DVIOUT

Size: px
Start display at page:

Download "DVIOUT"

Transcription

1 第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため AD 変換器 を用いてこの波を一定間隔でサンプリングし コンピュータが直接扱うことのできる離散的な波 ( 数値列 ) に変換して扱います ( 図 を参照のこと ) 前者をアナログ (analog) と呼び 後者をデジタル (didital) と呼びます 観測機器 アナログ信号 AD 変換器 デジタル信号 コンピュータ 図 : アナログからデジタルへ アナログ信号からデジタル信号に変換する装置を A-D 変換器と呼び 逆に デジタル信号からアナログ信号に変換する装置を D-A 変換器と呼びます

2 96 第 章離散フーリエ変換 この離散的な波 ( 数値列 ) から元の連続的な波の性質を調べるために これまで学んだフーリエ変換を離散フーリエ変換に書き換えましょう いま 図 のように観測開始 [ 秒 ] から観測終了 T [ 秒 ] までに観測された連続的な波 x(t) に対して t [ 秒 ] の一定間隔でサンプリングされた 個の数値列 ( 離散的な波 ) を としましょう { x(), x( t), x( t), x( t),, x(( ) t), x(( ) t) } x(t) t t t ( ) t ( ) t T 図 : 離散化された波この離散的な波 ( 数値列 ) を直接フーリエ変換することはできないので 区分求積法 ( リーマン和 ) を使って 近似されたフーリエ変換 (f) を求めます 指数関数 e iπft を ϕ(t) =e iπft とおくと 近似されたフーリエ変換 (f) = Z x(t)e iπft dt = Z T x(t)e iπft dt x()ϕ() t + x( t)ϕ( t) t + x( t)ϕ( t) t + +x(( ) t)ϕ(( ) t) t ( 区分求積法 ) が得られます さらに 関係式 ( t は区間 [,T ] を 等分したもの ) t = T = T [ 秒 ] を代入すると 近似されたフーリエ変換 (f) T n= x(n t)ϕ(n t)

3 離散フーリエ変換 97 が得られます ここで 連続的な波と離散的な波 ( 離散化された波 ) の違いについて比較しておきましょう そもそも フーリエ変換は 連続的な波を三角関数の積み重ねによって表そうとしたものですから いま 連続的な波が 図 のように三角関数の総和で表されている 例えば これを 等分 ( =) して離散的な波 ( 離散化された波 ) として捉え直してみましょう µ πk a k cos t T µ πk b k sin t T k = k = k = k = 図 : 離散化された波のフーリエ変換

4 9 第 章離散フーリエ変換 図 のグラフを注意深く見てみると k =のグラフは 図 のように k =のグラフとして解釈することができます ( 本来 赤線の波を青線の波として解釈することができる ) すなわち 離散的な波 ( 離散化された波 ) では k =,, の波は k =,, の波に吸収され k =,, の三角関数のみで表せることを意味しています 逆に 離散的な波 ( 離散化された波 ) では k =,, の三角関数でしか表せないことになります ( に依存します ) µ πk a k cos t T µ πk b k sin t T k =(k =) k =(k =) k =5(k =) k =6(k =) 図 : 離散化によって吸収される波

5 離散フーリエ変換 99 したがって 離散的な波 ( 離散化された波 ) に含まれる波の最大周波数 f max (= f s /) [Hz] が決定し t [ 秒 ] で [ 回転 ] していることから ( 例では k =の場合 ) 最大の周波数 f max は f max = µf t [Hz] s = t [Hz] となります さらに 離散的な波 ( 離散化された波 ) の基準となる周波数 f [Hz] を f = T [Hz] とおき ( 節参照 ) 式と 式を 式に代入すると 関係式 f max = t = = f [Hz] T (f s = f [Hz]) が得られます 以上より 離散的な波 ( 離散化された波 ) の特徴を捉えるには 周波数, ± f, ± f, ± f,, ± f [Hz] について調べれば十分であることがわかります ( 第 章で述べたように 正の周波数と負の周波数が同時に存在します ) なお 基準となる周波数 f [Hz] を周波数分解能といい f より細かな周波数に分解することはできません また 周波数 f s (= f max )[Hz] をサンプリング周波数といい f s /(=f max )[Hz] 以上の周波数の波は現れません ( 周波数領域の f s [Hz] は 時間領域の T [ 秒 ] に対応しています ) 離散的な波のフーリエ変換に話を戻しましょう 前記の考察から 調べる必要のある周波数 k f [Hz] (k =, ±, ±,, ±/) の近似されたフーリエ変換 (k f) は (k f) = T となります 式と 式より 関係式 = T n= n= x(n t)ϕ(n t) x(n t)e iπ(k f)(n t) f t = が成り立つことに注意すれば 近似されたフーリエ変換 (k f) は 改めて (k f) = T n= π i x(n t)e と書き直すことができます ここで W = e i π µ =cos µ π i sin µ π

6 第 章離散フーリエ変換 とおくと 点 W, W, W,,W は 図 5 のように単位円を 等分した円周上の点となり 関係式 W = を満たします (W は の 乗根となります ) さらに 関係式 W m = W W m = W m m = W が成り立つことから W = W, W = W, W = W, となります ( =) 5 6 (= ) 7 (= ) (= =) 図 5: 等分された単位円周上の点 ( = の場合 ) そこで 負の周波数 k f [Hz] (k =,,,/) の近似されたフーリエ変換 ( k f) を求めると 関係式 ( k f) = T = T = T = T n= n= n= n= = (( k ) f) x(n t)e i πn( k ) = T n= ³ k x(n t) W n T = n= x(n t)w n( k ) ³ x(n t) W k W n T = x(n t)w n( k ) = T n= k x(n t) ³ W n n= k x(n t) ³W n x(n t)e i πn( k )

7 離散フーリエ変換 が得られ k = k とおくと 負の周波数 k f [Hz] (k =,,, /) の近似されたフーリエ変換の値 (k f) は ( f) = (( ) f), ( f) = (( ) f), ( f) = (( ) f), ( (/ ) f) = ((/+) f), ( (/ ) f) = ((/+) f), ( (/) f) = ((/) f) となります したがって k =,,,, の近似されたフーリエ変換 (k f) は ( f), ( f), ( f), ((/ ) f), ((/) f) = ( (/) f), ((/+) f) = ( (/ ) f), ((/+) f) = ( (/ ) f), (( ) f) = ( f), (( ) f) = ( f), (( ) f) = ( f) となります ただし 赤文字は 負の周波数の近似されたフーリエ変換に一致することに注意しましょう また 正の周波数 (/) f の近似されたフーリエ変換は 負の周波数 (/) f の近似されたフーリエ変換として扱うこともできますが 一般的な書籍にならって本テキストでも正の周波数の近似されたフーリエ変換 ((/) f) として扱うことにします 以上をまとめると 離散化された ( 近似された ) フーリエ変換は (k f) = T n= x(n t)w となります さらに 簡潔に記述するために 記号 k = (k f), x n = x(n t) (k =,,,, ) 5 を導入すると 離散化された ( 近似された ) フーリエ変換は k = T n= x n W (k =,,,, )

