untitled
|
|
|
- さなえ ごみぶち
- 9 years ago
- Views:
Transcription
1 I l + I [Ti(OH ) 6 ] + d Lambert-Beer I=I I=I exp(-cl - 4-8nm 4-49 nm nm nm nm 58-7 nm nm Ti (ground state) (exited state) e g h Ti + Ti 4+ + e- -CT) max = 5 nm / nm t g d-d
2 (R) (Y) (G) (B) (P) (YR) (GY) (BG) (PB) (RP) 55 5YBG 469
3 (Electron Configuration) F -s s p 5 Mn + - t g e g (Electronic State) (Mulliken ab AB e E t T
4 S+ SS=m si S+ X Y X=A,B,E,TY=g,g,g S + +/ S( S +) d e g e g t g t g T g E g -/ S=/ S+= S= S+= -S+S S+ - S+ A,B=, E=,T= E g x=4 T g x=6 T g x=9
5 A g T g E g A g
6 d () t g, t g e g, e g e g e g 4 e g g 4 C = 6 4 A g g E g A g g A g E g t g e g A g e g (4t g 64x6=4 =(x)+(x)+(x)=6 tt g g e g g T g g T g g T g g T g g t g 6 C = tt g g 5 6 T g g T g g E g A g g
7 d A g E g e g A g T g T g T g T g t g eg A g E g T g t g T g
8 d (Russell-Saunders) d n (L(S) S+ L J (L=l i L+ S+ J : J=L+S, L+S-, L-S J d L=l i =(i=) l i - - L= S P D F G H I L=S+= D
9 d () d () C 45 = PauliFund LL=l +l, l +l -,, l -l d L=4,,,, SS=s +s, s +s -,, s -s d S=, L=4(l =l =)S= l i G =9x=9 L=(l =l =)S= F =7x= L=(l =l =)S= D =5x=5 L=(l =l =)S= P =x=9 L=(l =l =)S= S =x= - - l i - - l i - - l i - - l i - -
10 d C = LL=5,4,,, SS=/,/ L=5(l =l =l =)S=/ H L=4(l =l =l =)S=/ G L=(l =l =l =)S=/ 4 F L=(l =l =l =)S=/ F L=(l =l =l =)S=/ D L=(l =l =l =)S=/ D L=(l =l =l =)S=/ P L=(l =l =l =-)S=/ 4 P
11 .. S.. L.. J L --S L + S d n d,d 9 d,d 8 d,d 7 d 4,d 6 d 5 D F, P, G, D, S 4 F, 4 P, H, G, F, Dx, P 5 D, H, G, Fx, D, Px, I, Gx, F, Dx, Sx 6 S, 4 G, 4 F, 4 D, 4 P, I, H, Gx, Fx, Dx, P, S
12 () () Si () Mn + () Rb (4) Co + S
13 S A g S O h A g G g T g P T u T g D F E g +T g A u +T u +T u 5(+) 7(++) P A g T u G H A g +E g +T g +T g E u +T u +T u 9(+++) (+x+) D E g T g I A g +A g +E g +T g +T g (++++x) d F, P, G, D, S F A u T u T u
14 d S G A E T A E A e (non-crossing rule) P D T A T E T T T T t e T F A T T A E T t T p. Free ion Weak filed Strong field Limited d g
15 La Porte s Rulel= O h )( u g; g u) d p; sp dd; sd S= T g A g Paporte T g T g [Ti(OH [Ti(OH ) ) 6 ] + 6 ] + d d-dlaporte ) d-dlaporte Laporte
16 - 4 6 d 5 [Mn(OH ) 6 ] + d 8 [Ni(OH ) 6 ] + [PdCl 4 ] - -CT acacp CT
17 Racah ABC () d E( S)= A + 4B + 7C E( G)= A + 4B + C E( D)= A -B + C E( P)= A + 7B E( F)= A -8B A C >5B F < P < D < G < S dc 4B B B [Co + ]: B = 97 cm - [Co(H O) 6 ] + d 7 B= 9 cm - [CoCl 4 ] - d 7 B= 77 cm - =.95 =.75, =B/B d
18 8 [V(H O) 6 ] + d B=86 cm - (V + ) A g E g 5 CT 57cm - T g T g 78cm - T g T g A g (e g ) S E / B G P D F T g T g T g T g (t g e g ) A g E g T g T g (t g ) 4 5 / Β / cm -. [V(H O) 6 ] + V + d. d-d. d T g 4. T g, T g, A g 5. =57/78= /B/B=9. 8. T g T g, T g T g B 4.5B. B6cm -. B(86cm - )7. CT
19 S E / B G P D F Ni + A g d 8 B=8 cm - (Ni + ) T g E g T g (t g 4 e g 4 ) T g T g T g T g (t g 5 e g ) A g E g A g (t 6 g ) 4 5 / Β.7. / nm [Ni(en) ] + [Ni(H O) 6 ] / cm - [Ni(H O) 6 ] +. 4/88=.7 o /B=. A g T g (E/B ), A g T g (E/B 8) E (88+857)=868. B/B =8% (B=868cm - ) 4. A g T g 5. A g E g ( T g E g A g E g [Ni(en) ] +. 5/=.8 o /B=.. 4. d-d
