 I- (2) 2 I- 1 [18] I- I-. 1 I- I- Jensen [11] I- FF 3 I- FF 3 2 2.1 CAPM n ( i = 1,..., n) M t R i,t, i = 1,..., n R M,t ( ) R i,t = r i

2 I- I- (1) 2 I- (2) 2 I- 1 [18] I- I-. 1 I- I- Jensen [11] I- FF 3 I- FF 3 2 2.1 CAPM n ( i = 1,..., n) M t R i,t, i = 1,..., n R M,t ( ) R i,t = r i 1 Idiosyncratic,, Idiosyncratic (I- ) I- 1 I- I- Jensen I- Fama-French 3 I- Fama-French 3 1 Fama-French (FF) 3 [6] (Capital Asset Pricing Model; CAPM [12, 15]) CAPM ( [2, 10, 14, 16]) [18] Idiosyncratic

More information

Microsoft Word - Šv”|“Å‘I.DOC

Microsoft Word - Šv”|“Å‘I.DOC 90 ª ª * [email protected] i ii iii iv SNA 1 70 80 2 80 90 80 80 90 1 80 90 98 6 1 1 SNA 2 1 SNA 80 1SNA 1 19931998 1 2-190 1,2 2 2-2 2-3,4 3 2-5 4 2030 2-3 3 2-15 97 20 90 2-15 9198 1.

More information

デフレの定義(最新版).PDF

デフレの定義(最新版).PDF DP/01-1 Director General for Economic Assessment and Policy Analysis CABINET OFFICE E-mail : [email protected] 1 2 3 i (ii) 4 5 Deflation defined as at least two consecutive years of price decreases.

More information

株式保有構成と企業価値 ─コーポレート・ガバナンスに関する一考察─

株式保有構成と企業価値 ─コーポレート・ガバナンスに関する一考察─ q E-mail: [email protected] E-mail: [email protected] OECD Vives Tirole Shleifer and Vishny q %% %% % % Allen and Gale %% % Admati, Pfreiderer and Zechner Burkart, Gromb and Panunzi Cremer 1995Pagno

More information

山形大学紀要

山形大学紀要 x t IID t = b b x t t x t t = b t- AR ARMA IID AR ARMAMA TAR ARCHGARCH TARThreshold Auto Regressive Model TARTongTongLim y y X t y Self Exciting Threshold Auto Regressive, SETAR SETARTAR TsayGewekeTerui

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: [email protected]., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

An Empirical Study of the Securities Firms' Dilemma on Financial Innovation through Diffusion of Internet Deals Yasugi Satoshi Bower, J. L., 1999, Disruptive technologies: Catching the wave,

More information

Attendance Demand for J-League õ Shinsuke KAWAI* and Takeo HIRATA* Abstract The purpose of this study was to clarify the variables determining the attendance in J-league matches, using the 2,699 J-league

More information

通し組/2.論説:大橋克成

通し組/2.論説:大橋克成 Brander and Spencer, 1983 ; Fudenberg and Tirole, 1984 ; Bulow et al., 1985 d Aspremont and Jacquemin R&D R&D R&D R&D R&D R&D R&D R&D R&D R&D Kamien et al.suzumuraleahy and Neary Salant and Shaffer R&D

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: [email protected] 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls

More information

産業・企業レベルデータで見た日本の経済成長.pdf

産業・企業レベルデータで見た日本の経済成長.pdf 2003 11 10 IT IT JIP JCER ) 2003 CD-ROM http://www.esri.go.jp/jp/archive/bun/bun170/170index. html 1 JIP Jorgenson, Mun, andstiroh (2002) GDP 2 3 1951 1954 1957 1960 1963 1966 1969 1972 1975 1978 1981

More information

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118 7 DSGE 2013 3 7 1 118 1.1............................ 118 1.2................................... 123 1.3.............................. 125 1.4..................... 127 1.5...................... 128 1.6..............

More information

Journal of Economic Behavior & Organization Quarterly Journal of Economics Review of Economics and Statistics Internal Labor Markets and Manpower Analysis Economics of Education Review Journal of Political

More information