8 第 章離散フーリエ変換 となります この式を離散フーリエ変換 (Discrete Fourier Transform; DFT) と呼びます ( 信号処理用に最適化されています ) なお 離散フーリエ変換の離散周波数スペクトル密度 T (f) は T (f) T (k f) = k T = n= x n W (k =,,,, ) となります 理解を深めるために 例として =の場合を見てみましょう 具体的に離散フーリエ変換を書き下してみると = T x W + x W + x W + x W, = T x W + x W + x W + x W, = T x W + x W + x 6 + x W, = T x W + x W + x W x W = となり 関係式 =(=W ) を用いると = T x W + x W + x W + x W, = T x W + x W + x W + x W, = T x W + x W + x W + x W, = T x W + x W + x W + x W = となります また 行列の形式 = T で表現することもできます さらに x x x x =, = i, =, = i を代入すれば 具体的に離散フーリエ変換 = T i i i i x x x x

9 離散フーリエ変換 を求めることができます もう つの例として =の場合を見てみましょう 具体的に離散フーリエ変換を書き下してみると = T x W + x W + x W + x W + x W + x 5 W + x 6 W + x 7 W, = T x W + x W + x W + x W + x + x 5 W 5 + x 6 W x 7 W, = T x W + x W + x + x W 6 + x + x 5 W + x 6 W + x 7 W, = T x W + x W + x W 6 + x W 9 + x W + x 5 W 5 + x 6 W + x 7 W, = T x W + x + x + x W + x W + x 5 W + x 6 W + x 7 W, 5 = T x W + x W 5 + x W + x W 5 + x W + x 5 W 5 + x 6 W 5 + x 7 W =, 6 = T x W + x W 6 + x W + x W + x W + x 5 W + x 6 W 6 + x 7 W =, 7 = T x W + x W 7 + x W + x W + x + x 5 W 5 + x x 7 W = となり 関係式 =(=W ) を用いると = T x W + x W + x W + x W + x W + x 5 W + x 6 W + x 7 W, = T x W + x W + x W + x W + x + x 5 W 5 + x 6 W x 7 W, = T x W + x W + x + x W 6 + x W + x 5 W + x x 7 W, = T x W + x W + x W 6 + x W + x + x 5 W 7 + x 6 W 5 + x 7 W, = T x W + x + x W + x + x W + x 5 + x 6 W + x 7 W, 5 = T x W + x W 5 + x W + x W 7 + x + x 5 W + x 6 W 6 + x 7 W =, 6 = T x W + x W 6 + x + x W + x W + x 5 W 6 + x 6 + x 7 W =, 7 = T x W + x W 7 + x W 6 + x W 5 + x + x 5 W + x 6 W + x 7 W = となります また =の場合と同様に 行列の形式 6 W = T で表現することもできます さらに W =, W = i, = i, W = i, =, W 5 = + i, 6 = i, W 7 = + i x x x x x x 5 x 6 x 7

10 第 章離散フーリエ変換 を代入すれば 具体的に離散フーリエ変換 i i i + i i + i = T i i i i i i i + i i + i i i + i i i i i i i i 7 + i i + i i i i を求めることができます 例として 連続的な波 x(t) =t ( 区間 [, ]; T =[ 秒 ]) を一定間隔 ( =) でサンプリングして得られた離散化された波 ( 離散的な波 ; 数値列 ; データ ; リスト ) ½ ¾,,,,, 5, 6, 7 の離散フーリエ変換について考察しておきましょう ( 図 6 参照 ) x x x x x x 5 x 6 x 7 図 6: 離散化された波の例 (x(t) =t) 行列の形式 i i i + i i + i = i i i i i i i + i i + i i i + i i i i i i i i 7 + i i + i i i i より 離散フーリエ変換 k (k =,,, 7) を計算すると = 7, = +i( + ), = +i, = +i( + ), =, 5 = = +i( ), 6 = = i, 7 = = +i( ) / / / / / 5/ 6/ 7/

11 となります 波の特徴を調べるために離散周波数スペクトル密度 離散フーリエ変換 5 T (k f) = k T = k = k (k =,,,, 7) を求め 表にまとめると表 のようになります なお T =より 周波数分解能 ( 基準となる周波数 ) f が f = =[Hz] になることと 青文字 (,,, ) が正の周波数の離 T 散周波数スペクトル密度 および 赤文字 ( 5 =, 6 =, 7 = ) が負の周波数の離散周波数スペクトル密度となることに注意しましょう k 周波数 k f [Hz] Re T (k f) Im T (k f) 表 : 離散周波数スペクトル密度 ここで 連続的な波の周波数スペクトル密度 ( フーリエ変換 ) T (f) = f T = (f) = (f) = Z x(t) e iπft dt = Z = +e i(πf) + i (πf) e i(πf) (πf) t e iπft dt と離散化された波の離散周波数スペクトル密度 T (k f) を比較するために両方のグラフを重ねて描くと 図 7 のようになります 周波数スペクトル密度 T (f) のグラフに対して離散周波数スペクトル密度 T (k f) の各点がずれている理由は この節の前半で述べたように 離散化することで k =, ±5, ±6, ±7, の周波数 k f の離散周波数スペクトル密度 T (k f) が k =, ±, ±, ±, + の周波数 k f の離散周波数スペクトル密度 T (k f) に吸収されているためです したがって このような誤差を少なくするためにはサンプリング数 を大きくとる必要があります 図 の =の場合 =の場合に比べて k =, ±9, ±, ±, の周波数 k f の離散周波数スペクトル密度 T (k f) が k =, ±, ±, ±, ±, ±5, ±6, ±7, + の周波数 k f の離散周波数スペクトル密度 T (k f) に分散されて吸収されるため誤差が少なくなっていることが確認できます このように 波を離散フーリエ変換するには十分なサンプリング数が必要であることがわかります ただし サンプリング数を増やすとそれだけ多くの計算が必要になることにも注意しなければなりません 実際に離散フーリエ変換で解析や加工を行なう場合は 計算量に注意しながら 対象となる波の特徴を十分に捉えられるだけの最低限のサンプリング数を確保する必要があります

12 第 章離散フーリエ変換 Re T (f) と Re T (k f) Im T (f) と Im T (k f) 図 7: 周波数スペクトル密度の比較 ( =) Re T (f) と Re T (k f) Im T (f) と Im T (k f) 図 : 周波数スペクトル密度の比較 ( =) さらに 得られた離散周波数スペクトル密度 T (k f) から元の連続的な波 x(t) の性質を調べ 元の連続的な波 x(t) を三角関数で近似した波 ( 関数 ) を求めると =の場合 x(t) a + / k= µ µ µ πk πk a k cos t + b k sin t T T = a + ak cos(π(k f)t)+b k sin(π(k f)t) k= = a + a cos πt + a cos πt + a cos 6πt + a cos πt +b sin πt + b sin πt + b sin 6πt + b sin πt = 7 cos πt cos πt cos 6πt cos πt + sin πt sin πt sin 6πt + sin πt

