Chapter 版 Maxima を用いた LC のインピーダンス測定について [ 目的 ] 電気通信大学 先進理工学科の2 年次後期に実施される電気 電子回路実験において L,C のインピーダンス測定を実施している この実験項目について 無料ソフトの Maxima を用い

Size: px
Start display at page:

Download "Chapter 版 Maxima を用いた LC のインピーダンス測定について [ 目的 ] 電気通信大学 先進理工学科の2 年次後期に実施される電気 電子回路実験において L,C のインピーダンス測定を実施している この実験項目について 無料ソフトの Maxima を用い"

Transcription

1 Chapter 版 Maxima を用いた LC のインピーダンス測定について [ 目的 ] 電気通信大学 先進理工学科の2 年次後期に実施される電気 電子回路実験において L,C のインピーダンス測定を実施している この実験項目について 無料ソフトの Maxima を用いることで 理論解析と実験値の比較が可能である また 近年のパソコンの性能の向上により Maxima の実行処理速度が大幅に改善された Maxima を用いて 計算方法と計算結果を示すことで 実験レポートの考察のヒントにして 実験内容の理解を深めることが目的である [ 目次 ] 以下の 8 節から構成されています 2-1 コイルにおけるインピーダンスの大きさと周波数の関係 2-2 実験データとコイルにおけるインピーダンスと周波数の関係 2-3 コイルにおけるインピーダンスの位相と周波数の関係 2-4 実験データとコイルにおけるインピーダンスの位相と周波数の関係 2-5 コンデンサにおけるインピーダンスの大きさと周波数の関係 2-6 実験データとコンデンサにおけるインピーダンスの大きさと周波数の関係 2-7 コンデンサにおけるインピーダンスの位相と周波数の関係 2-8 実験データとコンデンサにおけるインピーダンスの位相と周波数の関係 課題について 課題解答例 1-A) コイルのインピーダンスの大きさにおける誤差の評価 1-B) コイルの位相計算に含まれる誤差の評価について

2 2-1 コイルにおけるインピーダンスの大きさと周波数の関係 [ 目的 ] 周波数依存性のグラフを表示する [ 結果 ] 変数をすべて消去する (%i1) kill(all); 直列抵抗 :r が存在するコイルのインピーダンスを z とする Fig.1 計算する回路図 (%i1) z:r+%i*w*l; 変数は 正の値と仮定する (%i2) assume(r>0,l>0); Cabs 関数をもちいて 大きさを計算する (%i3) absl:cabs(z); 内部抵抗 :r=0.1ohm インダクタンス :L=1mH を代入する (%i4) ev(absl,r:0.1,l:0.001); 角周波数 :w を周波数 :f に変換する (%i5) ratsubst(2*%pi*f,w,%o4);

3 周波数の関数として インピーダンスを定義する (%i6) define(azl(f),%o5); 以上で 周波数依存する関数が定義できたので インピーダンスと周波数の関係のグラフを表示する グラフの軸を log-log で表示する (%i7) wxplot2d(azl(f),[f,100,50*10^3], [logx],[logy], [xlabel,"frq"], [ylabel,"azl"], [gnuplot_preamble,"set grid"]); Log-log グラフで表示すると 直線状のグラフが確認できます Fig.2 計算結果のグラフ

4 2-2 実験データとコイルにおけるインピーダンスと周波数の関係 [ 目的 ] 理論値 実験結果と LCR メータの値を比較する [ 結果 ] 変数を初期化する (%i1) kill(all); インピーダンスを定義する (%i1) z:r+%i*w*l; Fig.1 計算する回路図 変数を正値と定義する (%i2) assume(r>0,l>0); 複素数の大きさを求める関数を使用 (%i3) absl:cabs(z); 値を代入 (%i4) ev(absl,r:0.1,l:0.001); 周波数に変換 (%i5) ratsubst(2*%pi*f,w,%o4);

5 周波数の関数を定義 (%i6) define(azl(f),%o5); 理論値を表示する (%i7) wxplot2d(azl(f),[f,100,50*10^3], [logx],[logy], [xlabel,"frq"], [ylabel,"azl"], [gnuplot_preamble,"set grid"]); Fig.2 理論グラフ 実験データをリスト型で入力する (%i8) datax:[500, 1000, 2000, 5000, 10000, 20000, 50000, ]; (%i9) datay :[ 3.28, 6.20, 12.04, 30.22, 60.12, , , ];

6 実験データを表示する (%i10) wxplot2d([discrete,datax,datay],[x,100,100*10^3], [logx],[logy],[style,points],[color,red],[gnuplot_preamble,"set grid"]); 理論値と実験値のグラフを表示する Fig.3 実験値グラフ (%i11) wxplot2d([azl(x),[discrete,datax,datay]], [x,100,100*10^3], [logx],[logy], [xlabel, "Frequency[Hz]"], [ylabel,"phase[deg.]"], [legend,false], [color,blue,red], [style,lines,points], [point_type,circule], [gnuplot_preamble,"set grid"]); Fig.4 理論と実験値グラフ

7 LCR メーター値をリスト型として入力する (%i12) datax1:[500, 1000, 2000, 5000, 10000, 20000, 50000, ]; (%i13) datay1 :[ , , , , , , , ]; 確認のためグラフで表示する (%i14) wxplot2d([discrete,datax1,datay1],[x,100,100*10^3], [logx],[logy],[style,points],[color,green],[gnuplot_preamble,"set grid"]); Fig.5 LCR 値のグラフ 最後に 実験データと理論値と LCR メーター値を同時に表示する (%i15) wxplot2d([azl(x),[discrete,datax,datay],[discrete,datax1,datay1]], [x,100,100*10^3], [logx],[logy], [xlabel, "Frequency[Hz]"], [ylabel,"phase[deg.]"], [legend,false], [color,blue,red,green], [style,lines,points,points], [point_type,circule], [gnuplot_preamble,"set grid"]);

8 Fig.6 理論 LCR 値 実験値グラフ [Maxima ファイルの加工について ] 以上の結果は Maxima ver.5.23 を使用しました この version での日本語入力について Export で html 出力後に Word を用いて編集しています

9 2-3 コイルにおけるインピーダンスの位相と周波数の関係 [ 目的 ] 位相の周波数依存性グラフを表示する [ 結果 ] すべての変数を初期化する (%i1) kill(all); インピーダンス z を定義する (%i1) z:r+%i*w*l; Fig.1 計算する回路図 変数を正の値と定義する (%i2) assume(r>0,l>0); 位相を計算する関数 carg 関数を用いる (%i3) thl:carg(z); 内部抵抗 :r=0.1ohm インダクタンス :L=1mH を代入する (%i4) ev(thl,r:0.1,l:0.001); 角周波数 :w を周波数 :f に変換する (%i5) ratsubst(2*%pi*f,w,%o4);

10 周波数 f の関数として 位相を定義する (%i6) define(thetal(f),%o5); 以上までに 関数の定義ができたので 位相と周波数の関係のグラフを表示する (%i7) wxplot2d(thetal(f)*180/%pi,[f,100,50*10^3], [logx], [xlabel,"frq"], [ylabel,"azl"], [gnuplot_preamble,"set grid"]); Fig.2 計算結果のグラフ 低周波で 純抵抗の性質に近似できるので 位相がゼロに近くなる

11 2-4 実験データとコイルにおけるインピーダンスの位相と周波数の関係 [ 目的 ] 理論値 実験結果と LCR メータの結果を比較する [ 結果 ] 変数の初期化 (%i1) kill(all); インピーダンスを定義 (%i1) z:r+%i*w*l; Fig.1 計算する回路図 変数は 正の値とする (%i2) assume(r>0,l>0); 複素数の位相を求める関数を使用する (%i3) thl:carg(z); 変数に 値を代入する 内部抵抗 :r=0.1ohm インダクタンス :L=1mH を代入する (%i4) ev(thl,r:1.0,l:0.001); 変数を周波数に変換 (%i5) ratsubst(2*%pi*f,w,%o4); 周波数の関数を定義する (%i6) define(thetal(f),%o5);

12 理論線を表示する (%i7) wxplot2d(thetal(f)*180/%pi,[f,100,50*10^3], [logx], [xlabel,"frq"], [ylabel,"azl"], [gnuplot_preamble,"set grid"]); 実験データをリストで定義して入力する Data from ,sagara Fig.2 計算結果のグラフ (%i8) datax:[500, 1000, 2000, 5000, 10000, 20000, 50000, ]; (%i9) datay :[ 75.6, 82.8, 86.4,90.0, 86.4, 89.3, 93.6, 90.0];

13 実験値を表示する (%i10) wxplot2d([discrete,datax,datay],[x,100,100*10^3], [logx],[style,points],[color,red],[gnuplot_preamble,"set grid"]); 理論値と実験値を表示する Fig.3 実験値のグラフ (%i11) wxplot2d([thetal(x)*180/%pi,[discrete,datax,datay]], [x,100,100*10^3], [logx], [xlabel, "Frequency[Hz]"], [ylabel,"phase[deg.]"], [legend,false], [color,blue,red], [style,lines,points], [point_type,circule], [gnuplot_preamble,"set grid"]); Fig.4 理論値と実験値のグラフ