20 Charge transfer, CT :d-d CT LMCTligand-metal charge transfer MLCTmeta-ligand charge transfer LMCT CT d-d log(e/l mol - cm - ) 4 (5 cm - ) [CrCl(NH ) 5 ] +, Cr(III), d d-d 4 (5 cm - ) d-d 6 l/ nm (7 cm - )
21 No d B=766 cm - (V + ), cm - (Cr + ) A g 4 T g (t g e g ) 794cm cm - 74cm - 574cm - 74/794= A g 4 T g B=(74/4+794 /)/ =(5+55)=54 =B/B =54/=.5 E/B=4 E / B F 4 4 T g (t g e g ).7 E/B= T g. P H G 4 P T g E g : 4 A g 4 T g : 4 A g 4 T g : 4 A g T g ( 4 T g T g ) 4 F 4 A g (t g ) 4 5 / Β /B=
untitled
NPO 2006( ) 11 14 ( ) (2006/12/3) 1 50% % - - (CO+H2) ( ) 6 44 1) --- 2) ( CO H2 ) 2 3 3 90 3 3 2 3 2004 ( ) 1 1 4 1 20% 5 ( ) ( ) 2 6 MAWERA ) MAWERA ( ) ( ) 7 6MW -- 175kW 8 ( ) 900 10 2 2 2 9 -- - 10
A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6
1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67
17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,
17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ
untitled
5 10% 1 13 15cm 3 4cm 2 RS P Rb Ra S RS Ra Rb P 4 S RS CT MRI Stage 0 Stage I Stage I Stage II Ra Rb P TEM TEM ISR TEM Transanal endoscopic microsurgery 5cm 4cm 5cm TEM 1 2 3 10cm RS 6cm Ra 4cm Rb 2cm
熊本県数学問題正解
00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (
kcal/mol 83kcal/mol 2 63 kcal/mol 83 kcal/mol kcal/mol nm kcal/mol nm
4. 2 3 2 E n 7 2 2 2 1 2 2 3 3 3 4 1(A) 2 2 2 4 1(B) 3 6 2 4 2 4 1 2 4 2 40 2 2 2 146 kcal/mol 83kcal/mol 2 63 kcal/mol 83 kcal/mol kcal/mol nm kcal/mol nm - 3 104 138-3 91 157-2 5 98 146-6 5 112 128-6
2017 NEW MODEL NISSIN V3 NISSIN ZEROSUM X NEW MODEL NEW MODEL NEW MODEL 2017 NEW MODEL NISSIN NISSIN V3 BG M
V ZEROSUM X4 20 7 20 7 V BG M 68 7894 6. 827 000749 BG L 67 8298 7. 828 00076 BG LL 7080 862 9. 829 00076 BG L 78 906 6. 80 000770 BR M 68 7894 6. 8 000787 BR L 67 8298 7. 82 000794 BR LL 7080 862 9. 8
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin
25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3
1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C
0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,
9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x
2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin
untitled
[email protected] http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/
NewBead_no63_fix.indd
2018 July No.63 C O N T E N T S 7 11 1 5 1 The Interview 2 3 4 2 AW YM-26 YM-55C YM-55CR SM-1FT 1952 27 2007 19 1 7,820 243 004-0879 9 1-1-6 011-883-8400 061-1112 542 011-372-2211 061-3244 1-28-14 0133-64-2227
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
行列代数2010A
a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a
......1201-P1.`5
2009. No356 2/ 5 6 a b b 7 d d 6 ca b dd a c b b d d c c a c b - a b G A bb - c a - d b c b c c d b F F G & 7 B C C E D B C F C B E B a ca b b c c d d c c d b c c d b c c d b d d d d - d d d b b c c b
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy
A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %
A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: [email protected], http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office
2.