13 離散フーリエ変換 7 となります ( 第 節の 波のフーリエ変換 を参照 ) なお 各三角関数のスペクトル ( 振幅 ) は a k =Re T (k f)+re T ( k f), (k =,,,, ) b k = Im T (k f)+im T ( k f) を計算することで得られます ( ただし T ( / f) =で計算 ) このように 三角関数で近似された波を求めることで 区間 [,T ] における元の連続的な波の性質をとらえることができます 特に 元の連続的な波が三角関数で構成されている場合 元の連続的な波そのものを知ることができます ( 例題, 例題, 例題 ) この例の締めくくりとして 前述で得た三角関数で近似された波と元の連続的な波のグラフを描いて比較しておきます ( 図 9) = = 図 9: 三角関数で近似された波 必ず Im T () = および Im T (/ f) =となります また 離散化されたスペクトル ( 数値列 ) に現れない離散周波数スペクトル密度の値は となります なぜそうなるか それぞれ理由を考えてみてください a =Re T ( f)+re T ( f) =Re T () + Re T () = Re T (), a / =Re T (/ f)+re T ( / f) =Re T (/ f)+=re T (/ f), b / = Im T (/ f)+im T ( / f) =+= 三角関数で近似された波は 全区間 [, ] に拡張され 区間 [,T ] を積分区間とする周期 T を持つフーリエ級数 ( 周期関数 ) となります

14 第 章離散フーリエ変換 例題 ある波 x(t) を [ 秒 ]( 区間 [, ]) にわたって観測し 一定間隔でサンプリングしたところ 離散化された波 ( 離散的な波 ; 数値列 ; データ ; リスト ) {,,, } を得た 離散フーリエ変換 ( 離散周波数スペクトル密度 ) を使って ある波 x(t) を求めなさい 解答例 T =より 周波数分解能 f = = =5 [Hz] である さらに =よ T り 離散周波数スペクトル密度を求めると Ã! T (k f) = k = T x n W = x n (k =,,, ) T T T = = n= n= i i i i x x x x = 6 6 = となる = となることに注意すれば 各周波数における離散周波数スペクトル密度は以下の通りである k 周波数 k f [Hz] Re T (k f) 5 5 Im T (k f) 表より ある波は x(t) は 角速度 ω =πf = ± π [rad/ 秒 ]( 周波数 f = ±5 [Hz]) の cos 波形の波であることがわかる なお cos 波形の波の振幅は となる 以上より ある波 x(t) は Re T (5) + Re T ( 5) = 5+5 = x(t) =cos π t 5 5 である * (( k) f) =(( k) f) より = ( f) =(( ) f) =(( ) f) = * 表が作成できれば 節と同様に 波の特徴を調べることができます * 答えが正しいか グラフを描いて確認しましょう

15 離散フーリエ変換 9 例題 ある波 x(t) を [ 秒 ]( 区間 [, ]) にわたって観測し 一定間隔でサンプリングしたところ 離散化された波 ( 離散的な波 ; 数値列 ; データ ; リスト ) {,,, } を得た 離散フーリエ変換 ( 離散周波数スペクトル密度 ) を使って ある波 x(t) を求めなさい 解答例 T =より 周波数分解能 f = = =[Hz] である さらに =より T 離散周波数スペクトル密度を求めると Ã! T (k f) = k = T x n W = x n (k =,,, ) T T T = = n= i i i i n= x x x x = i +i = 5 i5 5+i5 となる = となることに注意すれば 各周波数における離散周波数スペクトル密度は以下の通りである k 周波数 k f [Hz] Re T (k f) 5 5 Im T (k f) 5 5 表より ある波は x(t) は 角速度 ω =πf = ±π [rad/ 秒 ]( 周波数 f = ± [Hz]) の cos 波形の波および sin 波形の波を合わせた波であることがわかる なお cos 波形の波および sin 波形の波の振幅は Re T () + Re T ( ) = 5+5 =, となる 以上より ある波 x(t) は である Im T () + Im T ( ) = ( 5) + 5 = x(t) =cosπt +sinπt

16 第 章離散フーリエ変換 例題 ある波 x(t) を [ 秒 ]( 区間 [, ]) にわたって観測し 一定間隔でサンプリングしたところ 離散化された波 ( 離散的な波 ; 数値列 ; データ ; リスト ) {,,, } を得た 離散フーリエ変換 ( 離散周波数スペクトル密度 ) を使って ある波 x(t) を求めなさい 解答例 T =より 周波数分解能 f = = =5 [Hz] である さらに =よ T り 離散周波数スペクトル密度を求めると Ã! T (k f) = k = T x n W = x n (k =,,, ) T T T = = n= n= i i i i x x x x = = となる = となることに注意すれば 各周波数における離散周波数スペクトル密度は以下の通りである k 周波数 k f [Hz] 5 5 Re T (k f) Im T (k f) 表より ある波は x(t) は 角速度 ω =πf =π [rad/ 秒 ]( 周波数 f =[Hz]) の cos 波形の波 および定数項 ( 直流 ) を合わせた波であることがわかる なお cos 波形の波の振幅は となる 以上より ある波 x(t) は である Re T () + Re T ( )=+= x(t) =+cosπt * k = / の場合 負の周波数 (/) f [Hz] の波は なので 正の周波数 (/) f [Hz] の波のみで扱います ちなみに 離散化された波では 表以外の波は全て です * 定数項はフーリエ級数の a に対応します

DVIOUT

DVIOUT 3 第 2 章フーリエ級数 23 フーリエ級数展開 これまで 関数 f(x) のフーリエ級数展開に関して 関数の定義区間やフーリエ級数の積分区間を断りなく [, ] に取ってきました これは フーリエ級数を構成する三角関数が基本周期 2 を持つためです すなわち フーリエ級数の各項 cos nx および sin nx (n =1, 2, 3, 4, ) の周期は それぞれ 2, 2 2, 2 3,

More information

DVIOUT

DVIOUT 第 3 章 フーリエ変換 3.1 フーリエ積分とフーリエ変換 第 章では 周期を持つ関数のフーリエ級数について学びました この章では 最初に 周期を持つ関数のフーリエ級数を拡張し 周期を持たない ( 一般的な ) 関数のフーリエ級数を導きましょう 具体的には 関数 f(x) を区間 L x L で考え この L を限りなく大きくするというアプローチを取ります (L ) なお ここで扱う関数 f(x)

More information

DVIOUT

DVIOUT 5.3 音声を加工してみよう! 5.3. 音声を加工してみよう! 129 この節では 図 5.11 の音声 あ の離散化された波 (x n ) のグラフおよび図 5.12 の音声 あ の離散フーリエ変換 ( 周波数スペクトル密度 ) の絶対値 ( X k ) のグラフを基準に 離散フーリエ変換および離散フーリエ積分を使って この離散化された波の検証や加工を行なってみましよう 6 図 5.11: 音声

More information

Microsoft PowerPoint - CSA_B3_EX2.pptx

Microsoft PowerPoint - CSA_B3_EX2.pptx Computer Science A Hardware Design Excise 2 Handout V2.01 May 27 th.,2019 CSAHW Computer Science A, Meiji University CSA_B3_EX2.pptx 32 Slides Renji Mikami 1 CSAHW2 ハード演習内容 2.1 二次元空間でのベクトルの直交 2.2 Reserved

More information

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2 第 4 週コンボリューションその, 正弦波による分解 教科書 p. 6~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問. 以下の図にならって, と の δ 関数を図示せよ. - - - δ () δ ( ) - - - 図 δ 関数の図示の例 δ ( ) δ ( ) δ ( ) δ ( ) δ ( ) - - - - - - - -