14 LCR メーターの測定結果をリスト型で入力する LCR-meter Data from ,sagara (%i12) datax1:[500, 1000, 2000, 5000, 10000, 20000, 50000, ]; (%i13) datay1 :[ , , ,87.767, , , , ]; 実験値 理論値と LCR メーター値を同時に表示する (%i14) wxplot2d([thetal(x)*180/%pi,[discrete,datax,datay],[discrete,datax1,datay1]], [x,100,100*10^3], [logx], [xlabel, "Frequency[Hz]"], [ylabel,"phase[deg.]"], [legend,false], [color,blue,red,green], [style,lines,points,points], [point_type,circule], [gnuplot_preamble,"set grid"]); Fig.5 すべての結果のグラフ

15 2-5 コンデンサにおけるインピーダンスの大きさと周波数の関係 [ 目的 ] 周波数依存性のグラフを表示する [ 結果 ] 変数をすべて消去する (%i1) kill(all); 直列抵抗 :r が存在するコンデンサのインピーダンスを z とする (%i1) z:r+1/(%i*w*c); 変数は 正の値と仮定する Fig.1 計算する回路図 (%i2) assume(r>0,c>0); Cabs 関数をもちいて 大きさを計算する (%i3) absc:cabs(z); 内部抵抗 :r=0.01ohm キャパシタンス :C=1uF の値を代入する (%i4) ev(absc,r:0.01,c:0.1*10^-6); 角周波数 :w を周波数 :f に変換する (%i5) ratsubst(2*%pi*f,w,%o4);

16 周波数の関数として インピーダンスを定義する (%i6) define(absc(f),%o5); 以上で 周波数依存する関数が定義できたので インピーダンスと周波数の関係のグラフを表示する (%i7) wxplot2d(absc(f),[f,100,50*10^3], [logx],[logy], [xlabel,"frq"], [ylabel,"azl"], [gnuplot_preamble,"set grid"]); Fig.2 計算結果のグラフ 周波数の増加により インピーダンスが減少することが確認できる

17 2-6 実験データとコンデンサにおけるインピーダンスの大きさと周波数の関係 [ 目的 ] 理論値 実験結果と LCR メータの値を比較する [ 結果 ] 変数を初期化する (%i15) kill(all); インピーダンスを定義する (%i1) z:r+1/(%i*w*c); 変数を正値と定義する (%i2) assume(r>0,c>0); Fig.1 計算する回路図 複素数の大きさを求める関数を使用 (%i3) absc:cabs(z); 容量 C=0.1uF と等価抵抗 r=0.01ohm の値を代入 (%i4) ev(absc,r:0.01,c:0.1*10^-6); 周波数に変換 (%i5) ratsubst(2*%pi*f,w,%o4);

18 周波数の関数を定義 (%i6) define(absc(f),%o5); 理論値を表示する (%i7) wxplot2d(absc(f),[f,100,50*10^3], [logx],[logy], [xlabel,"frq"], [ylabel,"azl"], [gnuplot_preamble,"set grid"]); Fig.2 理論グラフ 実験データをリスト型で入力する (%i8) datax:[500, 1000, 2000, 5000, 10000, 20000, 50000, ]; (%i9) datay :[ , , , , , 79.44, 31.48, 15.85];

19 実験データを表示する (%i10) wxplot2d([discrete,datax,datay],[x,100,100*10^3], [logx],[logy],[style,points],[color,red],[gnuplot_preamble,"set grid"]); 理論値と実験値のグラフを表示する (%i11) wxplot2d([absc(x),[discrete,datax,datay]], [x,100,100*10^3], [logx],[logy], [xlabel, "Frequency[Hz]"], [ylabel," Z [ohm]"], [legend,false], [color,blue,red], [style,lines,points], [point_type,circule], [gnuplot_preamble,"set grid"]); Fig.3 実験値グラフ Fig.4 理論と実験値グラフ

20 LCR メーター値をリスト型として入力する (%i12) datax1:[500, 1000, 2000, 5000, 10000, 20000, 50000, ]; (%i13) datay1 :[ , , , , , , , ]; 最後に 実験データと理論値と LCR メーター値を同時に表示する (%i14) wxplot2d([absc(x),[discrete,datax,datay],[discrete,datax1,datay1]], [x,100,100*10^3], [logx],[logy], [xlabel, "Frequency[Hz]"], [ylabel," Z [ohm]"], [legend,false], [color,blue,red,green], [style,lines,points,points], [point_type,circule], [gnuplot_preamble,"set grid"]); Fig.5 理論 LCR 値 実験値グラフ

21 2-7 コンデンサにおけるインピーダンスの位相と周波数の関係 [ 目的 ] 周波数依存性のグラフを表示する [ 結果 ] すべての変数を初期化する (%i1) kill(all); インピーダンス z を定義する (%i1) z:r+1/(%i*w*c); Fig.1 計算する回路図 変数を正の値と定義する (%i2) assume(r>0,c>0); 位相を計算する関数 carg 関数を用いる (%i3) thc:carg(z); 内部抵抗 :r=0.01ohm キャパシタンス :C=0.1uF の数値を代入する (%i4) ev(thc,r:0.01,c:0.1*10^-6); 角周波数 :w を周波数 :f に変換する (%i5) ratsubst(2*%pi*f,w,%o4);

22 周波数 f の関数として 位相を定義する (%i6) define(thetac(f),%o5); 以上までに 関数の定義ができたので 位相と周波数の関係のグラフを表示する (%i7) wxplot2d(thetac(f)*180/%pi,[f,100,50*10^3], [logx], [xlabel,"frq"], [ylabel,"azl"], [gnuplot_preamble,"set grid"]); Fig.2 計算結果のグラフ 周波数の増加により 純抵抗に近似できるので ゼロに近づくことがわかる

23 2-8 実験データとコンデンサにおけるインピーダンスの位相と周波数の関係 [ 目的 ] 理論値 実験結果と LCR メータの値を比較する [ 結果 ] 変数を初期化する (%i15) kill(all); インピーダンスを定義する (%i1) z:r+1/(%i*w*c); 変数を正値と定義する (%i2) assume(r>0,c>0); Fig.1 計算する回路図 複素数の大きさを求める関数を使用 (%i3) thc:carg(z); 容量 C=0.1uF, 直列抵抗 r=0.3 ohm の値を代入する (%i4) ev(thc,r:0.3,c:0.1*10^-6); 周波数に変換 (%i5) ratsubst(2*%pi*f,w,%o4);

24 周波数の関数を定義 (%i6) define(thetac(f),%o5); 理論値を表示する (%i7) wxplot2d(thetac(f)*180/%pi,[f,100,50*10^3], [logx], [xlabel,"frq"], [ylabel,"phase[deg.]"], [gnuplot_preamble,"set grid"]); 実験データをリスト型で入力する Fig.2 理論グラフ (%i8) datax:[500,1000,2000,5000,10*10^3,20*10^3,50*10^3,100*10^3]; (%i9) datay:[-86.4,-82.8,-89.3,-86.4,-90,-89.3,-86.4,-86.4];

25 実験データを表示する (%i10) wxplot2d([discrete,datax,datay],[x,100,1*10^6], [logx],[style,points],[color,red],[gnuplot_preamble,"set grid"]); 理論値と実験値のグラフを表示する Fig.3 実験値グラフ (%i11) wxplot2d([thetac(x)*180/%pi,[discrete,datax,datay]], [x,100,1*10^6], [logx], [xlabel, "Frequency[Hz]"], [ylabel,"phase[deg.]"], [legend,false], [color,blue,red], [style,lines,points], [point_type,circule], [gnuplot_preamble,"set grid"]); Fig.4 理論と実験値グラフ

26 LCR メーター値をリスト型として入力する (%i12) datax1:[500,1000,2000,5000,10*10^3,20*10^3,50*10^3,100*10^3]; (%i13) datay1:[ , , , , , , , ]; 最後に 実験データと理論値と LCR メーター値を同時に表示する (%i14) wxplot2d([thetac(x)*180/%pi,[discrete,datax,datay],[discrete,datax1,datay1]], [x,100,1*10^6], [logx], [xlabel, "Frequency[Hz]"], [ylabel,"phase[deg.]"], [legend,false], [color,blue,red,green], [style,lines,points,points], [point_type,circule], [gnuplot_preamble,"set grid"]); Fig.5 理論 LCR 値 実験値グラフ

