Microsoft PowerPoint - MATLABの使い方.ppt
|
|
|
- ゆき みやのじょう
- 9 years ago
- Views:
Transcription
1 MATLAB の使い方 東京大学橋梁研究室
2 MATLAB とは 技術計算のための高性能言語 特徴配列が基本的データ要素変数宣言不要. 対話的システム. 豊富な関数ライブラリ, グラフィックスツール. 使用される分野 数値計算, アルゴリズムの開発, モデル化, シミュレーション, データ解析,GUI アプリケーションの開発, グラフィックス, etc.
3 MATLAB の動かし方 1 コマンドウィンドウにプログラムを打ち込み, リターン Ex. c1=2 c2=3 割り当て c3=c1+c2 演算, 割り当て or M-fileにプログラムを記述して保存, 実行 (C や Fortran と同様. コンパイル, リンクなど必要ない ) ファイル 新規作成 M-file, プログラムを記述, 例えば test.m と保存, コマンドウィンドウで test, リターン
4 MATLAB の動かし方 2 カレントディレクトリの変更, パスの設定. カレントディレクトリの変更 カレントディレクトリブラウザ 保存した M-file の存在するディレクトリを指定 サーチパスの追加 パスの設定 dialog box. 保存したM-fileの存在するディレクトリを指定
5 MATLAB の動かし方 3 M-file にコマンドを記述 カレントディレクトリ, パスの設定 コマンドウィンドウでファイル名を打ち込み, リターン (.m は必要ない )
6 (1) コメント Basic Rule 1 記述 % コメントを表す. 論理上の, 行の終わり. % 以降の記述は無視される. (2) 結果の非表示 行の最後に ; をつける 結果を非表示 Ex. c1=2;c2=3; (3) 大文字と小文字 MATLAB では, 大文字と小文字の区別する. ただし, 記述するときにはどちらかに統一した方がよい.
7 Basic Rules 2 行列とベクトルの表現 数学上の表現 l q {} a = MATLAB 上の表現 a=[1 2 3]; {} b = [ ] A = L N M R S T U V W O Q P 列の区切り :space 行の区切り :semi-colon b=[1;2;3]; A=[1 2;3 4]; or A=[1 2; 3 4];
8 Basic Rules 3 四則演算 [ ] A = L N M O Q P [ ] B = L N M O Q P A=[1 2; 3 4]; B=[5 6; 7 8]; [ C] = [ A] + [ B] [ C] = [ A] [ B] C = A B etc C=A+B; C=A*B; [ C] = [ A] T C=A C = A B C=A.*B;
9 Basic Rules 4 行列の要素 a=[1 2 3; 4 5 6]; b=[ ]; 行列 aのm 行 n 列成分 :a(m,n) 行列 aのm 行 :a(m,:) 行列 aのn 列 :a(:,n) ベクトルbの第 m 成分 :b(m) Ex. c=a(2,3) c=6 Ex. c=a(2,:) c=[4 5 6] Ex. c=a(:,3) c=[3 6] Ex. c=b(3)
10 Q1: 行列の掛け算 (1) (2) [ A ] = L NM O QP [ ] B = L N M のとき,[A] [B] を計算せよ. l q {} b = O Q P のとき, 内積 {}{} b b T を計算せよ. (3) [ D ] = L NM O QP の第 2 行目ならびに第 3 列目を抜き出して表示せよ.