More information

Microsoft PowerPoint - ip02_01.ppt [互換モード]

Microsoft PowerPoint - ip02_01.ppt [互換モード] 空間周波数 周波数領域での処理 空間周波数 (spatial frquncy) とは 単位長さ当たりの正弦波状の濃淡変化の繰り返し回数を表したもの 正弦波 : y sin( t) 周期 : 周波数 : T f / T 角周波数 : f 画像処理 空間周波数 周波数領域での処理 波形が違うと 周波数も違う 画像処理 空間周波数 周波数領域での処理 画像処理 3 周波数領域での処理 周波数は一つしかない?-

More information

画像処理工学

画像処理工学 画像処理工学 画像の空間周波数解析とテクスチャ特徴 フーリエ変換の基本概念 信号波形のフーリエ変換 信号波形を周波数の異なる三角関数 ( 正弦波など ) に分解する 逆に, 周波数の異なる三角関数を重ねあわせることにより, 任意の信号波形を合成できる 正弦波の重ね合わせによる矩形波の表現 フーリエ変換の基本概念 フーリエ変換 次元信号 f (t) のフーリエ変換 変換 ( ω) ( ) ωt F f

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information

Microsoft PowerPoint - 第3回2.ppt

Microsoft PowerPoint - 第3回2.ppt 講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3

More information

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅 周期時系列の統計解析 3 移動平均とフーリエ変換 io 07 年 月 8 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ノイズ の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分のがどのように変化するのか等について検討する. また, 気温の実測値に移動平均を適用した結果についてフーリエ変換も併用して考察する. 単純移動平均の計算式移動平均には,

More information

振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫

振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫りにするために スペクトルを滑らかにする操作のことをいう 6.1 合積のフーリエ変換スペクトルの平滑化を行う際に必要な 合積とそのフーリエ変換について説明する 6.2 データ

More information

(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx)

(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx) 6 章スペクトルの平滑化 スペクトルの平滑化とはフーリエスペクトルやパワ スペクトルのギザギザを取り除き 滑らかにする操作のことをいう ただし 波のもっている本質的なものをゆがめてはいけない 図 6-7 パワ スペクトルの平滑化 6. 合積のフーリエ変換スペクトルの平滑化を学ぶ前に 合積とそのフーリエ変換について説明する 6. データ ウィンドウデータ ウィンドウの定義と特徴について説明する 6.3

More information

Chap3.key

Chap3.key 区分求積法. 面積 ( )/ f () > n + n, S 長方形の和集合で近似 n f (n ) リーマン和 f (n ) 区分求積法 リーマン和 S S n n / n n f ()d リーマン積分 ( + ) + S (, f ( )) 微分の心 Zoom In して局所的な性質を調べる 積分の心 Zoom Ou して大域的な性質を調べる 曲線の長さ 領域の面積や体積 ある領域に含まれる物質の質量

More information

Microsoft Word - H26mse-bese-exp_no1.docx

Microsoft Word - H26mse-bese-exp_no1.docx 実験 No 電気回路の応答 交流回路とインピーダンスの計測 平成 26 年 4 月 担当教員 : 三宅 T A : 許斐 (M2) 齋藤 (M) 目的 2 世紀の社会において 電気エネルギーの占める割合は増加の一途をたどっている このような電気エネルギーを制御して使いこなすには その基礎となる電気回路をまず理解する必要がある 本実験の目的は 電気回路の基礎特性について 実験 計測を通じて理解を深めることである

More information

複素数平面への誘い

複素数平面への誘い いざな複素数平面への誘い GRS による複素数平面の表現 複素数平面への第一歩 - 複素数モード - 点と複素数 -3 複素数の四則演算 -4 絶対値と偏角, 共役複素数 -5 絶対値と偏角による複素数の表現 複素数平面の変換 4 - 回転移動と相似拡大 - 直線 に関する対称変換 -3 単位円に関する反転変換 -4 複素数平面の変換と曲線 3 入試問題に挑戦 6 3- 陰関数を利用した図形の表示

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

Microsoft PowerPoint - 物情数学C(2012)(フーリエ前半)_up

Microsoft PowerPoint - 物情数学C(2012)(フーリエ前半)_up 年度物理情報工学科 年生秋学期 物理情報数学 C フーリエ解析 (Fourier lysis) 年 月 5 日 フーリエ ( フランス ) (768~83: ナポレオンの時代 ) 歳で Ecole Polyechique ( フランス国立理工科大学 ) の教授 ナポレオンのエジプト遠征に従軍 (798) 87: 任意の関数は三角関数によって級数展開できる という フーリエ級数 の概念を提唱 ( 論文を提出

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

Microsoft PowerPoint - DigitalMedia2_3b.pptx

Microsoft PowerPoint - DigitalMedia2_3b.pptx Contents デジタルメディア処理 2 の概要 フーリエ級数展開と 離散とその性質 周波数フィルタリング 担当 : 井尻敬 とは ( ) FourierSound.py とは ( ) FourierSound.py 横軸が時間の関数を 横軸が周波数の関数に変換する 法 声周波数 周波数 ( 係数番号 ) 後の関数は元信号に含まれる正弦波の量を す 中央に近いほど低周波, 外ほどが 周波 中央 (

More information

Microsoft PowerPoint - 配布資料・演習18.pptx

Microsoft PowerPoint - 配布資料・演習18.pptx 学年学科学籍番号氏名 宿題 ( 複素正弦波 jω ) メディアと信号処理第 回 ( 金田 ). 複素数とは 実数部と虚数部を持った数である 例えば 虚数単位を j と表すと 4+ j は複素数で 実数部は 4 で 虚数部が である 一般的に 実数部を 虚数部を とすると 複素数 z は z = + j と表される 複素数の 大きさ は 絶対値 (r jθ の r ) で定義される z の絶対値は z

More information

(Microsoft Word - PLL\203f\203\202\216\221\227\277-2-\203T\203\223\203v\203\213.doc)

(Microsoft Word - PLL\203f\203\202\216\221\227\277-2-\203T\203\223\203v\203\213.doc) ディジタル PLL 理論と実践 有限会社 SP システム 目次 - 目次 1. はじめに...3 2. アナログ PLL...4 2.1 PLL の系...4 2.1.1 位相比較器...4 2.1.2 ループフィルタ...4 2.1.3 電圧制御発振器 (VCO)...4 2.1.4 分周器...5 2.2 ループフィルタ抜きの PLL 伝達関数...5 2.3 ループフィルタ...6 2.3.1

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考 3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x = f x= x t f c x f = [1] c f x= x f x= x 2 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考える まず 初期時刻 t=t に f =R f exp [ik x ] [3] のような波動を与えたとき どのように時間変化するか調べる

More information

工業数学F2-04(ウェブ用).pptx

工業数学F2-04(ウェブ用).pptx 工業数学 F2 #4 フーリエ級数を極める 京都大学加納学 京都大学大学院情報学研究科システム科学専攻 Human Systems Lab., Dept. of Systems Science Graduate School of Informatics, Kyoto University 復習 1: 複素フーリエ級数 2 周期 2π の周期関数 f(x) の複素フーリエ級数展開 複素フーリエ係数