2. 10 2. 2. 1995/12006/111995/42006/12 2. 10 1995120061119954200612 02505 025 05 025 02505 0303 02505 250100 250 200 100200 5010050 100200 100 100 50100 100200 50100 10 75100100 0250512 02505 1 025051205
NewBead_no53_fix1218.indd
11 5 1 No.53 2016 January C O N T E N T S 1 2 3 1,200 3 4 NSSW SX-26NSSW YM-26 197247 1,300 21 496-0034 2-18-2 0567-28-7751 5 NSSW H-600 NSSW YM-26 NSSW YM-60C NSSW SF-1 1972 47 1,000 60 767-0033 2039-1
B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:
B. 41 II: ;; 4 B [] S 1 S S 1 S.1 O S 1 S 1.13 P 3 P 5 7 P.1:.13: 4 4.14 C d A B x l l d C B 1 l.14: AB A 1 B 0 AB 0 O OP = x P l AP BP AB AP BP 1 (.4)(.5) x l x sin = p l + x x l (.4)(.5) m d A x P O
( )
18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................
衛生関連総合カタログ
INDEX WHITE MAX TP-14 TP-15 TP-15 1 c /s TP-14 28 300 24 XSSM TP-15 30 100 60 TP-16 28 300 24 XSSM HACCP 100.000 1ft 3 0.5100.000 1ft 3 2.5 TP-1 TP-6 200 100 1 c /s 40 100 SML 1 c /s TP-2 200 40 TP-7 100
FX ) 2
(FX) 1 1 2009 12 12 13 2009 1 FX ) 2 1 (FX) 2 1 2 1 2 3 2010 8 FX 1998 1 FX FX 4 1 1 (FX) () () 1998 4 1 100 120 1 100 120 120 100 20 FX 100 100 100 1 100 100 100 1 100 1 100 100 1 100 101 101 100 100
1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2
θ i ) AB θ ) A = B = sin θ = sin θ A B sin θ) ) < = θ < = Ax Bx = θ = sin θ ) abc θ sin 5θ = sin θ fsin θ) fx) = ax bx c ) cos 5 i sin 5 ) 5 ) αβ α iβ) 5 α 4 β α β β 5 ) a = b = c = ) fx) = 0 x x = x =
13,825,228 3,707,995 26.8 4.9 25 3 8 9 1 50,000 0.29 1.59 70,000 0.29 1.74 12,500 0.39 1.69 12,500 0.55 10,000 20,000 0.13 1.58 30,000 0.00 1.26 5,000 0.13 1.58 25,000 40,000 0.13 1.58 50,000 0.00 1.26
Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F
Quiz 1 Due at 10:00 a.m. on April 20, 2007 Division: ID#: Name: 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T F T T F T T T F F T F T T T F T F T F F T T F F F T 2. 1.1 (1) (7) p.44 (1)-(4)
1,000 700-1 -
23 9 () - 0 - 1,000 700-1 - 2 3 ( 16:0017:00 ( 8:15 8:30 10:3010:50 8:00 8:10 8:10 9:30 11:0011:20 11:3015:30 16:0016:40 16:0016:10 16:50 21:00 4:00 4:006:00 6:00 6:1511:00 11:3012:00 12:3014:30 (1) ()
2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a
( ) ( ) 1729 (, 2016:17) = = (1) 1 1
1729 1 2016 10 28 1 1729 1111 1111 1729 (1887 1920) (1877 1947) 1729 (, 2016:17) 12 3 1728 9 3 729 1729 = 12 3 + 1 3 = 10 3 + 9 3 (1) 1 1 2 1729 1729 19 13 7 = 1729 = 12 3 + 1 3 = 10 3 + 9 3 13 7 = 91
Taro13-第6章(まとめ).PDF
% % % % % % % % 31 NO 1 52,422 10,431 19.9 10,431 19.9 1,380 2.6 1,039 2.0 33,859 64.6 5,713 10.9 2 8,292 1,591 19.2 1,591 19.2 1,827 22.0 1,782 21.5 1,431 17.3 1,661 20.0 3 1,948 1,541 79.1 1,541 79.1
1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =
2004 / D : 0,.,., :,.,.,,.,,,.,.,,.. :,,,,,,,., web page.,,. C-613 e-mail tamaru math.sci.hiroshima-u.ac.jp url http://www.math.sci.hiroshima-u.ac.jp/ tamaru/index-j.html 2004 D - 1 - 1 1.1 [ ].,. 1.1.1
