-- o C inter Arctic Oscillation Index Sapporo Air-Temp Matlab randn (red n

Size: px
Start display at page:

Download "-- o C inter Arctic Oscillation Index Sapporo Air-Temp Matlab randn (red n"

Transcription

1 (autoregressive process) (MA) (ARMA) (ARIMA) (persistency) (serial correlation) m amias (988) 970 SST (re-emergence) Alexander (999)

2 -- o C inter Arctic Oscillation Index Sapporo Air-Temp Matlab randn (red noise model) yt () = ryt ( ) + σε() t (.) y(t) t r ε σ (white noise) r=0 r -.

3 (.) r σ σ R σ yt () = r yt ( ) + rσ yt ( ) ε() t R = r σ + σ R + σ ε() t σ = σ σ = σ (.) ( r ) R R / ( r ) <> σ σ R (.) Allen and Smith (996) (first order Markov process)

4 tlng, nsmpl, r rtsrs=randn(tlng,nsmpl); % tlngnsmpl rtsrs(,:)=rtsrs(,:)/sqrt(-r^); % for t=:tlng rtsrs(t,:)=rtsrs(t-,:)*r+rtsrs(t,:); end - r=0.5, nsmpl=0000, tlng=0 m n (/ n) y ( t) i= m

5 (autoregressive process) (autoregressive model) p yt ( ) + φ() yt ( ) φ( pyt ) ( p) + σε( t) = 0 (.3) φ() i y y t AR(q) φ AR AR Matlab yt () = yt () yt ( ) + φ() yt ( ) φ( pyt ) ( p) = 0

6 -6- t p yt () = λ yt ( p) (.4) yt () = λ yt ( ) p p λ + φ() λ... + φ( p) = 0 λ> y λ= λ< AR AR φ () <..4. Maximum Entropy Method (MEM) Spectrum φ τ ρτ ( ) yt ( ) yt ( + τ) ρτ ( ) yt ( ) yt ( τ) { ()... ( p) p σ ε } = φ yt ( ) + + φ yt ( ) + ( t) yt ( τ) = φ() yt ( ) yt ( τ) φ( p) yt ( pyt ) ( τ) + σ ε( t) yt ( τ) (.5) ρτ ( ) + φ() yt ( ) yt ( τ) φ( p) yt ( pyt ) ( τ) + σ ε( t) yt ( τ) = 0 ρτ ( ) + φ() ρτ ( ) φ( p) ρ( t p) = 0 σ = ρ(0) r r() τ + φ()( r τ ) + φ()( r τ ) φ( p)( r t p) = 0 (.6) AR r() = φ() AR 0 (.5) yt ( ), t=,..., n yt ( + τ )

7 -7- ρ(0) + φ() yt ( ) yt ( τ) φ( p) yt ( pyt ) ( τ) + σ ε( t) yt ( ) = 0 φ() r() φ() r()... φ( p) r( p) σ / σ = (.7) (.6) (.7) r() r() r( p) σ / σ () r() r( p ) φ r() φ() r() r() r( p ) = r() φ( p) r( p ) r( p ) r( p) (.8) Toeplitz( ) r() r() r( p) σ / σ r() r() r( p ) φ() 0 r() r() r( p ) φ() = 0 r( p) r( p ) r( p ) φ ( p) 0 (.9) (Yule-alker equation) Matlab lpc, pyulear p p p p (Akaike s Information Criterion, AIC) p AIC (996) AIC AIC = + + p + (.0) ln πσ ( ) AIC = + p + (.) ln σ ( ) AIC AIC AR ) AR

8 -8- ) AR AIC 3) AIC AR φ( p) (Burg) Matlab pburg p p (.6)..5. (MA) q (moving-average process, MA process) yt ( ) + ε( t) + θ() ε( t ) + θ() ε( t ) θ( q) ε( t q), t=,..., n y y t MA(q) MA AR() MA..6. (ARMA) p,q (autoregressive-moving average process, ARMA process) y t ARMA(p,q) (,985, (.5)) yt ( ) + φ() yt ( ) φ( pyt ) ( p) + ε( t) + θ() ε( t ) θ( q) ε( t q) = 0, t =,..., T p,q ARMA AR ARMA..7. (ARIMA) (autoregressive-integrated-moving moving average) ARIMA ARIMA y(t)-y(t-)arma ARIMA..8. (correlogram).3.