27 Chapter2 課題について 理論との相違を考慮するために 誤差の計算をする 誤差の計算により 理論値と一致するのかしないのか? の考察が可能になる 1) 誤差を評価せよ 1-A) コイルのインピーダンスの大きさにおける誤差の評価をせよ 1-B) コイルの位相計算に含まれる誤差の評価をせよ 1-C) コンデンサのインピーダンスの大きさにおける誤差の評価をせよ 1-D) コンデンサの位相計算に含まれる誤差の評価をせよ

28 課題解答例 1-A) コイルのインピーダンスの大きさにおける誤差の評価 [ 目的 ] 実験データに含まれる誤差について評価する [ 手順と結果 ] 変数の初期化する (%i1) kill(all); インピーダンスは以下の式で計算できる Impedance : Z=VA/VB *R 誤差は 以下で計算できる The Error : f=f(x0,x1,x2,... xn) df^2=(df/dx0*delt(x0))^2+(df/dx1*delt(x1))^2...+(df/dxn*delt(xn))^2 インピーダンス :Z を定義する (%i1) Z:VA/VB*R; 各変数 VB,VA,R の微分項を計算する (%i2) dva:diff(z,va); (%i3) dvb:diff(z,vb); (%i4) dr:diff(z,r); 元の式で割ることで 相対誤差の計算を考える (%i5) d1:dva/z;

29 (%i6) d2:dvb/z; (%i7) d3:dr/z; それぞれの誤差を deltava,deltavb,deltar とする 相対誤差は 次の式で計算できる (deltaz/z)^2 = (deltava/va)^2 + (deltavb/vb)^2+(deltar/r)^2 以下の様に 相対誤差が定義できる (%i8) deltazz:(d1*deltava)^2+(d2*deltavb)^2+(d3*deltar)^2; 式の簡単化を実行する (%i9) expand(deltazz); それぞれの変数について 相対誤差を仮定する VA は 1% 相対誤差として, deltava/va=0.01 VB は 1% 相対誤差として deltavb/vb=0.01 最後に R は 10% 相対誤差として, deltar/r=0.1 を代入する (%i10) dzz:ev(deltazz,deltavb:0.01*vb,deltava:0.01*va,deltar:0.1*r); 相対誤差を % で求める (%i11) dzzsq:sqrt(dzz)*100; 測定データを入力する 周波数を datax に代入する (%i12) datax:[500, 1000, 2000, 5000, 10000, 20000, 50000, ]; 計算したインピーダンスを datay に代入する (%i13) datay :[ 3.28, 6.20, 12.04, 30.22, 60.12, , , ];

30 各値の誤差を計算する (%i14) dy:datay*sqrt(dzz); 別々のリストを [x1,y2], [xn,yn] データ形式に変換する Ref. [1] E. L. Woollett,"Maxima by Example Ch.1, Getting Started" (%i15) dataxy:map("[",datax,datay); x-y データをグラフ表示する Ref. [2] (%i16) wxplot2d([discrete,dataxy]); Fig.1 実験値のグラフ表示 誤差を誤差棒で表示するために package の draw を読み込む (%i17) load(draw);

31 x-y データリスト形式に変換する (%i18) errdatay:map("[",datax,datay,dy); 実験値と誤差棒を同時に表示する (%i19) wxdraw2d( xrange=[200,200*10^3], yrange=[1,1*10^3], xlabel="f[hz]", ylabel=" Z ohm", logx=true, logy=true, grid =true, error_type =y, errors(errdatay), /* 2nd graph for point*/ color = red, point_size = 2, point_type = circle, points_joined = true, points(dataxy) ); Fig.2 実験値と誤差棒のグラフ表示

32 課題解答例 1-B) コイルの位相計算に含まれる誤差の評価について [ 目的 ] 位相に含まれる誤差を評価して グラフに表示する [ 手順と結果 ] 変数の初期化する (%i1) kill(all); 位相の計算式を示す Phase : phi=360*dt*f 多変数における誤差の計算を以下に示す The Error : f=f(x0,x1,x2,... xn) df^2=(df/dx0*delt(x0))^2+(df/dx1*delt(x1))^2...+(df/dxn*delt(xn))^2 式を定義する (%i1) phi:360*dt*f; 各変数の微分係数を計算する (%i2) ddt:diff(phi,dt); (%i3) df:diff(phi,f); 変数の誤差を元の式で割り 相対値で表す (%i4) d1:ddt/phi; (%i5) d2:df/phi;

33 各変数の誤差を deltadt, deltaf とする 相対誤差は 以下で定義できる (deltaphi/phi)^2 = (deltadt/dt)^2 + (deltaf/f)^2 以上を定義する (%i6) deltaphi:(d1*deltadt)^2+(d2*deltaf)^2; 式の簡単化を実行する (%i7) expand(deltaphi); 値を代入する 時間 dt を 10% error にして deltadt/dt=0.1 周波数 f が 1% error にして deltaf/f=0.01 とする (%i8) dphi:ev(deltaphi,deltadt:0.1*dt,deltaf:0.01*f); 相対誤差を % 表示で求める (%i9) dphisq:sqrt(dphi)*100; 次に 測定データを定義する はじめに 周波数を datax に代入する (%i10) datax:[500, 1000, 2000, 5000, 10000, 20000, 50000, ]; 計算値の位相を datay に代入する (%i11) datay :[ 75.6, 82.8, 86.4,90.0, 86.4, 89.3, 93.6, 90.0]; 位相の誤差を計算する (%i12) dy:datay*sqrt(dphi); 実験データを [x1,y1]. [xn,yn] 形式に変換する Ref.[1] E. L. Woollett,"Maxima by Example Ch.1, Getting Started" (%i13) dataxy:map("[",datax,datay);

34 実験データをグラフ表示する Ref. [2] (%i14) wxplot2d([discrete,dataxy]); Fig.1 実験データのグラフ表示 誤差棒を表示するために package の draw を読み込む (%i15) load(draw); 計算した誤差を x-y 形式に変換する (%i16) errdatay:map("[",datax,datay,dy);

35 Phase[deg.] 実験測定値と誤差棒を同時する (%i17) wxdraw2d( xrange=[100,200*10^3], yrange=[50,100], xlabel="f[hz]", ylabel=" Z ohm", logx=true, grid =true, error_type =y, errors(errdatay), /* 2nd graph for point*/ color = red, point_size = 2, point_type = circle, points_joined = true, points(dataxy) ); Fig.2 実験データと誤差棒のグラフ表示

アナログ回路 I 参考資料 版 LTspice を用いたアナログ回路 I の再現 第 2 回目の内容 電通大 先進理工 坂本克好 [ 目的と内容について ] この文章の目的は 電気通信大学 先進理工学科におけるアナログ回路 I の第二回目の実験内容について LTspice を用

アナログ回路 I 参考資料 版 LTspice を用いたアナログ回路 I の再現 第 2 回目の内容 電通大 先進理工 坂本克好 [ 目的と内容について ] この文章の目的は 電気通信大学 先進理工学科におけるアナログ回路 I の第二回目の実験内容について LTspice を用 アナログ回路 I 参考資料 2014.04.27 版 LTspice を用いたアナログ回路 I の再現 第 2 回目の内容 電通大 先進理工 坂本克好 [ 目的と内容について ] この文章の目的は 電気通信大学 先進理工学科におけるアナログ回路 I の第二回目の実験内容について LTspice を用いて再現することである 従って LTspice の使用方法などの詳細は 各自で調査する必要があります

More information

各章において 計算方法と計算結果のみを示し 考察などは記述していない また Maxima の Download インストールなど基本操作は他の参考文献を参照して頂きたい さらに 使用している命令とその option についての詳細は 各自で調査して頂きたい 最後に Maxima, wxmaxima

各章において 計算方法と計算結果のみを示し 考察などは記述していない また Maxima の Download インストールなど基本操作は他の参考文献を参照して頂きたい さらに 使用している命令とその option についての詳細は 各自で調査して頂きたい 最後に Maxima, wxmaxima アナログ回路 I 参考資料 2018.04.03 版 Maxima を用いた増幅率の計算 坂本克好電通大 Ⅲ 類 [ 背景 ] PC の高性能化により従来時間が掛かった計算も可能になっている 特に Mathematica Maple などの有料の数式処理タイプの計算ソフトでも計算時間が大幅に短縮されている さらに 無料の数式処理ソフトに Maxima があり このソフトでも同様に計算時間が大幅に短縮された

More information

Chapter 版 Maxima を用いたダイオード トランジスタの解析について [ 目的 ] 電気通信大学 Ⅲ 類の2 年次後期に実施される理工学基礎実験において ダイオード トランジスタ を実施している この実験項目について 無料ソフトの Maxima を用いることで

Chapter 版 Maxima を用いたダイオード トランジスタの解析について [ 目的 ] 電気通信大学 Ⅲ 類の2 年次後期に実施される理工学基礎実験において ダイオード トランジスタ を実施している この実験項目について 無料ソフトの Maxima を用いることで Chapter 5 2017.12.18 版 Maxima を用いたダイオード トランジスタの解析について [ 目的 ] 電気通信大学 Ⅲ 類の2 年次後期に実施される理工学基礎実験において ダイオード トランジスタ を実施している この実験項目について 無料ソフトの Maxima を用いることで 理論解析と実験値の比較が可能である また 近年のパソコンの性能の向上により Maxima の実行処理速度が大幅に改善された