More information

Microsoft PowerPoint - 画像工学2007-5印刷用

Microsoft PowerPoint - 画像工学2007-5印刷用 教室 : 4- NOVEMBER 6 画像工学 7 年度版 Imging Scinc nd Tchnolog 画像工学 7 年度版 5 慶応義塾大学理工学部 教授 中島真人 3. 画像のスペクトラム 3-. 画像のフーリエ変換と空間周波数の概念 3-. 簡単な図形のフーリエ変換 3-3. フーリエ変換の重要な性質 3-4. MTF と画像の評価 今週と来週は あまり面白くない. でも 後の講義を理解するために,

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

2015-2017年度 2次数学セレクション(複素数)解答解説

2015-2017年度 2次数学セレクション(複素数)解答解説 05 次数学セレクション解答解説 [ 筑波大 ] ( + より, 0 となり, + から, ( (,, よって, の描く図形 C は, 点 を中心とし半径が の円である すなわち, 原 点を通る円となる ( は虚数, は正の実数より, である さて, w ( ( とおくと, ( ( ( w ( ( ( ここで, w は純虚数より, は純虚数となる すると, の描く図形 L は, 点 を通り, 点 と点

More information

SAP11_03

SAP11_03 第 3 回 音声音響信号処理 ( 線形予測分析と自己回帰モデル ) 亀岡弘和 東京大学大学院情報理工学系研究科日本電信電話株式会社 NTT コミュニケーション科学基礎研究所 講義内容 ( キーワード ) 信号処理 符号化 標準化の実用システム例の紹介情報通信の基本 ( 誤り検出 訂正符号 変調 IP) 符号化技術の基本 ( 量子化 予測 変換 圧縮 ) 音声分析 合成 認識 強調 音楽信号処理統計的信号処理の基礎

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://orito-buturi.com/ NO.3 今日の目的 : 1 微分方程式をもう一度 三角関数の近似について学ぶ 3 微分の意味を考える 5. 起電力 の電池, 抵抗値 の抵抗, 自己インダクタンス のコイルとスイッチを用いて右図のような回路をつくった 始めスイッチは 開かれている 時刻 t = でスイッチを閉じた 以下の問に答えよ ただし, 電流はコイルに

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

Microsoft Word - FT_2010.doc

Microsoft Word - FT_2010.doc 3. フーリエ変換 3. 周期的な複雑な波形 (t) si(ωt), (t) si(ωt), (t) si(3ωt) のグラフを図 3 に示す 単純にこれらの波形を重ね合わ せると (t) si(ωt) + si(ωt) + si(3ωt) は右図のように複雑な波形となる この合成波の時間方向の移 動は見られない ( 時間方向を波の位相と呼ぶ ) しかし 振幅の変調が見られる 3 3Hz (t) Hz

More information

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 . 三角関数 基本関係 t cot c sc c cot sc t 還元公式 t t t t t t cot t cot t 数学 数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 数学. 三角関数 5 積和公式 6 和積公式 数学. 三角関数 7 合成 t V v t V v t V V V V VV V V V t V v v 8 べき乗 5 6 6

More information

第6章 実験モード解析

第6章 実験モード解析 第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法

More information

Chap2.key

Chap2.key . f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

Microsoft PowerPoint - dm1_5.pptx

Microsoft PowerPoint - dm1_5.pptx デジタルメディア処理 1 017( 後期 ) 09/6 イントロダクション1 : デジタル画像とは, 量 化と標本化,Dynamic Range 10/03 イントロダクション : デジタルカメラ, 間の視覚, 表 系 10/10 フィルタ処理 1 : トーンカーブ, 線形フィルタ デジタルメディア処理 1 担当 : 井尻敬 10/17 フィルタ処理 : 線形フィルタ, ハーフトーニング 10/4

More information

Microsoft PowerPoint - dm1_6.pptx

Microsoft PowerPoint - dm1_6.pptx スケジュール 09/5 イントロダクション1 : デジタル画像とは, 量 化と標本化,Dynamic Range 10/0 イントロダクション : デジタルカメラ, 間の視覚, 表 系 10/09 画像処理演習 0 : python (PC 教室 : 課題締め切り 11/13 3:59) 10/16 フィルタ処理 1 : トーンカーブ, 線形フィルタ デジタルメディア処理 1 担当 : 井尻敬 10/3

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

Microsoft PowerPoint - 計測工学第7回.pptx

Microsoft PowerPoint - 計測工学第7回.pptx 計測工学講義 第 7 回目 担当 : 西野信博 A3-525 号室 nishino@hiroshima-u.ac.jp home.hiroshima-u.ac.jp/nishino/ 1 プラズマ実験装置 NSTX(Princeton) 目 次 第 2 章スペクトル解析 フーリエ展開とフーリエ変換 相関関数とパワースペクトル 2 3 演習 スペクトル解析とはどのようなものかを わかりやすく簡潔に説明せよ

More information

Microsoft PowerPoint - aep_1.ppt [互換モード]

Microsoft PowerPoint - aep_1.ppt [互換モード] 物理計測法特論 No.1 第 1 章 : 信号と雑音 本講義の主題 雑音の性質を理解することで 信号と雑音の大きさが非常に近い状態での信号の測定技術 : 微小信号計測 について学ぶ 講義の Web http://www.g-munu.t.u-tokyo.ac.jp/mio/note/sig_mes/tokuron.html 物理学の基本は実験事実の積み重ねである そして それは何かを測定することから始まる

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

Microsoft Word - Chap17

Microsoft Word - Chap17 第 7 章化学反応に対する磁場効果における三重項機構 その 7.. 節の訂正 年 7 月 日. 節 章の9ページ の赤枠に記載した説明は間違いであった事に気付いた 以下に訂正する しかし.. 式は 結果的には正しいので安心して下さい 磁場 の存在下でのT 状態のハミルトニアン は ゼーマン項 と時間に依存するスピン-スピン相互作用の項 との和となる..=7.. g S = g S z = S z g

More information

スペクトルに対応する英語はスペクトラム(spectrum)です

スペクトルに対応する英語はスペクトラム(spectrum)です 7. ハミング窓とフラットトップ窓の等価ノイズ帯域幅 (ENBW) (1) Hamming 窓 Hamming 窓は次式で表されます MaTX にも関数が用意されています win = 0.54-0.46*cos(2*PI*[k/(N-1)); ただし k=0,1,---,n-1 N=256; K=[0:N-1]; w=0.54-0.46*cos(2*pi*k/(n-1)); mgplot_reset(1);

More information

医用工学概論  Medical Engineering (ME)   3年前期の医用工学概論実習と 合わせ、 医療の現場で使用されている 医用機器を正しく安全に使用するために必要な医用工学(ME)の 基礎知識を習得する。

医用工学概論  Medical Engineering (ME)   3年前期の医用工学概論実習と 合わせ、 医療の現場で使用されている 医用機器を正しく安全に使用するために必要な医用工学(ME)の 基礎知識を習得する。 http://chtgkato3.med.hokudai.ac.jp/kougi/me_practice/ EXCEL でリサージュ曲線のシミュレーションを行う Excel を開いて Aカラムのセル1 に (A1に) t と入力. (Aカラム( 列 ) に時間 ( 秒 ) を入れる ) ツールバーの中央揃えボタンを押すと 文字がセルの中央に配置される. Aカラムのセル2,3,4に (A2 A3 A4