9 -9- (time between effectively independent samples, Trenberth (984) Metz (99) ) (effective decorrelation time) T e (effective number of degrees of freedom) τ τ Te = rxx( τ) = + rxx( τ) τ= τ= (.) τ τ Te = rxx ( τ) = + rxx ( τ) τ= τ= (.3) τ Te = rxx( ) ryy( ) rxy( ) ryx( ) τ τ + τ τ τ = τ = + rxy (0) ryx(0) + rxx ( τ) ryy ( τ) + rxy ( τ) ryx ( τ) τ = (.4) r τ τ xtxt ( ) ( + τ) yt ( ) yt ( + τ) τ t= τ t= rx ( τ), ryy( τ), x xt () yt () t= t= τ xt () yt ( + τ ) τ t= rxy ( τ ) xt () yt () t= t= Lieth (98) Bayley and Hammersley (946) Lieth (98)Trenberth (984) Bartlett 930 Bartlett(955) Davis (976) Lieth 98 (Trenberth 984 reference ) Katz (98)Trenberth (984) AR AR

10 -0- AR Trenberth(984) (/ ) x( t) x( t+ τ ) AR AR AIC τ t=.3.. {} x x ({} ) {} {} {} v x x = x x x + x = x x (.5) () (.6) t = v= x t x x x= x ' + µ, µ= x v= x'( t) + µ x t= = = ( x'( t) + µ )( x'( s) + µ ) µ s= t= ( x'( t) x'( s) + ( x'( s) + x'( t) ) µ + µ ) µ s= t= = x'( t) x'( s) + x'( s) + x'( t) + µ s= t= µ x'( t) x'( s) = s = t = { } τ= j i σ τ v= = r τ= τ= (.7) ( τ ) ρxx ( τ) xx ( τ) (.8)

11 -- σ e / = σ T / (.9) e e Te Te = / e (.8)(.9) T e τ = rxx( τ ) τ = (.0) (.) (.7) v= x'( t) + x x t= s= t= s= t= s= t= = ( x'( t) + x)( x'( s) + x) x = ( x'( t) x'( s) + ( x'( s) + x'( t) ) x + x ) x { '( ) '( ) '( ) '( ) } = x t x s x s x t x x x (.).3.. (.4) <> {} (sample mean) q(i), i=,, {} q = (/ ) q () i x, y < xy >= V sample variance { xy} = V + v (sample variance) v= { xy} < xy > v = { xy} { xy} < xy >+< xy> v n= v = { xy} { xy} xy + xy = { xy} xy {} q = q

12 -- = x y x y xy v () t () t () s () s t= s= = xt () ytxs () () ys ( ) t= s= = xt () yt () xs ( ) ys () t= s= xy xy <> ( p.33) x, x, x, x m n p q xmxnxpxq xmxn xpxq + xmxp xnxq + xmxq xnxp v = () ( ) () () () () () ( ) () () ( ) ( ) x t x s y t y s x t y s y t x s x t x t y s y s xy + + t= s= = xt () xs ( ) yt () ys () xt () ys () yt () xs ( ) + t= s= τ= j i v τ = ρxx ( τ) ρyy ( τ) + ρxy ( τ) ρyx ( τ) τ = (.) ρxx( τ) = xtxt ( ) ( + τ), ρyy ( τ) = yt ( ) yt ( + τ), ρ ( τ) = xt ( ) yt ( + τ), ρ ( τ) = ytxt ( ) ( + τ) xy yx x, y Q = x, Q = y r ( τ) = ρ ( τ)/ Q, r ( τ) = ρ ( τ)/ Q, r ( τ) = ρ ( τ)/ Q Q xx xx x yy yy y xy xy x y (.) QQ τ ( τ) ( τ) ( τ) ( τ) (.3) x y v = τ = rxx ryy + rxy ryx x y

13 -3- xt ()', yt ()', t=,..., t= xt () yt () = QQ x y v ( the effective number of degrees of freedom (effective sample size), Metz (99)) QQ τ QQ QQ x y x y x y v = rxx ( ) ryy ( ) rxy ( ) ryx ( ) τ τ + τ τ = = τ = e t/ Te T e τ Te = t rxx( τ) ryy( τ) + rxy( τ) ryx( τ) τ = (.4) DOF = t / Te [] (.4) Te = t rxx( τ) ryy( τ) + rxy( τ) ryx( τ) τ = (, ) e.4. Finite Impulse Reponse (FIR) Infinite Impulse Response (IIR) FIRIIR Press (993) FIR IIR IIR