More information

Microsoft Word - H26mse-bese-exp_no1.docx

Microsoft Word - H26mse-bese-exp_no1.docx 実験 No 電気回路の応答 交流回路とインピーダンスの計測 平成 26 年 4 月 担当教員 : 三宅 T A : 許斐 (M2) 齋藤 (M) 目的 2 世紀の社会において 電気エネルギーの占める割合は増加の一途をたどっている このような電気エネルギーを制御して使いこなすには その基礎となる電気回路をまず理解する必要がある 本実験の目的は 電気回路の基礎特性について 実験 計測を通じて理解を深めることである

More information

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える 共振回路 概要 回路は ラジオや通信工学 などに広く使われる この回路の目的は 特定の周波数のときに大きな電流を得ることである 使い方には 周波数を設定し外へ発する 外部からの周波数に合わせて同調する がある このように 周波数を扱うことから 交流を考える 特に ( キャパシタ ) と ( インダクタ ) のそれぞれが 周波数によってインピーダンス *) が変わることが回路解釈の鍵になることに注目する

More information

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 となるように半固定抵抗器を調整する ( ゼロ点調整のため ) 図 1 非反転増幅器 2010 年度版物理工学実験法

More information

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt とは何か 0 年 月 5 日目次へ戻る 正弦波の微分 y= in を時間 で微分します は正弦波の最大値です 合成関数の微分法を用い y= in u u= と置きますと y y in u in u (co u co になります in u の は定数なので 微分後も残ります 合成関数の微分法ですので 最後に u を に戻しています 0[ra] の co 値は [ra] の in 値と同じです その先の角

More information

DVIOUT

DVIOUT 第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため

More information

オペアンプの容量負荷による発振について

オペアンプの容量負荷による発振について Alicatin Nte オペアンプシリーズ オペアンプの容量負荷による発振について 目次 :. オペアンプの周波数特性について 2. 位相遅れと発振について 3. オペアンプの位相遅れの原因 4. 安定性の確認方法 ( 増幅回路 ) 5. 安定性の確認方法 ( 全帰還回路 / ボルテージフォロア ) 6. 安定性の確認方法まとめ 7. 容量負荷による発振の対策方法 ( 出力分離抵抗 ) 8. 容量負荷による発振の対策方法

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

2. 測定対象物 ( 単層ソレノイド コイル ) 線径 mm の PEW 線を 50mmφ の塩ビパイプに 0 回スペース巻きしてコイルを作製しま した Fig. Single layer coil under test 計算によると (

2. 測定対象物 ( 単層ソレノイド コイル ) 線径 mm の PEW 線を 50mmφ の塩ビパイプに 0 回スペース巻きしてコイルを作製しま した Fig. Single layer coil under test 計算によると ( アンテナアナライザ (AA-30) を用いたコイルの Q 測定 Koji Takei (JGPLD), Oct. 3, 204. はじめに RigExpert 社のアンテナアナライザ (AA-シリーズ) は 50Ω のリターンロスブリッジにより測定対象物の基準波に対する振幅と位相を検出し これから複素インピーダンスや VSWR を算出しています しかも設定した範囲を周波数スキャンしてくれるので短時間で有用な測定が完了する優れものです

More information

s と Z(s) の関係 2019 年 3 月 22 日目次へ戻る s が虚軸を含む複素平面右半面の値の時 X(s) も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z(s) にしていま す リアクタンス回路の駆動点リアクタンス X(s)

s と Z(s) の関係 2019 年 3 月 22 日目次へ戻る s が虚軸を含む複素平面右半面の値の時 X(s) も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z(s) にしていま す リアクタンス回路の駆動点リアクタンス X(s) と Z の関係 9 年 3 月 日目次へ戻る が虚軸を含む複素平面右半面の値の時 X も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z にしていま す リアクタンス回路の駆動点リアクタンス X も Z に含まれます Z に正弦波電流を入れた時最大値 抵抗 コイル コンデンサーで作られた受動回路の ラプラスの世界でのインピーダンスを Z とします

More information

(Microsoft Word - PLL\203f\203\202\216\221\227\277-2-\203T\203\223\203v\203\213.doc)

(Microsoft Word - PLL\203f\203\202\216\221\227\277-2-\203T\203\223\203v\203\213.doc) ディジタル PLL 理論と実践 有限会社 SP システム 目次 - 目次 1. はじめに...3 2. アナログ PLL...4 2.1 PLL の系...4 2.1.1 位相比較器...4 2.1.2 ループフィルタ...4 2.1.3 電圧制御発振器 (VCO)...4 2.1.4 分周器...5 2.2 ループフィルタ抜きの PLL 伝達関数...5 2.3 ループフィルタ...6 2.3.1

More information

Microsoft PowerPoint - 基礎電気理論 07回目 11月30日

Microsoft PowerPoint - 基礎電気理論 07回目 11月30日 基礎電気理論 7 回目 月 30 日 ( 月 ) 時限 次回授業 時間 : 月 30 日 ( 月 )( 本日 )4 時限 場所 : B-3 L,, インピーダンス教科書 58 ページから 64 ページ http://ir.cs.yamanashi.ac.jp/~ysuzuki/kisodenki/ 授業評価アンケート ( 中間期評価 ) NS の授業のコミュニティに以下の項目について記入してください

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information

スライド 1

スライド 1 センサー工学 2012 年 11 月 28 日 ( 水 ) 第 8 回 知能情報工学科横田孝義 1 センサー工学 10/03 10/10 10/17 10/24 11/7 11/14 11/21 11/28 12/05 12/12 12/19 1/09 1/16 1/23 1/30 2 前々回から振動センサーを学習しています 今回が最終回の予定 3 振動の測定教科書 計測工学 の 194 ページ 二つのケースがある

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

Microsoft Word - gnuplot

Microsoft Word - gnuplot GNUPLOT の使い方 I. 初期設定 GNUPLOT を最初に起動させたときの Window の文字は小さいので使い難い そこで 文字フォントのサイズを設定します 1.GNUPLOT を起動させます ( 右のような Window が起動します ) 2. 白い領域のどこでも構わないので ポインタを移動して マウスの右ボタンをクリックします ( 右のようにメニューが起動します ) 3. Choose

More information

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 積分定数を 0 とすること 1 f(t) = sin t 2 f(t) = A sin t 3 f(t)

More information

Microsoft PowerPoint - 物情数学C(2012)(フーリエ前半)_up

Microsoft PowerPoint - 物情数学C(2012)(フーリエ前半)_up 年度物理情報工学科 年生秋学期 物理情報数学 C フーリエ解析 (Fourier lysis) 年 月 5 日 フーリエ ( フランス ) (768~83: ナポレオンの時代 ) 歳で Ecole Polyechique ( フランス国立理工科大学 ) の教授 ナポレオンのエジプト遠征に従軍 (798) 87: 任意の関数は三角関数によって級数展開できる という フーリエ級数 の概念を提唱 ( 論文を提出

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://orito-buturi.com/ NO.3 今日の目的 : 1 微分方程式をもう一度 三角関数の近似について学ぶ 3 微分の意味を考える 5. 起電力 の電池, 抵抗値 の抵抗, 自己インダクタンス のコイルとスイッチを用いて右図のような回路をつくった 始めスイッチは 開かれている 時刻 t = でスイッチを閉じた 以下の問に答えよ ただし, 電流はコイルに

More information

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2 第 4 週コンボリューションその, 正弦波による分解 教科書 p. 6~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問. 以下の図にならって, と の δ 関数を図示せよ. - - - δ () δ ( ) - - - 図 δ 関数の図示の例 δ ( ) δ ( ) δ ( ) δ ( ) δ ( ) - - - - - - - -

More information

Microsoft PowerPoint pptx

Microsoft PowerPoint pptx 4.2 小信号パラメータ 1 電圧利得をどのように求めるか 電圧ー電流変換 入力信号の変化 dv BE I I e 1 v be の振幅から i b を求めるのは難しい? 電流増幅 電流ー電圧変換 di B di C h FE 電流と電圧の関係が指数関数になっているのが問題 (-RC), ただし RL がない場合 dv CE 出力信号の変化 2 pn 接合の非線形性への対処 I B 直流バイアスに対する抵抗

More information

3.5 トランジスタ基本増幅回路 ベース接地基本増幅回路 C 1 C n n 2 R E p v V 2 v R E p 1 v EE 0 VCC 結合コンデンサ ベース接地基本増幅回路 V EE =0, V CC =0として交流分の回路 (C 1, C 2 により短絡 ) トランジスタ