11 組み込み関数 1 よく利用する関数のリスト 初等関数 :sin, cos, tan, log, log1, log2, exp, a^b 行列演算 :inv, size, length, ones, zeros, eye 2 次元グラフィックス :plot, semilogx, semilogy, loglog, fill 3 次元グラフィックス :fill3, surf, mesh グラフィックスオプション :xlabel, ylabel, title, subplot, figure, axis ファイル入出力 :fopen, fscanf, fprintf, fclose, save, load その他 :fft, eig, sort, sum, fix, round, floor 定数 : pi, i, j 詳細はヘルプ Command window で または MATLAB ヘルプ help コマンド名 Ex. help inv
12 組み込み関数 2 初等関数 a=1 b=[1;2] c=[1 2; 3 4]; プログラム 意味 結果 d=sin(a) d=sin(1).8415 d=sin(b) d=[sin(1);sin(2)] c=sin(c) d=[sin(1);sin(2); sin(3);sin(4)];
13 組み込み関数 3 行列演算 a=1 b=[1;2;3] c=[1 2; 3 4]; d=length(b): ベクトル b の長さを計算 d=3 d=inv(c): 行列 c の逆行列を計算 d=[ d=ones(m,n):m 行 n 列で要素が全部 1 の行列 d=zeros(m,n):m 行 n 列で要素が全部 の行列 d=eye(m,n):m 行 n 列で対角要素が 1, その他が の行列
14 組み込み関数 4 2 次元グラフィックス t=t:dt:t1; t~t1 まで dt 刻みのベクトル. Ex. t=:1:1 t=[ ] x=sin(t) plot(t,x) x=sin(t) plot(t,x) xlabel( time );ylabel( displ ) title( plot example ) grid displ plot expample time
15 組み込み関数 5 固有値問題 [V,D]=eig(A): 正方マトリクスAの固有値と固有ベクトルを求める. V: 各列がAの固有ベクトル行列の大きさはAに等しい. D: 対角成分が A の固有値, その他の成分は 行列の大きさは A に等しい. [ A]{ v} = d{ v} [ A] [ V] = [ V] [ D]
16 組み込み関数 6 フーリエ変換 1 c=fft(x): X の離散フーリエ変換を出力する 周波数領域での解析に有効 Ex. dt=.1; t=:dt:1- dt; f1=.5; f2=2; y1=2*sin(2*pi*f1*t); y2=sin(2*pi*f2*t); y3=y1+y2; Y1=fft(y3)/n*2; component superposition result of fft() (s) (s) (Hz)
17 注意 1: 見かけ上の性質 組み込み関数 6 フーリエ変換 2 周期性に関する仮定有限データ長 2 dt=.1; t=:dt:9-dt; f1=.5; f2=2; 不十分なサンプリング周波数 f<1/2/dt 2 dt=.1; t=:dt:1- dt; f1=.5; f2=6; (s) 2 (Hz) (s) (Hz)
18 注意 2: 計算時間 組み込み関数 6 フーリエ変換 3 fft(x,n) は n 点離散フーリエ変換を計算する. n が 2 の累乗の場合 fft は高速フーリエ変換を行う. Ex. fft(1:16384) と fft(1:16382) の比較 16384= =2^14 長さ 2^m のデータを使うことが多い. k=length(x) n=2^nextpow2(k) X=1,2, 1 n=124
19 Q2:sort, sum (1) help を利用して sort の意味を理解し, a={ } のとき sort(a) を計算してベクトル a の要素が並び替えられていることを確認せよ. (2) help を利用して sum の意味を理解し, b={ } のとき sum(b) を計算し, 結果が要素の和 55 になっていることを確認せよ.
20 Q3: 逆行列 逆行列コマンド inv を用いて連立 1 次方程式を解け. x 2x + 3x = x 5x + 8x = x + 2x + 5x = 答え : { x, x, x } = {,, }
21 Q4: 固有値問題 以下の行列 A の固有値と固有ベクトルを求めよ. [ A ] = L NM O QP 固有値 :1, 6, -4 固有ベクトル : L NM O QP L NM O QP L NM O QP
22 Q5: フーリエ変換, plot 減衰振動を周波数領域で表示せよ. y1=real(exp((i*2*pi*f1-damp)*t)); Y1=fft(y1)/n*2; 時間領域 周波数領域 ( 振幅 ) 周波数領域 ( 位相 ) Apparent feature (s) (Hz) (Hz)
23 繰り返し計算 for, while for i1=nst:ned 文 end Ex. s=; for i1=1:1 s=s+i1; end i1 は nst から ned まで 1 ずつ増加し計 ned-nst+1 回 文 が繰り返される. 1 から 1 までの整数の和
24 条件文 if, else, else if if 条件 1 文 1 elseif 条件 2 文 2 else 文 3 end 条件 1 が満たされれば文 1 を実行. 条件 1 が満たされず条件 2 が満たされれば文 2 を実行. 条件 1 も 2 も満たされなければ文 3 を実行 比較演算子 <, >, <=, >=, ==, ~= 論理演算子 &,, ~