14 -4- Matlab fft ifft filter filtfilt butter Allen, Myles R., and Leonard A. Smith, 996: Monte Carlo SSA: Detecting irregular oscillations in the Presence of Colored oise. J. Climate, 9 (), Alexander, M. A., C. Deser, and M. S. Timlin, 999: The Reemergence of SST anomalies in the orth Pacific Ocean. J. Climate, (8), Bartlett, M. S., 955: An introduction to stochastic processes with special reference to methods and applications. Cambridge university press, pp (third edition 978) Bayley G. V. and J. M. Hammersley, 946: The 'effective' number of independent observations in autocorrelated time series. J. Roy. Statist. Soc. Suppl., 8(), Davis, R. E., 976: Predictability of sea surface temperature and sea level pressure anomalies over the orth Pacific Ocean. J. Phys. Oceanogr. 6 (3), Hanan, E. J. 970: Multiple Time Seies. iley. Katz, R.., 98: Statistical evaluation of climate experiments with genal circulation models: A parametric time series modeling approach. J. Atmos. Sci., 39, pp. 37, 989. Lieth, C. E.,98: Statistical methods for the verification of long and short range forecasts. ECMF seminar on Problems and prospects in long and medium range weather forecasting [available from ECMF] Metz,., 99 : Optimal relationship of large-scale flow patterns and the barotropic feedback due to high-frequency eddies, J. Atmos. Sci., 48, amias, J., X.,Yuan, and D. R. Cayan, 988: Persistence of orth Pacific Sea Surface Temperature and Atmospheric Flow Patterns. J. Climate,, Press,. H., B. P. Flannery, S. A. Teukolsky,. T. Vetterling, 993: umerical Recipes in C [ ],, pp Trenberth K. E., 984: Some effects of finite sample size and persistence on meteorological statistics. Part I: autocorrelations. Mon. ea. Rev.,,

-- Blackman-Tukey FFT MEM Blackman-Tukey MEM MEM MEM MEM Singular Spectrum Analysis Multi-Taper Method (Matlab pmtm) 3... y(t) (Fourier transform) t=

-- Blackman-Tukey FFT MEM Blackman-Tukey MEM MEM MEM MEM Singular Spectrum Analysis Multi-Taper Method (Matlab pmtm) 3... y(t) (Fourier transform) t= --... 3..... 3...... 3...... 3..3....3 3..4....4 3..5....5 3.....6 3......6 3......7 3..3....0 3..4. Matlab... 3.3....3 3.3.....3 3.3.....4 3.3.3....4 3.3.4....5 3.3.5....5 3.4. MEM...8 3.4.. MEM...8 3.4..

More information

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: [email protected] 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

II III II 1 III ( ) [2] [3] [1] 1 1:

II III II 1 III ( ) [2] [3] [1] 1 1: 2015 4 16 1. II III II 1 III () [2] [3] 2013 11 18 [1] 1 1: [5] [6] () [7] [1] [1] 1998 4 2008 8 2014 8 6 [1] [1] 2 3 4 5 2. 2.1. t Dt L DF t A t (2.1) A t = Dt L + Dt F (2.1) 3 2 1 2008 9 2008 8 2008

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: [email protected]., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

arma dvi

arma dvi ARMA 007/05/0 Rev.0 007/05/ Rev.0 007/07/7 3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3.3 : : : :

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

McCain & McCleary (1979) The Statistical Analysis of the Simple Interrupted Time-Series Quasi-Experiment

McCain & McCleary (1979) The Statistical Analysis of the Simple Interrupted Time-Series Quasi-Experiment Quasi-Experimenaion Ch.6 005/8/7 ypo rep: The Saisical Analysis of he Simple Inerruped Time-Series Quasi-Experimen INTRODUCTION () THE PROBLEM WITH ORDINAR LEAST SQUARE REGRESSION OLS (Ordinary Leas Square)