More information

Microsoft Word - Stattext07.doc

Microsoft Word - Stattext07.doc 7 章正規分布 正規分布 (ormal dstrbuto) は 偶発的なデータのゆらぎによって生じる統計学で最も基本的な確率分布です この章では正規分布についてその性質を詳しく見て行きましょう 7. 一般の正規分布正規分布は 平均と分散の つの量によって完全に特徴付けられています 平均 μ 分散 の正規分布は N ( μ, ) 分布とも書かれます ここに N は ormal の頭文字を 表わしています

More information

Microsoft PowerPoint _量子力学短大.pptx

Microsoft PowerPoint _量子力学短大.pptx . エネルギーギャップとrllouゾーン ブリルアン領域,t_8.. 周期ポテンシャル中の電子とエネルギーギャップ 簡単のため 次元に間隔 で原子が並んでいる結晶を考える 右方向に進行している電子の波は 間隔 で規則正しく並んでいる原子が作る格子によって散乱され 左向きに進行する波となる 波長 λ が の時 r の反射条件 式を満たし 両者の波が互いに強め合い 定在波を作る つまり 式 式を満たす波は

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

計測コラム emm182号用

計測コラム emm182号用 計測コラム emm182 号用 計測に関するよくある質問から - 第 9 回パワースペクトル密度の計算方法 当計測コラムでは 当社お客様相談室によくお問い合わせいただくご質問をとりあげ 回答内容をご紹介しています 今回は FFT 解析により得られたパワースペクトルからパワースペクトル密度 (PSD) を計算する方法をご紹介します ランダム信号などの周期的ではない信号 ( 連続スペクトルをもつ信号 )

More information

<4D F736F F D F2095A F795AA B B A815B837D839382CC95FB92F68EAE2E646F63>

<4D F736F F D F2095A F795AA B B A815B837D839382CC95FB92F68EAE2E646F63> 1/8 平成 3 年 3 月 4 日午後 6 時 11 分 10 複素微分 : コーシー リーマンの方程式 10 複素微分 : コーシー リーマンの方程式 9 複素微分 : 正則関数 で 正則性は複素数 z の関数 f ( z) の性質として導き出しまし た 複素数 z は つの実数, で表され z i 数 u, v で表され f ( z) u i 複素数 z と つの実数, : z + i + です

More information

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと 567_ 次曲線の三角関数による媒介変数表示 次曲線の三角関数による媒介変数表示 次曲線 ( 放物線 楕円 双曲線 ) の標準形の, についての方程式と, 三角関数による媒介変数表示は次のように対応している.. 放物線 () 4 p (, ) ( ptn, ptn ) (). 楕円. 双曲線 () () (, p p ), tn tn (, ) ( cos, sin ) (, ), tn cos (,

More information

Microsoft PowerPoint - LectureB1handout.ppt [互換モード]

Microsoft PowerPoint - LectureB1handout.ppt [互換モード] 本講義のスコープ 都市防災工学 後半第 回 : イントロダクション 千葉大学大学院工学研究科建築 都市科学専攻都市環境システムコース岡野創 耐震工学の専門家として知っていた方が良いが 敷居が高く 入り口で挫折しがちな分野をいくつか取り上げて説明 ランダム振動論 地震波形に対する構造物応答の理論的把握 減衰と地震応答 エネルギーバランス 地震動の各種スペクトルの相互関係 震源モデル 近年では震源モデルによる地震動予測が良く行われている

More information

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える 共振回路 概要 回路は ラジオや通信工学 などに広く使われる この回路の目的は 特定の周波数のときに大きな電流を得ることである 使い方には 周波数を設定し外へ発する 外部からの周波数に合わせて同調する がある このように 周波数を扱うことから 交流を考える 特に ( キャパシタ ) と ( インダクタ ) のそれぞれが 周波数によってインピーダンス *) が変わることが回路解釈の鍵になることに注目する

More information

(3) E-I 特性の傾きが出力コンダクタンス である 添え字 は utput( 出力 ) を意味する (4) E-BE 特性の傾きが電圧帰還率 r である 添え字 r は rrs( 逆 ) を表す 定数の値は, トランジスタの種類によって異なるばかりでなく, 同一のトランジスタでも,I, E, 周

(3) E-I 特性の傾きが出力コンダクタンス である 添え字 は utput( 出力 ) を意味する (4) E-BE 特性の傾きが電圧帰還率 r である 添え字 r は rrs( 逆 ) を表す 定数の値は, トランジスタの種類によって異なるばかりでなく, 同一のトランジスタでも,I, E, 周 トランジスタ増幅回路設計入門 pyrgt y Km Ksaka 005..06. 等価回路についてトランジスタの動作は図 のように非線形なので, その動作を簡単な数式で表すことができない しかし, アナログ信号を扱う回路では, 特性グラフのの直線部分に動作点を置くので線形のパラメータにより, その動作を簡単な数式 ( 一次式 ) で表すことができる 図. パラメータトランジスタの各静特性の直線部分の傾きを数値として特性を表したものが

More information

Microsoft PowerPoint - 第06章振幅変調.pptx

Microsoft PowerPoint - 第06章振幅変調.pptx 通信システムのモデル コミュニケーション工学 A 第 6 章アナログ変調方式 : 振幅変調 変調の種類振幅変調 () 検波出力の信号対雑音電力比 (S/N) 送信機 送信メッセージ ( 例えば音声 ) をアナログまたはディジタル電気信号に変換. 変調 : 通信路で伝送するのに適した周波数帯の信号波形へ変換. 受信機フィルタで邪魔な雑音を除去し, 処理しやすい電圧まで増幅. 復調 : もとの周波数帯の電気信号波形に変換し,

More information

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の FDTD 解析法 (Matlab 版 2 次元 PML) プログラム解説 v2.11 1. 概要 FDTD 解析における吸収境界である完全整合層 (Perfectl Matched Laer, PML) の定式化とプログラミングを2 次元 TE 波について解説する PMLは異方性の損失をもつ仮想的な物質であり 侵入して来る電磁波を逃さず吸収する 通常の物質と接する界面でインピーダンスが整合しており

More information

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 積分定数を 0 とすること 1 f(t) = sin t 2 f(t) = A sin t 3 f(t)

More information

チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用

チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用 チェビシェフ多項式の 変数への拡張と公開鍵暗号 Ell 暗号 への応用 Ⅰ. チェビシェフ Chbhv Chbhv の多項式 より であるから よって ここで とおくと coθ iθ coθ iθ iθ coθcoθ 4 4 iθ iθ iθ iθ iθ i θ i θ i θ i θ co θ co θ} co θ coθcoθ co θ coθ coθ したがって が成り立つ この漸化式と であることより

More information

大気環境シミュレーション

大気環境シミュレーション 第 3 回 (Q) 各自 eelを用いて 次の漸化式 + = の解の初期値依存性を調べよ.は50まで () 0 =.0 () 0 =.5 (3) 0 =.0 締切 04 年 月 6 日 ( 月 ) 夕方まで 提出先 347 室 オーバーフロー失敗ゴメンなさい (Q) 各自 eelを用いて 次の漸化式 + = の解の初期値依存性を調べよ.は50まで () 0 =.330 () 0 =.33 (3) 0