A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B
9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A
1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ
1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c
A B A E
10533-68-3955 10533-68-3955 10533-68-3804 RP A-6 10533-68-3804 10533-69-9615 10533-57-2161 B-2 10533-68-2274 10533-68-2221 10533-67-6282 A-6 10533-57-2161 E-3 10533-68-5161 10533-68-3553 D-2 D-2 10533-69-5258
128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds
127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds
P13_一般構造用鋼管
http://www.nssmc.com/ 100-8071 61 Tel: 03-6867-4111 P013_05_201705f 2012, 2017 NIPPON STEEL & SUMITOMO METL CORPORTION UOE SP JIS G 3106WEL-TEN S-TEN JIS G 3444 STK STK 290 STK 400 STK 490 STK 500 STK
) 9 81
4 4.0 2000 ) 9 81 10 4.1 natural numbers 1, 2, 3, 4, 4.2, 3, 2, 1, 0, 1, 2, 3, integral numbers integers 1, 2, 3,, 3, 2, 1 1 4.3 4.3.1 ( ) m, n m 0 n m 82 rational numbers m 1 ( ) 3 = 3 1 4.3.2 3 5 = 2
1
1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................
4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx
4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan
..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A
.. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.
36 th IChO : - 3 ( ) , G O O D L U C K final 1
36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic
IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a
1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =
NISHIMOTO CASTLE NISHIMOTO CASTLE S=13000 24 S1300 19993 9 9101510331930 4,500 5 SBSKSA 10 9717ON 11 Fig.39201 80%1123 1 3 4 7 13 15 17 19 20 29 43 55 60 64 66 i Fig. Fig. Fig. Fig. Fig. Fig.
EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編
K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D
ありがとうございました
- 1 - - 2 - - 3 - - 4 - - 5 - 1 2 AB C A B C - 6 - - 7 - - 8 - 10 1 3 1 10 400 8 9-9 - 2600 1 119 26.44 63 50 15 325.37 131.99 457.36-10 - 5 977 1688 1805 200 7 80-11 - - 12 - - 13 - - 14 - 2-1 - 15 -
EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編
K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D
公務員人件費のシミュレーション分析
47 50 (a) (b) (c) (7) 11 10 2018 20 2028 16 17 18 19 20 21 22 20 90.1 9.9 20 87.2 12.8 2018 10 17 6.916.0 7.87.4 40.511.6 23 0.0% 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2.0% 4.0% 6.0% 8.0%
198
197 198 199 200 201 202 A B C D E F G H I J K L 203 204 205 A B 206 A B C D E F 207 208 209 210 211 212 213 214 215 A B 216 217 218 219 220 221 222 223 224 225 226 227 228 229 A B C D 230 231 232 233 A
ネットショップ・オーナー2 ユーザーマニュアル
1 1-1 1-2 1-3 1-4 1 1-5 2 2-1 A C 2-2 A 2 C D E F G H I 2-3 2-4 2 C D E E A 3 3-1 A 3 A A 3 3 3 3-2 3-3 3-4 3 C 4 4-1 A A 4 B B C D C D E F G 4 H I J K L 4-2 4 C D E B D C A C B D 4 E F B E C 4-3 4