More information

²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾

²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾ Kano Lab. Yuchi MATSUOKA December 22, 2016 1 / 32 1 1.1 1.2 1.3 1.4 2 ARMA 2.1 ARMA 2 / 32 1 1.1 1.2 1.3 1.4 2 ARMA 2.1 ARMA 3 / 32 1.1.1 - - - 4 / 32 1.1.2 - - - - - 5 / 32 1.1.3 y t µ t = E(y t ), V

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L 1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives

More information

自由集会時系列part2web.key

自由集会時系列part2web.key spurious correlation spurious regression xt=xt-1+n(0,σ^2) yt=yt-1+n(0,σ^2) n=20 type1error(5%)=0.4703 no trend 0 1000 2000 3000 4000 p for r xt=xt-1+n(0,σ^2) random walk random walk variable -5 0 5 variable

More information

数値計算:常微分方程式

数値計算:常微分方程式 ( ) 1 / 82 1 2 3 4 5 6 ( ) 2 / 82 ( ) 3 / 82 C θ l y m O x mg λ ( ) 4 / 82 θ t C J = ml 2 C mgl sin θ θ C J θ = mgl sin θ = θ ( ) 5 / 82 ω = θ J ω = mgl sin θ ω J = ml 2 θ = ω, ω = g l sin θ = θ ω ( )

More information

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable), .... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov

More information

時系列解析と自己回帰モデル

時系列解析と自己回帰モデル B L11(2017-07-03 Mon) : Time-stamp: 2017-07-03 Mon 11:04 JST hig,,,.,. http://hig3.net ( ) L11 B(2017) 1 / 28 L10-Q1 Quiz : 1 6 6., x[]={1,1,3,3,3,8}; (. ) 2 x = 0, 1, 2,..., 9 10, 10. u[]={0,2,0,3,0,0,0,0,1,0};

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1 Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) µ = lim xk( k = autocorrelation function R( t, t + τ) = lim ( ) ( + τ) xk t xk t k = V p o o R p o, o V S M R realization

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

オーストラリア研究紀要 36号(P)☆/3.橋本

オーストラリア研究紀要 36号(P)☆/3.橋本 36 p.9 202010 Tourism Demand and the per capita GDP : Evidence from Australia Keiji Hashimoto Otemon Gakuin University Abstract Using Australian quarterly data1981: 2 2009: 4some time-series econometrics

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 2 3 2 Conservative Depress. 3.1 2. SEM. 1. x SEM. Depress.

More information

GNSS satellite or Quasar 10m [5] (n 1) 10 6 = K 1 ( P d T ) + K 2( P v T ) + K 3( P v T 2 ) (2) O 1 S G Earth Atmosphere [4] (ray bending) 1 S

GNSS satellite or Quasar 10m [5] (n 1) 10 6 = K 1 ( P d T ) + K 2( P v T ) + K 3( P v T 2 ) (2) O 1 S G Earth Atmosphere [4] (ray bending) 1 S - - ( ) A Software Package Development for Estimating Atmospheric Path Delay based on JMA Numerical Weather Prediction Model Ryuichi ICHIKAWA (KASHIMA SPACE RESEARCH CENTER, NICT) Key words: GNSS, VLBI,

More information

Go a σ(a). σ(a) = 2a, 6,28,496, = 2 (2 2 1), 28 = 2 2 (2 3 1), 496 = 2 4 (2 5 1), 8128 = 2 6 (2 7 1). 2 1 Q = 2 e+1 1 a = 2

Go a σ(a). σ(a) = 2a, 6,28,496, = 2 (2 2 1), 28 = 2 2 (2 3 1), 496 = 2 4 (2 5 1), 8128 = 2 6 (2 7 1). 2 1 Q = 2 e+1 1 a = 2 Go 2016 8 26 28 8 29 1 a σ(a) σ(a) = 2a, 6,28,496,8128 6 = 2 (2 2 1), 28 = 2 2 (2 3 1), 496 = 2 4 (2 5 1), 8128 = 2 6 (2 7 1) 2 1 Q = 2 e+1 1 a = 2 e Q (perfect numbers ) Q = 2 e+1 1 Q 2 e+1 1 e + 1 Q

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

news

news ETL NEWS 1999.9 ETL NEWS 1999.11 Establishment of an Evaluation Technique for Laser Pulse Timing Fluctuations Optoelectronics Division Hidemi Tsuchida e-mail:[email protected] A new technique has been