More information

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

Chapter 版 Maxima を用いた LC のインピーダンス測定について [ 目的 ] 電気通信大学 先進理工学科の2 年次後期に実施される電気 電子回路実験において L,C のインピーダンス測定を実施している この実験項目について 無料ソフトの Maxima を用い

Chapter 版 Maxima を用いた LC のインピーダンス測定について [ 目的 ] 電気通信大学 先進理工学科の2 年次後期に実施される電気 電子回路実験において L,C のインピーダンス測定を実施している この実験項目について 無料ソフトの Maxima を用い Chapter 2 2016.10.14 版 Maxima を用いた LC のインピーダンス測定について [ 目的 ] 電気通信大学 先進理工学科の2 年次後期に実施される電気 電子回路実験において L,C のインピーダンス測定を実施している この実験項目について 無料ソフトの Maxima を用いることで 理論解析と実験値の比較が可能である また 近年のパソコンの性能の向上により Maxima の実行処理速度が大幅に改善された

More information

<4D F736F F F696E74202D2091E6824F82518FCD E838B C68CEB82E894AD90B B2E >

<4D F736F F F696E74202D2091E6824F82518FCD E838B C68CEB82E894AD90B B2E > 目次 参考文献安達著 : 通信システム工学, 朝倉書店,7 年. ディジタル変調. ディジタル伝送系モデル 3. 符号判定誤り確率 4. 元対称通信路 安達 : コミュニケーション符号理論 安達 : コミュニケーション符号理論 変調とは?. ディジタル変調 基底帯域 ( ベースバンド ) 伝送の信号波形は零周波数付近のスペクトルを持っている. しかし, 現実の大部分の通信路は零周波数付近を殆ど伝送することができない帯域通信路とみなされる.

More information

Microsoft PowerPoint - spe1_handout10.ppt

Microsoft PowerPoint - spe1_handout10.ppt 目次 信号処理工学 Ⅰ 第 回 : ディジタルフィルタ 電気通信大学電子工学専攻電子知能システム学講座 問題は何か? フィルタとは? 離散時間システムとディジタルフィルタ ディジタルフィルタの種類 FIRフィルタの設計 長井隆行 問題は何か? 初心に戻る o.4 のスライド 重要なことは? 所望の信号を得るためにどのようなシステムにすれば良いか? 安定性を保つ必要もある ノイズ除去の例 周波数領域で見る

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動 / 平成 9 年 3 月 4 日午後 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 t t - x x - t, x 静止静止静止静止 を導いた これを 図の場合に当てはめると t - x x - t t, x t + x x + t t, x (5.) (5.) (5.3) を得る

More information

解答速報数学 2017 年度大阪医科大学 ( 前期 ) 一般入学試験 1 (1) 0, 8 1 e9 進学塾 0t= $ e e 0t= 11 2e -1 1 = 2 e 0t= -11 dy dx = -2 - t te 3t 2-1 = = ビッグバン dy (2) x

解答速報数学 2017 年度大阪医科大学 ( 前期 ) 一般入学試験 1 (1) 0, 8 1 e9 進学塾 0t= $ e e 0t= 11 2e -1 1 = 2 e 0t= -11 dy dx = -2 - t te 3t 2-1 = = ビッグバン dy (2) x 解答速報数学 07 年度大阪医科大学 ( 前期 ) 一般入学試験 () 0, 8 9 0t= $ - - 0t= - = 0t= - dx = - - t t t - = = () x 軸と平行 dt =- - t t =0. t=0, x=0, y= dx y 軸と平行 dt = t -=0. t=$ U, x=p U, y= - ( 複号同順 ) () t dx = - t - t - より,

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

Microsoft PowerPoint - ロボットの運動学forUpload'C5Q [互換モード]

Microsoft PowerPoint - ロボットの運動学forUpload'C5Q [互換モード] ロボットの運動学 順運動学とは 座標系の回転と並進 同次座標変換行列 Denavit-Hartenberg の表記法 多関節ロボットの順運動学 レポート課題 & 中間試験について 逆運動学とは ヤコビアン行列 運動方程式 ( 微分方程式 ) ロボットの運動学 動力学 Equation of motion f ( ( t), ( t), ( t)) τ( t) 姿勢 ( 関節角の組合せ ) Posture

More information

参考書 (1) 中村, 山本, 吉田 : ウェーブレットによる信号処理と画像処理, 共立出版 応用の紹介とプログラムリストが中心, 理論的背景はほとんどなし 意味不明の比喩を多用 各時代 各国別に美女を探すのが窓フーリエ変換である 応用テーマ : 不連続信号検出, 相関の検出, ノイズ除去, 画像デ

参考書 (1) 中村, 山本, 吉田 : ウェーブレットによる信号処理と画像処理, 共立出版 応用の紹介とプログラムリストが中心, 理論的背景はほとんどなし 意味不明の比喩を多用 各時代 各国別に美女を探すのが窓フーリエ変換である 応用テーマ : 不連続信号検出, 相関の検出, ノイズ除去, 画像デ Wavelet 変換 伊藤 彰則 aito@fw.ipsj.or.jp 1 参考書 (1) 中村, 山本, 吉田 : ウェーブレットによる信号処理と画像処理, 共立出版 応用の紹介とプログラムリストが中心, 理論的背景はほとんどなし 意味不明の比喩を多用 各時代 各国別に美女を探すのが窓フーリエ変換である 応用テーマ : 不連続信号検出, 相関の検出, ノイズ除去, 画像データ圧縮, 劣化画像復元

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

スライド 1

スライド 1 データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小

More information

スライド 1

スライド 1 データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える

More information

Microsoft PowerPoint - 複素数.pptx

Microsoft PowerPoint - 複素数.pptx 00 年 月 9 日 ( 金 第 時限 平成 年度物質科学解析第 7 回 複素数 冨田知志 0. なぜ複素数か?. 虚数単位. 複素数の計算. オイラーの公式. 複素平面 5. 級数での複素数 ( オイラーの公式 の活用 6. 量子力学で出てくる複素数の例 0. なぜ複素数か? 量子論 ( 量子力学 で不可欠だから参照 : 光ナノサイエンスコアI 古典論や電気回路でも複素数は使うただしそれはあくまでも数学的道具

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 単振り子の振動の近似解と厳密解 -/ テーマ H: 単振り子の振動の近似解と厳密解. 運動方程式図 のように, 質量 m のおもりが糸で吊り下げられている時, おもりには重力 W と糸の張力 が作用しています. おもりは静止した状態なので,W と F は釣り合った状態注 ) になっています. すなわち, W です.W は質量 m と重力加速度

More information

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある

More information

Microsoft PowerPoint - 計測2.ppt [互換モード]

Microsoft PowerPoint - 計測2.ppt [互換モード] Ⅱ データ変換と信号処理 1. アナログとデジタル 5. 周波数解析 2. オペアンプ 5.2 離散フーリエ変換 2.1 加算 減算回路 5.3 窓関数 2.2 微分 積分回路 6. ラプラス変換とz 変換 3. 変換器 ( アナログ入出力 ) 6.1 ラプラス変換 6.2 z 変換 3.3 サンプル ホールド回路 7. 信号処理 3.4 アナログ マルチプレクサ 7.1 不規則信号 4. データ変換