25 Q6 : 繰り返し計算, 条件文 次のステップ波を得よ. (i1 <= n1) (i1 > n1) is not true displacement time[sec] t1=1; t2=2; vel=1; dt=.1; n1=fix(t1/dt); fix(): ゼロ方向 n2=fix(t2/dt); への丸め nn=n1+n2; tt=:dt:(n1+n2-1)*dt; dd=zeros(1,nn); for i1=1:nn if i1 <= n1 dd(i1)=vel*(i1-1); else dd(i1)=dd(n1); end end plot(t,dd) xlabel( time[sec] ) ylabel( displacement ) grid
26 関数の定義, 追加 1 自作関数 : 入力値 in1, in2, を受け取りユーザが定義した何らかの演算を施し出力 out1, out2, を返す. 新規 M-file に次の形式で関数を定義する function [out1,out2, ]=func_name(in1,in2,.) ( ユーザー定義の演算 ) out1= out2= 関数名と同じ名前で保存 (func_name.m) カレントディレクトリかサーチパスの下に保存する
27 関数の定義, 追加 2 function out1=extract(inp1,n) ベクトルinp1を受け取り,n 個刻みのデータout1を出力する 呼び出し側 M-file extract(1:1,2) 関数 extract.m function out1=extract(inp1,n) temp1=1:n:length(inp1); out1=inp1(temp1); ans =
28 数値シミュレーション [y,x]=lsim(a,b,c,d,u,t) は線形システム {} x = [ A]{} x + [ B]{} u {} y = [ C]{} x + [ D]{} u {} u の応答を任意の入力に対してシミュレーションする. Ex. 運動方程式 [ M ]{} x + [ C]{} x + [ K]{} x = { u I [ ] { x} } {} x = [ ] [ ] {} x { u} {} [ C] [ M] x [ K] [] x [ M] [] + = x [] [ M] x 状態方程式 { } 1 {} u x [] I x x = [ M] [ K] [ M] [ C] x [ M ] 状態方程式 出力方程式 出力方程式
29 数値シミュレーション Ex. simulation m1 x1 c1+ c2 c2 x 1 k1+ k2 k2 x1 m + + = x c c x k k x {} c2 c1 m2 m1 k2 k1 dt=.1; m1=1;m2=2; c1=.1;c2=.1; k1=1;k2=15; x1 x (s) (s)
memo
数理情報工学演習第一 C プログラミング演習 ( 第 5 回 ) 2015/05/11 DEPARTMENT OF MATHEMATICAL INFORMATICS 1 今日の内容 : プロトタイプ宣言 ヘッダーファイル, プログラムの分割 課題 : 疎行列 2 プロトタイプ宣言 3 C 言語では, 関数や変数は使用する前 ( ソースの上のほう ) に定義されている必要がある. double sub(int
板バネの元は固定にします x[0] は常に0です : > x[0]:=t->0; (1.2) 初期値の設定をします 以降 for 文処理のため 空集合を生成しておきます : > init:={}: 30 番目 ( 端 ) 以外については 初期高さおよび初速は全て 0 にします 初期高さを x[j]
機械振動論固有振動と振動モード 本事例では 板バネを解析対象として 数値計算 ( シミュレーション ) と固有値問題を解くことにより振動解析を行っています 実際の振動は振動モードと呼ばれる特定パターンが複数組み合わされますが 各振動モードによる振動に分けて解析を行うことでその現象を捉え易くすることが出来ます そこで 本事例では アニメーションを活用した解析結果の可視化も取り入れています 板バネの振動
matlab_basic.pptx
MATLAB の基本的な使い方 担当 : 高安亮紀 2 MATLAB について n MATLAB とは 科学技術計算のための高性能プログラミング言語 n 特徴 配列が基本データ型 ベクトル (1 次元配列 ) 行列 (2 次元配列 ) 対話的システム 豊富な関数ライブラリとグラフィックツール 同様の機能を持ったフリーソフトの Scilab Octave がある n 使用される主な分野 数値計算 シミュレーション
PowerPoint Presentation
付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像
FORTRAN( と C) によるプログラミング 5 ファイル入出力 ここではファイルからデータを読みこんだり ファイルにデータを書き出したりするプログラムを作成してみます はじめに テキスト形式で書かれたデータファイルに書かれているデータを読みこんで配列に代入し 標準出力に書き出すプログラムを作り
FORTRAN( と C) によるプログラミング 5 ファイル入出力 ここではファイルからデータを読みこんだり ファイルにデータを書き出したりするプログラムを作成してみます はじめに テキスト形式で書かれたデータファイルに書かれているデータを読みこんで配列に代入し 標準出力に書き出すプログラムを作ります FORTRAN の場合 OPEN 文でファイルを開いた後 標準入力の場合と同様に READ 文でデータを読みこみます
Microsoft PowerPoint - ip02_01.ppt [互換モード]
空間周波数 周波数領域での処理 空間周波数 (spatial frquncy) とは 単位長さ当たりの正弦波状の濃淡変化の繰り返し回数を表したもの 正弦波 : y sin( t) 周期 : 周波数 : T f / T 角周波数 : f 画像処理 空間周波数 周波数領域での処理 波形が違うと 周波数も違う 画像処理 空間周波数 周波数領域での処理 画像処理 3 周波数領域での処理 周波数は一つしかない?-
4 月 東京都立蔵前工業高等学校平成 30 年度教科 ( 工業 ) 科目 ( プログラミング技術 ) 年間授業計画 教科 :( 工業 ) 科目 :( プログラミング技術 ) 単位数 : 2 単位 対象学年組 :( 第 3 学年電気科 ) 教科担当者 :( 高橋寛 三枝明夫 ) 使用教科書 :( プロ