More information

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2)

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) LA-VAR 1 1 1973 4 2000 4 Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) E-mail [email protected] 2 Toda, Hiro Y. and Yamamoto,T.(1995) 3

More information

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology, 65 6 6.1 No.4 1982 1 1981 J. C. Kaimal 1993 1994 Turbulence and Diffusion in the Atmosphere : Lectures in Environmental Sciences, by A. K. Blackadar, Springer, 1998 An Introduction to Boundary Layer Meteorology,

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

重力方向に基づくコントローラの向き決定方法

重力方向に基づくコントローラの向き決定方法 ( ) 2/Sep 09 1 ( ) ( ) 3 2 X w, Y w, Z w +X w = +Y w = +Z w = 1 X c, Y c, Z c X c, Y c, Z c X w, Y w, Z w Y c Z c X c 1: X c, Y c, Z c Kentaro [email protected] 1 M M v 0, v 1, v 2 v 0 v

More information

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k 2012 11 01 k3 (2012-10-24 14:07 ) 1 6 3 (2012 11 01 k3) [email protected] web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 3 2 : 4 3 AIC 6 4 7 5 8 6 : 9 7 11 8 12 8.1 (1)........ 13 8.2 (2) χ 2....................

More information

untitled

untitled * 10 100 1 ( ) ( ) 20 2 X f( ) (pdf: probability density function) F( ) X (cdf: cumulative distribution function) (2.1) X ( ) p ( ) W( ) 1 F( ) p p 1(p) W( p) ( p) X 1/T T ( ) T p T T T p 1 1/T p F( )

More information

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 2 4, 2. 1 2 2 Depress Conservative. 3., 3,. SES66 Alien67 Alien71,

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

ARspec_decomp.dvi

ARspec_decomp.dvi February 8, 0 auto-regresive mode AR ) AR.. t N fx t);x t);x3 t); ;xn t)g Burg AR xt) a m xt m t)+fft) AR M Fina Prediction Error,FPE) FPEM) ^ff M +MN MN ^ff M P f) P f) ff t M a m e ißfm t AR [,,3]. AR

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

山形大学紀要

山形大学紀要 x t IID t = b b x t t x t t = b t- AR ARMA IID AR ARMAMA TAR ARCHGARCH TARThreshold Auto Regressive Model TARTongTongLim y y X t y Self Exciting Threshold Auto Regressive, SETAR SETARTAR TsayGewekeTerui

More information

082_rev2_utf8.pdf

082_rev2_utf8.pdf 3 1. 2. 3. 4. 5. 1 3 3 3 2008 3 2008 2008 3 2008 2008, 1 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997)

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: [email protected] May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1 1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp.218 223 ) 1 2 ) (i) (ii) / (iii) ( ) (i ii) 1 2 1 ( ) 3 ( ) 2, 3 Dunning(1979) ( ) 1 2 ( ) ( ) ( ) (,p.218) (

More information

Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

Rによる計量分析:データ解析と可視化 - 第3回  Rの基礎とデータ操作・管理 R 3 R 2017 Email: [email protected] October 23, 2017 (Toyama/NIHU) R ( 3 ) October 23, 2017 1 / 34 Agenda 1 2 3 4 R 5 RStudio (Toyama/NIHU) R ( 3 ) October 23, 2017 2 / 34 10/30 (Mon.) 12/11 (Mon.)

More information

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I (missing data analysis) - - 1/16/2011 (missing data, missing value) (list-wise deletion) (pair-wise deletion) (full information maximum likelihood method, FIML) (multiple imputation method) 1 missing completely

More information

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63>

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63> Gretl OLS omitted variable omitted variable AIC,BIC a) gretl gretl sample file Greene greene8_3 Add Define new variable l_g_percapita=log(g/pop) Pg,Y,Pnc,Puc,Ppt,Pd,Pn,Ps Add logs of selected variables

More information

sp2.dvi

sp2.dvi 2 4 27 2 2 2 2 5 3 8 4 9 2 2 2 2 22 9 23 2 24 EM 23 3 28 3 28 32 29 33 3 4 33 4 33 42 33 43 35 44 37 5 43 5 43 52 46 53 AR 49 54 52 55 55 6 AR 58 6 Levinson Durbin 58 62 AR 6 63 Burg 62 z x x (sample)

More information