More information

Microsoft PowerPoint - LectureB1_17woAN.pptx

Microsoft PowerPoint - LectureB1_17woAN.pptx 本講義の範囲 都市防災工学 後半第 回 : 導入 確率過程の基礎 千葉大学大学院工学研究院都市環境システムコース岡野創 http://oko-lb.tu.chib-u.c.jp/oshibousi/. ランダム振動論 地震動を不規則波形 ( 確率過程 ) と捉えて, 構造物の地震応答を評価する理論. 震源モデルによる地震動評価 断層の動きを仮定して, 断層から発せられる地震動を評価する方法 ( 運動学的モデル

More information

物理演習問題

物理演習問題 < 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が

More information

20~22.prt

20~22.prt [ 三クリア W] 辺が等しいことの証明 ( 円周角と弦の関係利用 ) の の二等分線がこの三角形の外接円と交わる点をそれぞれ とするとき 60 ならば であることを証明せよ 60 + + 0 + 0 80-60 60 から ゆえに 等しい長さの弧に対する弦の長さは等しいから [ 三クリア ] 方べきの定理 接線と弦のなす角と円周角を利用 線分 を直径とする円 があり 右の図のように の延長上の点

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

memo

memo 数理情報工学特論第一 機械学習とデータマイニング 4 章 : 教師なし学習 3 かしまひさし 鹿島久嗣 ( 数理 6 研 ) kashima@mist.i.~ DEPARTMENT OF MATHEMATICAL INFORMATICS 1 グラフィカルモデルについて学びます グラフィカルモデル グラフィカルラッソ グラフィカルラッソの推定アルゴリズム 2 グラフィカルモデル 3 教師なし学習の主要タスクは

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

問 題

問 題 数学 出題のねらい 数と式, 図形, 関数, 資料の活用 の 4 領域について, 基礎的な概念や原理 法則の理解と, それらに基づき, 数学的に考察したり, 表現したり, 処理したりする力をみることをねらいとした () 数と式 では, 数の概念についての理解の程度, 文字を用いた式を処理したり, 文字を用いて式に表現したりする力, 目的に応じて式を変形する力をみるものとした () 図形 では, 平面図形や空間図形についての理解の程度,

More information

1. 線形シフト不変システムと z 変換 ここで言う システム とは? 入力数列 T[ ] 出力数列 一意変換 ( 演算子 ) 概念的には,, x 2, x 1, x 0, x 1, x 2, を入力すると, y 2, y 1, y 0, y 1, y 2, が出力される. 線形システム : 線形シ

1. 線形シフト不変システムと z 変換 ここで言う システム とは? 入力数列 T[ ] 出力数列 一意変換 ( 演算子 ) 概念的には,, x 2, x 1, x 0, x 1, x 2, を入力すると, y 2, y 1, y 0, y 1, y 2, が出力される. 線形システム : 線形シ 1. 線形シフト不変システムと z 変換 ここで言う システム とは? 入力数列 T[ ] 出力数列 一意変換 ( 演算子 ) 概念的には,, x 2, x 1, x, x1, x2, を入力すると, y 2, y 1, y, y1, y2, が出力される. 線形システム : 線形システムの例 x nxn 1 yn= 2 線形でないシステムの例 xn yn={ 2 xn xn othewise なぜ線形システム?

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) デルタ関数. ローレンツ関数. ガウス関数 3. Sinc 関数 4. Sinc 関数 5. 指数関数 6. 量子力学 : デルタ関数 7. プレメリの公式 8. 電磁気学 : デルタ関数 9. デルタ関数 : スケール 微分 デルタ関数 (delta function) ( ) δ ( ) ( ), δ ( ), δ ( ), δ ( ) f x x dx

More information

初めてのプログラミング

初めてのプログラミング Excel の使い方 2 ~ 数式の入力 グラフの作成 ~ 0. データ処理とグラフの作成 前回は エクセルを用いた表の作成方法について学びました 今回は エクセルを用いたデータ処理方法と グラフの作成方法について学ぶことにしましょう 1. 数式の入力 1 ここでは x, y の値を入力していきます まず 前回の講義を参考に 自動補間機能を用いて x の値を入力してみましょう 補間方法としては A2,

More information

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル 時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル

More information

画像解析論(2) 講義内容

画像解析論(2) 講義内容 画像解析論 画像解析論 東京工業大学長橋宏 主な講義内容 信号処理と画像処理 二次元システムとその表現 二次元システムの特性解析 各種の画像フィルタ 信号処理と画像処理 画像解析論 処理の応答 記憶域 入出力の流れ 信号処理系 実時間性が求められる メモリ容量に対する制限が厳しい オンラインでの対応が厳しく求められる 画像処理系 ある程度の処理時間が許容される 大容量のメモリ使用が容認され易い オフラインでの対応が容認され易い

More information

Microsoft Word - mathtext8.doc

Microsoft Word - mathtext8.doc 8 章偏微分と重積分 8. 偏微分とは これまで微分を考える際 関数は f という形で 関数値がつの変数 に依存している場合のみを扱ってきました しかし一般に変数はつとは決まっておらず f のように 複数の変数を持つ関数も考えなければなりません そ こでこの節では今まで学んできた微分を一般化させ 複数の変数に対応した偏微分と呼ばれるものについて説明します これまでの微分を偏微分と区別したいとき 常微分という呼び方を用います

More information

2018年度 2次数学セレクション(微分と積分)

2018年度 2次数学セレクション(微分と積分) 08 次数学セレクション問題 [ 東京大 ] > 0 とし, f = x - x とおく () x で f ( x ) が単調に増加するための, についての条件を求めよ () 次の 条件を満たす点 (, b) の動きうる範囲を求め, 座標平面上に図示せよ 条件 : 方程式 f = bは相異なる 実数解をもつ 条件 : さらに, 方程式 f = bの解を < < とすると > である -- 08 次数学セレクション問題

More information

2018年度 東京大・理系数学

2018年度 東京大・理系数学 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母

More information

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft PowerPoint - H22制御工学I-2回.ppt 制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

機構学 平面機構の運動学

機構学 平面機構の運動学 問題 1 静止座標系 - 平面上を運動する節 b 上に2 定点,Bを考える. いま,2 点の座標は(0,0),B(50,0) である. 2 点間の距離は 50 mm, 点の速度が a 150 mm/s, 点 Bの速度の向きが150 である. 以下の問いに答えよ. (1) 点 Bの速度を求めよ. (2) 瞬間中心を求めよ. 節 b a (0,0) b 150 B(50,0) 問題 1(1) 解答 b

More information

第1章 単 位

第1章  単  位 H. Hmno 問題解答 問題解答. 力の釣合い [ 問題.] V : sin. H :.cos. 7 V : sin sin H : cos cos cos 上第 式より これと第 式より.. cos V : sin sin H : coscos cos 上第 式より これと第 式より.98. cos [ 問題.] :. V :. : 9 9. V :. : sin V : sin 8.78 H

More information