4 東京都立蔵前工業高等学校平成 30 年度教科 ( 工業 ) 科目 ( プログラミング技術 ) 年間授業計画 教科 :( 工業 ) 科目 :( プログラミング技術 ) 単位数 : 2 単位 対象学年組 :( 第 3 学年電気科 ) 教科担当者 :( 高橋寛 三枝明夫 ) 使用教科書 :( プログラミング技術 工業 333 実教出版 ) 共通 : 科目 プログラミング技術 のオリエンテーション プログラミング技術は
C プログラミング演習 1( 再 ) 2 講義では C プログラミングの基本を学び 演習では やや実践的なプログラミングを通して学ぶ
C プログラミング演習 1( 再 ) 2 講義では C プログラミングの基本を学び 演習では やや実践的なプログラミングを通して学ぶ 今回のプログラミングの課題 次のステップによって 徐々に難易度の高いプログラムを作成する ( 参照用の番号は よくわかる C 言語 のページ番号 ) 1. キーボード入力された整数 10 個の中から最大のものを答える 2. 整数を要素とする配列 (p.57-59) に初期値を与えておき
Microsoft Word - matlab-coder-code-generation-quick-start-guide-japanese-r2016a
MATLAB コードを使用した C コードの生成クイックスタートガイド (R2016a) 最初のスタンドアロン C コードの生成 スタンドアロン C コードを生成するには [ ビルド ] を [ ソースコード ] [ スタティックライブラリ ] [ ダイナミックライブラリ ] または [ 実行ファイル ] のいずれかに切り替えます MATLAB Coder を使用することで MATLAB コードから
PowerPoint Presentation
工学部 6 7 8 9 10 組 ( 奇数学籍番号 ) 担当 : 長谷川英之 情報処理演習 第 7 回 2010 年 11 月 18 日 1 今回のテーマ 1: ポインタ 変数に値を代入 = 記憶プログラムの記憶領域として使用されるものがメモリ ( パソコンの仕様書における 512 MB RAM などの記述はこのメモリの量 ) RAM は多数のコンデンサの集合体 : 電荷がたまっている (1)/ いない
多次元レーザー分光で探る凝縮分子系の超高速動力学
波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 [email protected] ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =
PowerPoint プレゼンテーション
シミュレーション基礎 (8) 第 6 章ファイル入出力 7.2 テキストファイルの読み書き ファイルに書き込む : EX70201: X=1:10;Y=[X;X.^2]; Fid=fopen('datal.txt', wt'); fprintf(fid,'%2d%5d n',y); C 言語と同じ手順 : ファイルをオープンするファイルに変数の値を書き込む ( 整数 2 桁, 整数 5 桁, 改行
Microsoft PowerPoint - CproNt02.ppt [互換モード]
第 2 章 C プログラムの書き方 CPro:02-01 概要 C プログラムの構成要素は関数 ( プログラム = 関数の集まり ) 関数は, ヘッダと本体からなる 使用する関数は, プログラムの先頭 ( 厳密には, 使用場所より前 ) で型宣言 ( プロトタイプ宣言 ) する 関数は仮引数を用いることができる ( なくてもよい ) 関数には戻り値がある ( なくてもよい void 型 ) コメント
Microsoft PowerPoint - VBA解説1.ppt [互換モード]
九州大学工学部地球環境工学科船舶海洋システム工学コース 計算工学演習第一 演習資料担当 : 木村 Excel 上のマクロを利用してプログラムを組む Visual Basic for Applications (VBA) のテクニック Excel のマクロとは? 一連の操作を自動的に行う機能 例 ) セル ( マス目 ) に数字を 1 から順番に埋めていく Excel のマクロでどんなプログラムが作れるのか?
Microsoft PowerPoint - H21生物計算化学2.ppt
演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A
生成された C コードの理解 コメント元になった MATLAB コードを C コード内にコメントとして追加しておくと その C コードの由来をより簡単に理解できることがよくありま [ 詳細設定 ] [ コード外観 ] を選択 C コードのカスタマイズ より効率的な C コードを生成するベストプラクテ
MATLAB コードを使用した C コードの生成クイックスタートガイド (R2012a) 最初のスタンドアロン C コードの生成 スタンドアロン C コードを生成するには MATLAB Coder のペインを [ ビルド ] に切り替えて [C/C++ スタティックライブラリ ] [C/C++ ダイナミックライブラリ ] または [C/C++ 実行ファイル ] のいずれかを選択しま MATLAB Coder
パソコンシミュレータの現状
第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に
Scilab 勉強会 ( 第 3 回 ) 高橋一馬, 十文字俊裕, 柏倉守 平成 17 年 11 月 15 日 関数 ファイルはエディタを用いて作成する.Scilab にはエディタ SciPad が附属している.SciPad では なく他のエディタを利用してもよい. 作成した関数は Scilab に
Scilab 勉強会 ( 第 3 回 ) 高橋一馬, 十文字俊裕, 柏倉守 平成 17 年 11 月 15 日 関数 ファイルはエディタを用いて作成する.Scilab にはエディタ SciPad が附属している.SciPad では なく他のエディタを利用してもよい. 作成した関数は Scilab にロードすることで ( 関数に誤りがなけ れば )Scilab 標準関数と同じように使用することができる.