3.5 トランジスタ基本増幅回路 ベース接地基本増幅回路 C 1 C n n 2 R E p v V 2 v R E p 1 v EE 0 VCC 結合コンデンサ ベース接地基本増幅回路 V EE =0, V CC =0として交流分の回路 (C 1, C 2 により短絡 ) トランジスタ 3.4 の特性を表す諸量 入力 i 2 出力 負荷抵抗 4 端子 (2 端子対 ) 回路としての の動作量 (i) 入力インピーダンス : Z i = (ii) 電圧利得 : A v = (iii) 電流利得 : A i = (iv) 電力利得 : A p = i 2 v2 i 2 i 2 =i 2 (v) 出力インピーダンス : Z o = i 2 = 0 i 2 入力 出力 出力インピーダンスの求め方

More information

<8AEE B43979D985F F196DA C8E323893FA>

<8AEE B43979D985F F196DA C8E323893FA> 基礎電気理論 4 回目 月 8 日 ( 月 ) 共振回路, 電力教科書 4 ページから 4 ページ 期末試験の日程, 教室 試験日 : 月 4 日 ( 月 ) 時限 教室 :B-4 試験範囲 : 教科書 4ページまでの予定 http://ir.cs.yamanashi.ac.jp/~ysuzuki/kisodenki/ 特別試験 ( 予定 ) 月 5 日 ( 水 ) 学習日 月 6 日 ( 木 )

More information

Microsoft PowerPoint - ip02_01.ppt [互換モード]

Microsoft PowerPoint - ip02_01.ppt [互換モード] 空間周波数 周波数領域での処理 空間周波数 (spatial frquncy) とは 単位長さ当たりの正弦波状の濃淡変化の繰り返し回数を表したもの 正弦波 : y sin( t) 周期 : 周波数 : T f / T 角周波数 : f 画像処理 空間周波数 周波数領域での処理 波形が違うと 周波数も違う 画像処理 空間周波数 周波数領域での処理 画像処理 3 周波数領域での処理 周波数は一つしかない?-

More information

Microsoft Word - サイリスタ設計

Microsoft Word - サイリスタ設計 サイリスタのゲート回路設計 サイリスタはパワエレ関係の最初に出てくる素子ですが その駆動用ゲート回路に関する文献が少なく 学 生が使いこなせないでいる ゲート回路の設計例 ( ノイズ対策済み ) をここに記しておく 基本的にサイリス タのゲート信号は電流で ON させるものです 1. ノイズ対策済みゲート回路基本回路の説明 図 1 ノイズ対策済みゲート回路基本回路 1.1 パルストランス パルストランスは

More information

Microsoft PowerPoint pptx

Microsoft PowerPoint pptx 第 5 章周波数特性 回路が扱える信号の周波数範囲の解析 1 5.1 周波数特性の解析方法 2 周波数特性解析の必要性 利得の周波数特性 増幅回路 ( アナログ回路 ) は 信号の周波数が高くなるほど増幅率が下がり 最後には 増幅しなくなる ディジタル回路は 高い周波数 ( クロック周波数 ) では論理振幅が小さくなり 最後には 不定値しか出力できなくなる 回路がどの周波数まで動作するかによって 回路のスループット

More information

Microsoft Word - planck定数.doc

Microsoft Word - planck定数.doc . 目的 Plck 定数 光電効果についての理解を深める. また光電管を使い実際に光電効果を観察し,Plck 定数および仕事関数を求める.. 課題 Hg- スペクトルランプから出ている何本かの強いスペクトル線のなかから, フィルターを使い, 特定の波長域のスペクトル線を選択し, それぞれの場合について光電効果により飛び出してくる電子の最高エネルギーを測定する. この測定結果から,Plck 定数 h

More information

第6章 実験モード解析

第6章 実験モード解析 第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法

More information

きれいなグラフを作ろう!gnuplot 入門 1. 基本 1.1. プロット :test.plt plot x, sin(x) 1.2. データファイルのプロット 1:data.plt plot "data.dat" 1.3. データファイルのプロット 2:data2.plt plot "data2

きれいなグラフを作ろう!gnuplot 入門 1. 基本 1.1. プロット :test.plt plot x, sin(x) 1.2. データファイルのプロット 1:data.plt plot data.dat 1.3. データファイルのプロット 2:data2.plt plot data2 きれいなグラフを作ろう!gnuplot 入門 1. 基本 1.1. プロット :test.plt plot x, sin(x) 1.2. データファイルのプロット 1:data.plt plot "data.dat" 1.3. データファイルのプロット 2:data2.plt plot "data2.dat" using 1:3 2. 例題 2.1. カラーマップ :color_map.plt #

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

画像解析論(2) 講義内容

画像解析論(2) 講義内容 画像解析論 画像解析論 東京工業大学長橋宏 主な講義内容 信号処理と画像処理 二次元システムとその表現 二次元システムの特性解析 各種の画像フィルタ 信号処理と画像処理 画像解析論 処理の応答 記憶域 入出力の流れ 信号処理系 実時間性が求められる メモリ容量に対する制限が厳しい オンラインでの対応が厳しく求められる 画像処理系 ある程度の処理時間が許容される 大容量のメモリ使用が容認され易い オフラインでの対応が容認され易い

More information

画像類似度測定の初歩的な手法の検証

画像類似度測定の初歩的な手法の検証 画像類似度測定の初歩的な手法の検証 島根大学総合理工学部数理 情報システム学科 計算機科学講座田中研究室 S539 森瀧昌志 1 目次 第 1 章序論第 章画像間類似度測定の初歩的な手法について.1 A. 画素値の平均を用いる手法.. 画素値のヒストグラムを用いる手法.3 C. 相関係数を用いる手法.4 D. 解像度を合わせる手法.5 E. 振れ幅のヒストグラムを用いる手法.6 F. 周波数ごとの振れ幅を比較する手法第

More information

(3) E-I 特性の傾きが出力コンダクタンス である 添え字 は utput( 出力 ) を意味する (4) E-BE 特性の傾きが電圧帰還率 r である 添え字 r は rrs( 逆 ) を表す 定数の値は, トランジスタの種類によって異なるばかりでなく, 同一のトランジスタでも,I, E, 周

(3) E-I 特性の傾きが出力コンダクタンス である 添え字 は utput( 出力 ) を意味する (4) E-BE 特性の傾きが電圧帰還率 r である 添え字 r は rrs( 逆 ) を表す 定数の値は, トランジスタの種類によって異なるばかりでなく, 同一のトランジスタでも,I, E, 周 トランジスタ増幅回路設計入門 pyrgt y Km Ksaka 005..06. 等価回路についてトランジスタの動作は図 のように非線形なので, その動作を簡単な数式で表すことができない しかし, アナログ信号を扱う回路では, 特性グラフのの直線部分に動作点を置くので線形のパラメータにより, その動作を簡単な数式 ( 一次式 ) で表すことができる 図. パラメータトランジスタの各静特性の直線部分の傾きを数値として特性を表したものが

More information

Microsoft Word - Chap17

Microsoft Word - Chap17 第 7 章化学反応に対する磁場効果における三重項機構 その 7.. 節の訂正 年 7 月 日. 節 章の9ページ の赤枠に記載した説明は間違いであった事に気付いた 以下に訂正する しかし.. 式は 結果的には正しいので安心して下さい 磁場 の存在下でのT 状態のハミルトニアン は ゼーマン項 と時間に依存するスピン-スピン相互作用の項 との和となる..=7.. g S = g S z = S z g

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

スライド タイトルなし

スライド タイトルなし 第 9 回情報伝送工学 情報を持った信号の加工 ( フィルタ ) 高周波フィルタとはフィルタとは ある周波数の電磁波のみを通過させる回路 ( 部品 ) であり アンテナからの微小な信号を選択増幅するために 得に初段の増幅器前のフィルタには低損失な性能が要求される たとえば 下図におけるアンテナ直下に配置されているフィルタは アンテナから入力された信号のうち 必要な周波数帯域のみを受信回路に送り 一方送信回路から送られてきた信号を周波数の違いにより受信回路には入れず

More information

Microsoft Word - ㅎ㇤ㇺå®ı璃ㆨAIã†®æŁ°ç’ƒ.docx

Microsoft Word - ㅎ㇤ㇺå®ı璃ㆨAIã†®æŁ°ç’ƒ.docx ベイズの定理から AI の数理 ベイズ更新とロジステック曲線について 松本睦郎 ( 札幌啓成高等学校講師 ) Episode ロジステック曲線 菌やウイルスの増殖数や 人口増加等を表現する曲線の一つにロジステック曲線があります 例 シャーレの中で培養された大腸菌の数について考察する シャーレ内に栄養が十分に存在するとき 菌は栄養を吸収しながら 一定時間ごとに細胞分裂をして増 殖する 菌の数 u u(t)

More information

7-1 Digital IC のライブラリの準備について [ 目的 ] 実験では 74HC00 を使用するので SPICE モデルを入手する [ 方法 ] LTspice User site からライブラリとシンボルを Download します

7-1 Digital IC のライブラリの準備について [ 目的 ] 実験では 74HC00 を使用するので SPICE モデルを入手する [ 方法 ] LTspice User site からライブラリとシンボルを Download します 7-1 Digital IC のライブラリの準備について [ 目的 ] 実験では 74HC00 を使用するので SPICE モデルを入手する [ 方法 ] LTspice User site からライブラリとシンボルを Download します http://groups.yahoo.com/neo/groups/ltspice/files/%20lib/digital%2074hcxxx (( 注意

More information

Microsoft PowerPoint - 統計科学研究所_R_重回帰分析_変数選択_2.ppt

Microsoft PowerPoint - 統計科学研究所_R_重回帰分析_変数選択_2.ppt 重回帰分析 残差分析 変数選択 1 内容 重回帰分析 残差分析 歯の咬耗度データの分析 R で変数選択 ~ step 関数 ~ 2 重回帰分析と単回帰分析 体重を予測する問題 分析 1 身長 のみから体重を予測 分析 2 身長 と ウエスト の両方を用いて体重を予測 分析 1 と比べて大きな改善 体重 に関する推測では 身長 だけでは不十分 重回帰分析における問題 ~ モデルの構築 ~ 適切なモデルで分析しているか?