Microsoft PowerPoint - qcomp.ppt [互換モード]
量子計算基礎 東京工業大学 河内亮周 概要 計算って何? 数理科学的に 計算 を扱うには 量子力学を計算に使おう! 量子情報とは? 量子情報に対する演算 = 量子計算 一般的な量子回路の構成方法 計算って何? 計算とは? 計算 = 入力情報から出力情報への変換 入力 計算機構 ( デジタルコンピュータ,etc ) 出力 計算とは? 計算 = 入力情報から出力情報への変換 この関数はどれくらい計算が大変か??
Matlab講習会
Matlab 講習会 目的 Matlab を用いて VICONや Winanalyze の座標データー 地面反力の分析必要な項目について習得する 本やヘルプに掲載されている情報を 実際に使用できる形で整理する 講習会 1 回目 (4 時間 ) 1. 行列操作について理解する 2. 時間軸を作る 3. エクセルデーターを取り込む 4. テキストデーターを取り込む 5. グラフの作成 6.1つのグラフに複数のグラフを出す
1.3 ヘルプの参照関数やコマンドの使い方, 各種機能の使用方法等について情報が欲しいときには, オンラインヘルプ機能を使う ( 最も正確な情報が得られる ). 調べたい情報の内容によって, 下記の方法がある. ブラウザを開き MATLAB のオンラインドキュメントを表示する
1. MATLAB の基本操作 1.1 起動と終了 MATLAB の起動 : ショートカットアイコンをダブルクリック, あるいは スタートメニュー からプログラム -->MATLAB-->R2015b-->MATLAB R2015b を選択する. MATLAB の終了 : Command Window で,quit コマンド, または exit コマンドを実行, あるいは右上の をクリックする. 1.2
Microsoft Word - scilab_intro.doc
Scilab の使い方 (1/14) Scilab は "SCIence LABoratory" の略 フランスの国立研究機関 INRIA (Institut National de Recherche en Informatique et Automatique) が作成 配布しているフリーのシミュレーション ソフト Scilab のホームページは http://www-rocq.inria.fr/scilab/
Microsoft Word - 18環設演付録0508.doc
Excel の関数について 注 ) 下記の内容は,Excel のバージョンや OS の違いによって, 多少異なる場合があります 1. 演算子 等式はすべて等号 (=) から始まります 算術演算子には, 次のようなものがあります 内が,Excel 上で打ち込むものです 足し算 +, 引き算 -, かけ算 *, わり算 /, べき乗 ^ 2. 三角関数 メニューバーの [ 挿入 ] ダイアログボックスの
スライド 1
数値解析 平成 30 年度前期第 10 週 [6 月 12 日 ] 静岡大学工学研究科機械工学専攻ロボット 計測情報分野創造科学技術大学院情報科学専攻 三浦憲二郎 講義アウトライン [6 月 12 日 ] 連立 1 次方程式の直接解法 ガウス消去法 ( 復習 ) 部分ピボット選択付きガウス消去法 連立 1 次方程式 連立 1 次方程式の重要性 非線形の問題は基本的には解けない. 非線形問題を線形化して解く.
Taro-ファイル処理(公開版).jtd
ファイル処理 0. 目次 1. はじめに 2. ファイル内容の表示 3. ファイル内容の複写 3. 1 文字単位 3. 2 行単位 4. 書式付き入出力 5. 文字配列への入出力 6. 課題 6. 1 課題 1 ( ファイル圧縮 復元 ) - 1 - 1. はじめに ファイル処理プログラムの形は次のようになる #include main() { FILE *fp1,*fp2; ファイルポインタの宣言
数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数
. 三角関数 基本関係 t cot c sc c cot sc t 還元公式 t t t t t t cot t cot t 数学 数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 数学. 三角関数 5 積和公式 6 和積公式 数学. 三角関数 7 合成 t V v t V v t V V V V VV V V V t V v v 8 べき乗 5 6 6
解析力学B - 第11回: 正準変換
解析力学 B 第 11 回 : 正準変換 神戸大 : 陰山聡 ホームページ ( 第 6 回から今回までの講義ノート ) http://tinyurl.com/kage2010 2011.01.27 正準変換 バネ問題 ( あえて下手に座標をとった ) ハミルトニアンを考える q 正準方程式は H = p2 2m + k 2 (q l 0) 2 q = H p = p m ṗ = H q = k(q
<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>
人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形
Microsoft PowerPoint - 10.pptx
m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる
Microsoft PowerPoint - CSA_B3_EX2.pptx
Computer Science A Hardware Design Excise 2 Handout V2.01 May 27 th.,2019 CSAHW Computer Science A, Meiji University CSA_B3_EX2.pptx 32 Slides Renji Mikami 1 CSAHW2 ハード演習内容 2.1 二次元空間でのベクトルの直交 2.2 Reserved
Microsoft PowerPoint - 第3回2.ppt
講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3
PowerPoint Presentation
プログラミング基礎 第 2 週 (4,5,6 回 ) 2011-10-07 出村公成 この資料の再配布を禁止します 予定 プログラミング入門 (45 分 ) 変数 入出力 分岐 演習 (90 分 ) タッチタイプ練習 統合開発環境 Codeblocksの使い方 教科書例題の打ち込みと実行 プログラミング入門 C 言語の簡単な例を体験 変数 入出力 分岐 プログラムの例リスト 2.1 改 #include
PowerPoint プレゼンテーション
計算機実習 Ⅰ FORTRAN 担当 2018.05.29 本日の課題 プログラムの基本ルールを理解し 以下が含まれるプログラムを作成する (1) 文法の基礎 ( フローチャートなど ) (2) 変数宣言 (3) 入出力 (4) 四則演算 (5) 組込関数 (6) 判定文 (7) リダイレクション PROGRAM MAIN INTEGER I, J, K REAL A, B, C CHARACTER
PowerPoint プレゼンテーション
多分岐選択 条件式 If Then Else IIF Select Switch 今日の目的 Dim n As Long n = 10 If n = 10 Then 条件式 Debug.Print ゆっくりしていってね! End If 比較演算子 その他 よく使用する演算子 文字列型にたいする条件式 条件式 オブジェクト型 バリアント型に対する条件式 比較演算子 = 等しい 等しくない >=
第6章 実験モード解析
第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法
Microsoft Word - ClassicalControl_Matlab.doc
MATLAB による古典制御の学習 4 年 4 月 7 日 目次. はじめに.MATLAB の導入 3. ステップ応答, インパルス応答, 一般の応答 4. とナイキスト軌跡 5. 根軌跡 6. 設計例 7. 積分器と定常偏差. はじめに 制御性能の解析や制御系設計では, 時間応答のシミュレーションや周波数応答などを数値計算し, それをグラフに表示することが必要となる. この目的に適した数値計算ツールに
DVIOUT
第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため
Taro-ポインタ変数Ⅰ(公開版).j
0. 目次 1. ポインタ変数と変数 2. ポインタ変数と配列 3. ポインタ変数と構造体 4. ポインタ変数と線形リスト 5. 問題 問題 1 問題 2-1 - 1. ポインタ変数と変数 ポインタ変数には 記憶領域の番地が格納されている 通常の変数にはデータが格納されている 宣言 int *a; float *b; char *c; 意味ポインタ変数 aは 整数型データが保存されている番地を格納している
製品開発の現場では 各種のセンサーや測定環境を利用したデータ解析が行われ シミュレーションや動作検証等に役立てられています しかし 日々収集されるデータ量は増加し 解析も複雑化しており データ解析の負荷は徐々に重くなっています 例えば自動車の車両計測データを解析する場合 取得したデータをそのまま解析
ホワイトペーパー Excel と MATLAB の連携がデータ解析の課題を解決 製品開発の現場では 各種のセンサーや測定環境を利用したデータ解析が行われ シミュレーションや動作検証等に役立てられています しかし 日々収集されるデータ量は増加し 解析も複雑化しており データ解析の負荷は徐々に重くなっています 例えば自動車の車両計測データを解析する場合 取得したデータをそのまま解析に使用することはできず
ファイル入出力