More information

板バネの元は固定にします x[0] は常に0です : > x[0]:=t->0; (1.2) 初期値の設定をします 以降 for 文処理のため 空集合を生成しておきます : > init:={}: 30 番目 ( 端 ) 以外については 初期高さおよび初速は全て 0 にします 初期高さを x[j]

板バネの元は固定にします x[0] は常に0です : > x[0]:=t->0; (1.2) 初期値の設定をします 以降 for 文処理のため 空集合を生成しておきます : > init:={}: 30 番目 ( 端 ) 以外については 初期高さおよび初速は全て 0 にします 初期高さを x[j] 機械振動論固有振動と振動モード 本事例では 板バネを解析対象として 数値計算 ( シミュレーション ) と固有値問題を解くことにより振動解析を行っています 実際の振動は振動モードと呼ばれる特定パターンが複数組み合わされますが 各振動モードによる振動に分けて解析を行うことでその現象を捉え易くすることが出来ます そこで 本事例では アニメーションを活用した解析結果の可視化も取り入れています 板バネの振動

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

数値計算法

数値計算法 数値計算法 008 4/3 林田清 ( 大阪大学大学院理学研究科 ) 実験データの統計処理その 誤差について 母集団と標本 平均値と標準偏差 誤差伝播 最尤法 平均値につく誤差 誤差 (Error): 真の値からのずれ 測定誤差 物差しが曲がっていた 測定する対象が室温が低いため縮んでいた g の単位までしかデジタル表示されない計りで g 以下 計りの目盛りを読み取る角度によって値が異なる 統計誤差

More information

周波数特性解析

周波数特性解析 周波数特性解析 株式会社スマートエナジー研究所 Version 1.0.0, 2018-08-03 目次 1. アナログ / デジタルの周波数特性解析................................... 1 2. 一巡周波数特性 ( 電圧フィードバック )................................... 4 2.1. 部分周波数特性解析..........................................

More information

Microsoft PowerPoint - 電力回路h ppt

Microsoft PowerPoint - 電力回路h ppt 電力回路 対称座標法 平成 年 6 月 日 単位値から実値への変換 単位値は, 実値をベース値で割って得る 実値は, 単位値にベース値を掛けて求まる 電流 ( A) 電流 ( p. u.) ベース電流 ( A) 電圧 ( ) 電圧 ( p. u.) ベース電圧 ( ) インピーダンス( Ω) インピーダンス( p. u.) ベースインピーダンス( Ω) 三相電力回路 三相一回線送電線の回路 回路図

More information

第 11 回 R, C, L で構成される回路その 3 + SPICE 演習 目標 : SPICE シミュレーションを使ってみる LR 回路の特性 C と L の両方を含む回路 共振回路 今回は講義中に SPICE シミュレーションの演習を併せて行う これまでの RC,CR 回路に加え,L と R

第 11 回 R, C, L で構成される回路その 3 + SPICE 演習 目標 : SPICE シミュレーションを使ってみる LR 回路の特性 C と L の両方を含む回路 共振回路 今回は講義中に SPICE シミュレーションの演習を併せて行う これまでの RC,CR 回路に加え,L と R 第 回,, で構成される回路その + SPIE 演習 目標 : SPIE シミュレーションを使ってみる 回路の特性 と の両方を含む回路 共振回路 今回は講義中に SPIE シミュレーションの演習を併せて行う これまでの, 回路に加え, と を組み合わせた回路, と の両方を含む回路について, 周波数応答の式を導出し, シミュレーションにより動作を確認する 直列回路 演習問題 [] インダクタと抵抗による

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

出力 V [V], 出力抵抗 [Ω] の回路が [Ω] の負荷抵抗に供給できる電力は, V = のとき最大 4 となる 有能電力は, 出力電圧が高いほど, 出力抵抗が小さいほど大きくなることがわかる 同様の関係は, 等価回路が出力インピーダンスを持つ場合も成立する 出力電圧が ˆ j t V e ω

出力 V [V], 出力抵抗 [Ω] の回路が [Ω] の負荷抵抗に供給できる電力は, V = のとき最大 4 となる 有能電力は, 出力電圧が高いほど, 出力抵抗が小さいほど大きくなることがわかる 同様の関係は, 等価回路が出力インピーダンスを持つ場合も成立する 出力電圧が ˆ j t V e ω 第 9 回,C, で構成される回路 目標 : 回路から取り出せる最大電力に関する補足説明回路の周波数特性 -C 一次遅れ回路 中間試験前までの講義と演習により, 素子の性質, 回路の動作を規定している法則, 複素関数による正弦波の表現とインピーダンスの概念など, 回路の動作を理解するための最低限の知識が得られた 今回は, 基礎的な概念の修得を優先して後回しにした項目の つである 回路から取り出せる最大電力

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 2017 年度 v1 1 機械工学実験実習 オペアンプの基礎と応用 オペアンプは, 世の中の様々な装置の信号処理に利用されています本実験は, 回路構築 信号計測を通し, オペアンプの理解をめざします オペアンプの回路 ( 音楽との関連 ) 入力信号 機能 - 振幅の増幅 / 低減 ( 音量調整 ) - 特定周波数の抽出 ( 音質の改善 ) - 信号の合成 ( 音の合成 ) - 信号の強化 ( マイクに入力される微弱な音信号の強化

More information

RMS(Root Mean Square value 実効値 ) 実効値は AC の電圧と電流両方の値を規定する 最も一般的で便利な値です AC 波形の実効値はその波形から得られる パワーのレベルを示すものであり AC 信号の最も重要な属性となります 実効値の計算は AC の電流波形と それによって

RMS(Root Mean Square value 実効値 ) 実効値は AC の電圧と電流両方の値を規定する 最も一般的で便利な値です AC 波形の実効値はその波形から得られる パワーのレベルを示すものであり AC 信号の最も重要な属性となります 実効値の計算は AC の電流波形と それによって 入門書 最近の数多くの AC 電源アプリケーションに伴う複雑な電流 / 電圧波形のため さまざまな測定上の課題が発生しています このような問題に対処する場合 基本的な測定 使用される用語 それらの関係について理解することが重要になります このアプリケーションノートではパワー測定の基本的な考え方やパワー測定において重要な 以下の用語の明確に定義します RMS(Root Mean Square value

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Microsoft PowerPoint - aep_1.ppt [互換モード]

Microsoft PowerPoint - aep_1.ppt [互換モード] 物理計測法特論 No.1 第 1 章 : 信号と雑音 本講義の主題 雑音の性質を理解することで 信号と雑音の大きさが非常に近い状態での信号の測定技術 : 微小信号計測 について学ぶ 講義の Web http://www.g-munu.t.u-tokyo.ac.jp/mio/note/sig_mes/tokuron.html 物理学の基本は実験事実の積み重ねである そして それは何かを測定することから始まる

More information

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする 相対性理論入門 Lorentz 変換 光がどのような座標系に対しても同一の速さ で進むことから導かれる座標の一次変換である. x, y, z, t ) の座標系が x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとすると, x A x wt) y y z z t Bx + Dt 弨弱弩弨弲弩弨弳弩弨弴弩 が成立する. 図 : 相対速度

More information

Microsoft PowerPoint - 配布資料・演習18.pptx

Microsoft PowerPoint - 配布資料・演習18.pptx 学年学科学籍番号氏名 宿題 ( 複素正弦波 jω ) メディアと信号処理第 回 ( 金田 ). 複素数とは 実数部と虚数部を持った数である 例えば 虚数単位を j と表すと 4+ j は複素数で 実数部は 4 で 虚数部が である 一般的に 実数部を 虚数部を とすると 複素数 z は z = + j と表される 複素数の 大きさ は 絶対値 (r jθ の r ) で定義される z の絶対値は z