C プログラミング Ⅱ の基礎 とは ファイルへデータを書き込んだり ( 出力 ), ファイルからデータを読み込んだり ( 入力 ) する C 言語では キーボードからの入力 画面への出力と同じようなコードで 処理を実現できる プログラム 入力 出力 ファイル 出力 入力 2 入出力の基本 ストリーム プログラム上で様々な装置への入出力を行う機構様々な入出力装置を統一的な方法で扱うことができる ハードディスクなどではファイルデータによって入出力が行われる
Microsoft PowerPoint - H22制御工学I-2回.ppt
制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し
Java Scriptプログラミング入門 3.6~ 茨城大学工学部情報工学科 08T4018Y 小幡智裕
Java Script プログラミング入門 3-6~3-7 茨城大学工学部情報工学科 08T4018Y 小幡智裕 3-6 組み込み関数 組み込み関数とは JavaScript の内部にあらかじめ用意されている関数のこと ユーザ定義の関数と同様に 関数名のみで呼び出すことができる 3-6-1 文字列を式として評価する関数 eval() 関数 引数 : string 式として評価する文字列 戻り値 :
C 言語の式と文 C 言語の文 ( 関数の呼び出し ) printf("hello, n"); 式 a a+4 a++ a = 7 関数名関数の引数セミコロン 3 < a "hello" printf("hello") 関数の引数は () で囲み, 中に式を書く. 文 ( 式文 ) は
C 言語復習 C 言語の基礎 来週もこの資料を持参してください C 言語, ソースファイルの作成, コンパイル, 実行 1 C 言語 C 言語プログラミングの手順 とは, 計算機を動かす手順を記述したもの. 計算機に命令を与えて動かすには を作成する ことになる. C 言語はプログラミング言語の 1 個 手続き型言語に分類される. C/C++ は非常に多くの場面で使われる言語 C++ は C 言語をオブジェクト指向に拡張したもの
情報処理概論(第二日目)
情報処理概論 工学部物質科学工学科応用化学コース機能物質化学クラス 第 8 回 2005 年 6 月 9 日 前回の演習の解答例 多項式の計算 ( 前半 ): program poly implicit none integer, parameter :: number = 5 real(8), dimension(0:number) :: a real(8) :: x, total integer
kiso2-03.key
座席指定はありません Linux を起動して下さい 第3回 計算機基礎実習II 2018 のウェブページか ら 以下の課題に自力で取り組んで下さい 計算機基礎実習II 第2回の復習課題(rev02) 第3回の基本課題(base03) 第2回課題の回答例 ex02-2.c include int main { int l int v, s; /* 一辺の長さ */ /* 体積 v
Si 知識情報処理
242311 Si, 285301 MS 第 12 回 竹平真則 [email protected] 2015/12/21 1 本日の内容 1. 先週のおさらい 2. PHP のスクリプトを実際に動かしてみる 3. RDB についての説明 2015/12/21 2 資料の URL http://peacenet.info/m2is 2015/12/21 3 注意事項 ( その
sinfI2005_VBA.doc
sinfi2005_vba.doc MS-ExcelVBA 基礎 (Visual Basic for Application). 主な仕様一覧 () データ型 主なもの 型 型名 型宣言文字 長さ 内容 整数型 Integer % 2 バイト -32,768 32,767 長整数型 Long & 4 バイト -2,47,483,648 2,47,483,647 単精度浮動小数点数 Single 型!
OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 富山富山県立大学中川慎二
OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 勉強会 @ 富山富山県立大学中川慎二 * OpenFOAM のソースコードでは, 基礎式を偏微分方程式の形で記述する.OpenFOAM 内部では, 有限体積法を使ってこの微分方程式を解いている. どのようにして, 有限体積法に基づく離散化が実現されているのか,
2011年度 筑波大・理系数学
0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ
PowerPoint プレゼンテーション
コンパイラとプログラミング言語 第 3 4 週 プログラミング言語の形式的な記述 2014 年 4 月 23 日 金岡晃 授業計画 第 1 週 (4/9) コンパイラの概要 第 8 週 (5/28) 下向き構文解析 / 構文解析プログラム 第 2 週 (4/16) コンパイラの構成 第 9 週 (6/4) 中間表現と意味解析 第 3 週 (4/23) プログラミング言語の形式的な記述 第 10 週
Chapter 版 Maxima を用いた LC のインピーダンス測定について [ 目的 ] 電気通信大学 先進理工学科の2 年次後期に実施される電気 電子回路実験において L,C のインピーダンス測定を実施している この実験項目について 無料ソフトの Maxima を用い
Chapter 2 2016.10.14 版 Maxima を用いた LC のインピーダンス測定について [ 目的 ] 電気通信大学 先進理工学科の2 年次後期に実施される電気 電子回路実験において L,C のインピーダンス測定を実施している この実験項目について 無料ソフトの Maxima を用いることで 理論解析と実験値の比較が可能である また 近年のパソコンの性能の向上により Maxima の実行処理速度が大幅に改善された
以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ
以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する
線形代数とは