More information

スライド 1

スライド 1 プリント回路基板の EMC 設計 京都大学大学院工学研究科 松嶋徹 EMC( 電磁的両立性 ): 環境電磁工学 EMC とは? 許容できないような電磁妨害波を, 如何なるものに対しても与えず, かつ, その電磁環境において満足に機能するための, 機器 装置またはシステムの能力 高 Immunity イミュニティ ( 耐性 ) 低 EMI 電磁妨害 EMS 電磁感受性 低 電磁妨害波によって引き起こされる機器

More information

<4D F736F F D2091E631348FCD B838A83478B C982E682E982D082B882DD946782CC89F090CD2E646F63>

<4D F736F F D2091E631348FCD B838A83478B C982E682E982D082B882DD946782CC89F090CD2E646F63> NAOSI: Ngski Uivrsiy's Ac il 電気回路講義ノート Auhor(s 辻, 峰男 Ciio 電気回路講義ノート ; 4 Issu D 4-4 U hp://hdl.hdl./69/3466 igh his docum is dowlodd hp://osi.lb.gski-u.c.jp 第 4 章フーリエ級数によるひずみ波の解析 フーリエ級数 (Fourir sris 周期関数

More information

Chap3.key

Chap3.key 区分求積法. 面積 ( )/ f () > n + n, S 長方形の和集合で近似 n f (n ) リーマン和 f (n ) 区分求積法 リーマン和 S S n n / n n f ()d リーマン積分 ( + ) + S (, f ( )) 微分の心 Zoom In して局所的な性質を調べる 積分の心 Zoom Ou して大域的な性質を調べる 曲線の長さ 領域の面積や体積 ある領域に含まれる物質の質量

More information

画像処理工学

画像処理工学 画像処理工学 画像の空間周波数解析とテクスチャ特徴 フーリエ変換の基本概念 信号波形のフーリエ変換 信号波形を周波数の異なる三角関数 ( 正弦波など ) に分解する 逆に, 周波数の異なる三角関数を重ねあわせることにより, 任意の信号波形を合成できる 正弦波の重ね合わせによる矩形波の表現 フーリエ変換の基本概念 フーリエ変換 次元信号 f (t) のフーリエ変換 変換 ( ω) ( ) ωt F f

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 多倍長計算手法 平成 年度第 四半期 今回はパラメータ の設定と精度に関してまとめて記述しました ループ積分と呼ばれる数値積分計算では 質量 の光子や質量が非常に小さい事はわかっているが その値は不明なニュートリノに対して赤外発散を防ぐため微小量を与えて計算しています この設定する微少量の値により 結果の精度及び反復に要する時間が大きく作用したり 誤った値を得る事があります ここでは典型的な つのケースで説明します

More information

Microsoft PowerPoint - H22制御工学I-10回.ppt

Microsoft PowerPoint - H22制御工学I-10回.ppt 制御工学 I 第 回 安定性 ラウス, フルビッツの安定判別 平成 年 6 月 日 /6/ 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の FDTD 解析法 (Matlab 版 2 次元 PML) プログラム解説 v2.11 1. 概要 FDTD 解析における吸収境界である完全整合層 (Perfectl Matched Laer, PML) の定式化とプログラミングを2 次元 TE 波について解説する PMLは異方性の損失をもつ仮想的な物質であり 侵入して来る電磁波を逃さず吸収する 通常の物質と接する界面でインピーダンスが整合しており

More information

Chap2

Chap2 逆三角関数の微分 Arcsin の導関数を計算する Arcsin I. 初等関数の微積分 sin [, ], [π/, π/] cos sin / (Arcsin ) 計算力の体力をつけよう π/ π/ E. II- 次の関数の導関数を計算せよ () Arccos () Arctan E. I- の解答 不定積分あれこれ () Arccos n log C C (n ) n e e C log (log

More information

固体物理2018-1NKN.key

固体物理2018-1NKN.key , `, m`, m s ` ` apple m` apple ` m` m s m s ± E H m x () () () A si x A si x () () () () H m x () aaac6ichve9bxqxejciriboeglooqufipmfcakpagacop8cemkbhy+yhv7vxvafhbldsrfeqefge+bk/agk/asumkgfmzuruq+bmxqpw+e58m7sivwlhcjjz/uwxkfhrumjq/fmkpowzsv8zmsjtprgraxqvgmfvbyjvrzgkesre9z/++obrixg5tvhxtrhiwahfqlv9ea8k5tjopqtyfsqygtfyyztithg6gq9bp5qo89ctuamhkjq7roxw+ykzxbsfocupwtuwztmfygqv6zatapsggiyaoqrkwqqhxbcgxjgicyociwicvqmphtqgaeuuswcgeylimgftmytjbkwhsxo8svrjuhzthfq9rwym58o8iifkk/lmvpff6lihr5epuj9bu9urp/+ritfbepvh9c+zxtgutgrwtgslpwub6wevk9xhkpuvlajh+9+sifmetqmeprdmv/yhfdg/hvfbgsjyaguwf+ut8igyqzmyr7v+yeswygibpfamvtvejc/9/6evz9k9bscwvomp/x5bvrq

More information

計算機シミュレーション

計算機シミュレーション . 運動方程式の数値解法.. ニュートン方程式の近似速度は, 位置座標 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます. 本来は が の極限をとらなければいけませんが, 有限の小さな値とすると 秒後の位置座標は速度を用いて, と近似できます. 同様にして, 加速度は, 速度 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます.

More information

2 A I / 58

2 A I / 58 2 A 2018.07.12 I 2 2018.07.12 1 / 58 I 2 2018.07.12 2 / 58 π-computer gnuplot 5/31 1 π-computer -X ssh π-computer gnuplot I 2 2018.07.12 3 / 58 gnuplot> gnuplot> plot sin(x) I 2 2018.07.12 4 / 58 cp -r

More information

Microsoft Word - 付録1誘導機の2軸理論.doc

Microsoft Word - 付録1誘導機の2軸理論.doc NAOSIE: Nagaaki Univity' Ac itl パワーエレクトロニクスと電動機制御入門 Autho( 辻, 峰男 Citation パワーエレクトロニクスと電動機制御入門 ; 15 Iu Dat 15 U http://hl.hanl.nt/169/55 ight hi ocumnt i ownloa http://naoit.lb.nagaaki-u.ac.jp 付録 1 誘導機の

More information

Taro-F25理論 印刷原稿

Taro-F25理論 印刷原稿 第 種理論 A 問題 ( 配点は 問題当たり小問各 点, 計 0 点 ) 問 次の文章は, 真空中の静電界に関する諸法則の微分形に関する記述である 文中の に当てはまるものを解答群の中から選びなさい 図のように, 直交座標系において電界の z 軸成分が零となるような電界について, y 平面の二次元で電位や電界を考える ここで,4 点 (h,0),(0,h), (- h,0),(0,-h) の電位がそれぞれ

More information

001-002_...j.f......_..

001-002_...j.f......_.. 1 2 1 Chapter of Export 1 10 2 12 3 14 4 16 5 18 6 20 7 22 8 24 9 26 10 28 11 30 12 32 13 34 14 36 15 38 16 40 17 42 18 44 19 46 3 20 48 21 50 22 52 23 54 24 56 25 58 26 60 27 62 28 64 29 66 30 68 Chapter

More information

プログラミング基礎

プログラミング基礎 C プログラミング Ⅱ 演習 2-1(a) BMI による判定 文字列, 身長 height(double 型 ), 体重 weight (double 型 ) をメンバとする構造体 Data を定義し, それぞれのメンバの値をキーボードから入力した後, BMI を計算するプログラムを作成しなさい BMI の計算は関数化すること ( ) [ ] [ ] [ ] BMI = 体重 kg 身長 m 身長

More information

Microsoft PowerPoint - 測量学.ppt [互換モード]

Microsoft PowerPoint - 測量学.ppt [互換モード] 8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,

More information

Data Explorerの使い方|国立教育政策研究所 National Institute for Educational Policy Research

Data Explorerの使い方|国立教育政策研究所 National Institute for Educational Policy Research Data Explorer の使い方 Data Explorer は 国際成人力調査 (Programme for the International Assessment of Adult Competencies=PIAAC) のコンソーシアムが提供する 2011 年に実施された PIAAC の調査結果のデータ集計及び集計結果の出力用ツールです Data Explorer は現在 英語のみで提供されています

More information

Microsoft PowerPoint - DigitalMedia2_3b.pptx

Microsoft PowerPoint - DigitalMedia2_3b.pptx Contents デジタルメディア処理 2 の概要 フーリエ級数展開と 離散とその性質 周波数フィルタリング 担当 : 井尻敬 とは ( ) FourierSound.py とは ( ) FourierSound.py 横軸が時間の関数を 横軸が周波数の関数に変換する 法 声周波数 周波数 ( 係数番号 ) 後の関数は元信号に含まれる正弦波の量を す 中央に近いほど低周波, 外ほどが 周波 中央 (