線形代数とは 第一回ベクトル 教科書 エクササイズ線形代数 立花俊一 成田清正著 共立出版 必要最低限のことに限る 得意な人には物足りないかもしれません 線形代数とは何をするもの? 線形関係 y 直線 yもも 次式で登場する (( 次の形 ) 線形 ただし 次元の話世の中は 3 次元 [4[ 次元 ] 次元 3 次元 4 次元 はどうやって直線を表すの? ベクトルや行列の概念 y A ベクトルを使うと
Microsoft PowerPoint - H22制御工学I-10回.ppt
制御工学 I 第 回 安定性 ラウス, フルビッツの安定判別 平成 年 6 月 日 /6/ 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し
Microsoft Word - VBA基礎(3).docx
上に中和滴定のフローチャートを示しました この中で溶液の色を判断する部分があります このような判断はプログラムではどのように行うのでしょうか 判断に使う命令は IF 文を使います IF は英語で もし何々なら という意味になります 条件判断条件判断には次の命令を使います If 条件式 1 Then ElseIf 条件式 2 Then ElseIf 条件式 3 Then 実行文群 1 実行文群 2 実行文群
例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (
第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表
システム工学実験 パラメータ推定手順
システム工学実験パラメータ推定手順 大木健太郎 2014/11/14 2014 年度システム工学実験 : フレキシブルリンク 1 アウトライン 1. 線形システムと周波数情報 2. パラメータ推定 3. 実際の手順 2014/11/14 2014 年度システム工学実験 : フレキシブルリンク 2 線形時不変システムと伝達関数 入力と出力の関係が線形な定係数微分方程式で与えられるとき, この方程式を線形時不変システムという
gengo1-11
関数の再帰定義 自然数 n の階乗 n! を計算する関数を定義してみる 引数は整数 返却値も整数 n! = 1*2*3*... * (n 1)*n である ただし 0! = 1 とする int factorial(int n) int i, tmp=1; if( n>0 ) for(i=1; i
コンピュータ概論
4.1 For Check Point 1. For 2. 4.1.1 For (For) For = To Step (Next) 4.1.1 Next 4.1.1 4.1.2 1 i 10 For Next Cells(i,1) Cells(1, 1) Cells(2, 1) Cells(10, 1) 4.1.2 50 1. 2 1 10 3. 0 360 10 sin() 4.1.2 For
プログラミング実習I
プログラミング実習 I 05 関数 (1) 人間システム工学科井村誠孝 [email protected] 関数とは p.162 数学的には入力に対して出力が決まるもの C 言語では入出力が定まったひとまとまりの処理 入力や出力はあるときもないときもある main() も関数の一種 何かの仕事をこなしてくれる魔法のブラックボックス 例 : printf() 関数中で行われている処理の詳細を使う側は知らないが,
Microsoft Word - Cプログラミング演習(12)
第 12 回 (7/9) 4. いくつかのトピック (5)main 関数の引数を利用したファイル処理 main 関数は, 起動する環境から引数を受け取ることができる 例えば 次に示すように,main 関数に引数を用いたプログラムを作成する 01 /* sample */ 02 /* main 関数の引数 */ 03 #include 04 05 main(int argc, char
<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>
3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として
UNIX 初級講習会 (第一日目)
情報処理概論 工学部物質科学工学科応用化学コース機能物質化学クラス 第 3 回 2005 年 4 月 28 日 計算機に関する基礎知識 Fortranプログラムの基本構造 文字や数値を画面に表示する コンパイル時のエラーへの対処 ハードウェアとソフトウェア ハードウェア 計算, 記憶等を行う機械 ソフトウェア ハードウェアに対する命令 データ ソフトウェア ( 命令 ) がないとハードウェアは動かない
画像解析論(2) 講義内容
画像解析論 画像解析論 東京工業大学長橋宏 主な講義内容 信号処理と画像処理 二次元システムとその表現 二次元システムの特性解析 各種の画像フィルタ 信号処理と画像処理 画像解析論 処理の応答 記憶域 入出力の流れ 信号処理系 実時間性が求められる メモリ容量に対する制限が厳しい オンラインでの対応が厳しく求められる 画像処理系 ある程度の処理時間が許容される 大容量のメモリ使用が容認され易い オフラインでの対応が容認され易い
コマンド入力による操作1(ロード、プロット、画像ファイル出力等)
コマンド入力による操作 1 ( ロード プロット 画像ファイル出力等 ) IUGONET データ解析講習会 平成 25 年 8 月 21 日 場所 : 国立極地研究所 東北大学八木学 [email protected] CUI の基本的な使い方の流れ 1. 初期化する 2. 解析したい期間 (timespan) を指定する 3. ロードプロシージャを用いてデータを読み込む 4. 読み込まれたデータを確認する
データ構造
アルゴリズム及び実習 7 馬青 1 表探索 定義表探索とは 表の形で格納されているデータの中から条件に合ったデータを取り出してくる操作である 但し 表は配列 ( 連結 ) リストなどで実現できるので 以降 表 の代わりに直接 配列 や リスト などの表現を用いる場合が多い 表探索をただ 探索 と呼ぶ場合が多い 用語レコード : 表の中にある個々のデータをレコード (record) と呼ぶ フィールド
演習2
神戸市立工業高等専門学校電気工学科 / 電子工学科専門科目 数値解析 2017.6.2 演習 2 山浦剛 ([email protected]) 講義資料ページ h t t p://clim ate.aic s. riken. jp/m embers/yamaura/num erical_analysis. html 曲線の推定 N 次多項式ラグランジュ補間 y = p N x = σ N x x