More information

絶対最大定格 (T a =25 ) 項目記号定格単位 入力電圧 V IN 消費電力 P D (7805~7810) 35 (7812~7815) 35 (7818~7824) 40 TO-220F 16(T C 70 ) TO (T C 25 ) 1(Ta=25 ) V W 接合部温度

絶対最大定格 (T a =25 ) 項目記号定格単位 入力電圧 V IN 消費電力 P D (7805~7810) 35 (7812~7815) 35 (7818~7824) 40 TO-220F 16(T C 70 ) TO (T C 25 ) 1(Ta=25 ) V W 接合部温度 3 端子正定電圧電源 概要 NJM7800 シリーズは, シリーズレギュレータ回路を,I チップ上に集積した正出力 3 端子レギュレータ ICです 放熱板を付けることにより,1A 以上の出力電流にて使用可能です 外形 特徴 過電流保護回路内蔵 サーマルシャットダウン内蔵 高リップルリジェクション 高出力電流 (1.5A max.) バイポーラ構造 外形 TO-220F, TO-252 NJM7800FA

More information

Microsoft Word - kogi10ex_main.docx

Microsoft Word - kogi10ex_main.docx 機能創造理工学 Ⅱ 期末試験 追試験問題 ( 病欠等による ) 途中の計算を必ず書こう 答えのみでは採点できない 問. 二次元面内を運動する調和振動子のラグランジアン L ( ) ( ) を 極座標, に変換し 極座標でのオイラーラグランジュ方程式を書こう ( 解く必要はない ) 但し, は定数であり また 極座標の定義は cos, sin である 問. 前問において極座標, に共役な一般化運動量,

More information

C 言語第 6 回 1 数値シミュレーション :2 階の微分方程式 ( シラバス10 11 回目 ) 1 2 階の微分方程式と差分方程式微分方程式を 2 d x dx + c = f ( x, t) 2 dt dt とする これを 2 つの 1 階の微分方程式に変更する ìdx = y 2 2 d

C 言語第 6 回 1 数値シミュレーション :2 階の微分方程式 ( シラバス10 11 回目 ) 1 2 階の微分方程式と差分方程式微分方程式を 2 d x dx + c = f ( x, t) 2 dt dt とする これを 2 つの 1 階の微分方程式に変更する ìdx = y 2 2 d C 言語第 6 回 1 数値シミュレーション : 階の微分方程式 ( シラバス10 11 回目 ) 1 階の微分方程式と差分方程式微分方程式を d x dx + c = f ( x, t) とする これを つの 1 階の微分方程式に変更する ìdx = y d x dx d x dx ï dt c f ( x, t) c f ( x, t) + = Þ = - + Þ í ï dy = - cy +

More information

Microsoft Word - 実験テキスト2005.doc

Microsoft Word - 実験テキスト2005.doc 7. プロセスの動特性 [Ⅰ] 目的液レベル制御実験および同シミュレーションを通して ステップ応答に基づくプロセス伝達関数の同定方法 ステップ応答法による PI 制御パラメータの調整方法 および PI 制御パラメータが制御性能へ与える影響について習熟する さらに 制御シミュレーションを通して むだ時間を有するプロセスに対するスミス補償型制御の有効性を確認する [Ⅱ] 理論 2.1 ステップ応答実験による伝達関数の同定

More information

第 5 章復調回路 古橋武 5.1 組み立て 5.2 理論 ダイオードの特性と復調波形 バイアス回路と復調波形 復調回路 (II) 5.3 倍電圧検波回路 倍電圧検波回路 (I) バイアス回路付き倍電圧検波回路 本稿の Web ページ ht

第 5 章復調回路 古橋武 5.1 組み立て 5.2 理論 ダイオードの特性と復調波形 バイアス回路と復調波形 復調回路 (II) 5.3 倍電圧検波回路 倍電圧検波回路 (I) バイアス回路付き倍電圧検波回路 本稿の Web ページ ht 第 章復調回路 古橋武.1 組み立て.2 理論.2.1 ダイオードの特性と復調波形.2.2 バイアス回路と復調波形.2.3 復調回路 (II).3 倍電圧検波回路.3.1 倍電圧検波回路 (I).3.2 バイアス回路付き倍電圧検波回路 本稿の Web ページ http://mybook-pub-site.sakura.ne.jp/radio_note/index.html 1 C 4 C 4 C 6

More information

FdText理科1年

FdText理科1年 中学理科 2 年 : オームの法則 [ http://www.fdtext.com/dat/ ] オームの法則 [ 要点 ] 電流: 電圧に比例 ( 電圧を 2 倍にすると電流は 2 倍になる ) ていこう : 抵抗の大きさに反比例 ( 抵抗を 2 倍にすると電流は半分になる ) 公式: 電流 (A)= 電圧 (V) 抵抗 (Ω) 抵抗 (Ω)= 電圧 (V) 電流 (A) 電圧 (V)= 抵抗 (Ω)

More information

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある

More information

高周波動作 (小信号モデル)

高周波動作 (小信号モデル) 平成 9 年度集積回路設計技術 次世代集積回路工学特論資料 高周波動作 小信号モデル 群馬大学松田順一 概要 完全 QS モデル 等価回路の導出 容量評価 - パラメータモデル NQSNon-Qua-Sac モデル NQS モデルの導出 NQS 高周波用 等価回路 RF アプリケーションへの考察 注 以下の本を参考に 本資料を作成 Yann T Operaon an Moeln of he MOS

More information

Microsoft Word - Zsp.doc

Microsoft Word - Zsp.doc 小型スピーカーのインピーダンス測定 (18 Nov. 2016) 立川敏明 格安で市販されているデジタルアンプは, 前報で報告したように 1), オーディオアンプとしては優れているが, それに駆動されるスピーカーは, 相対的に安価ではない 電気信号を音波に変えるスピーカーは, 人の聴覚に直接関連しているアナログ機器であるため, コストダウンが難い機器であると想像されるからである 今回は, 安価な小型スピーカーユニット

More information

LCR標準の遠隔校正(e-trace)実証実験

LCR標準の遠隔校正(e-trace)実証実験 1 LCR 標準の遠隔校正 (e-trace) 実証実験 長野県工業技術総合センター精密 電子技術部門松沢草介花岡健一下平隆 産業技術総合研究所計量標準総合センター中村安宏木藤量隆 日本電気計器検定所標準部坂上清一下山昭彦 この研究は 独立行政法人新エネルギー 産業技術総合開発機構の委託を受けて 計量器校正情報システムの開発研究 の一環として実施するものです 2 従来法 ( 持ち込み ) 校正の概念図

More information

理工学図書館後期 LS 講習会 きれいなグラフを作ろう! gnuplot 入門

理工学図書館後期 LS 講習会 きれいなグラフを作ろう! gnuplot 入門 理工学図書館後期 LS 講習会 きれいなグラフを作ろう! gnuplot 入門 gnuplot によるグラフ作成 1 gnuplot コマンド入力形式のグラフ作成ツール 豊富な出力形式を装備 研究や実験のデータ整理に便利 本講習の目的 gnuplot の魅力を体験してみよう! 本日の学習事項 2 1. gnuplotの基本的な使い方 gnuplotに慣れよう 2. スクリプトファイルを用いた使用法

More information

Microsoft PowerPoint - 9.Analog.ppt

Microsoft PowerPoint - 9.Analog.ppt 9 章 CMOS アナログ基本回路 1 デジタル情報とアナログ情報 アナログ情報 大きさ デジタル信号アナログ信号 デジタル情報 時間 情報処理システムにおけるアナログ技術 通信 ネットワークの高度化 無線通信, 高速ネットワーク, 光通信 ヒューマンインタフェース高度化 人間の視覚, 聴覚, 感性にせまる 脳型コンピュータの実現 テ シ タルコンヒ ュータと相補的な情報処理 省エネルギーなシステム

More information

電磁波レーダ法による比誘電率分布(鉄筋径を用いる方法)およびかぶりの求め方(H19修正)

電磁波レーダ法による比誘電率分布(鉄筋径を用いる方法)およびかぶりの求め方(H19修正) 電磁波レーダ法による比誘電率分布 ( 鉄筋径を用いる方法 ) およびかぶりの求め方 (H19 修正 ) 概要この方法は 測定した結果をエクセルに入力し 土研がホームページ上で公開し提供するソフトによって計算することを前提にしている 1. 適用電磁波レーダによってかぶりを求める際 鉄筋径を用いて比誘電率分布を求める方法を示す 注その比誘電率を用いてかぶりの補正値 ( 1) を求める方法を示す 注 1

More information

Microsoft PowerPoint - prog08.ppt

Microsoft PowerPoint - prog08.ppt プログラミング言語 2 第 07 回 (2007 年 06 月 25 日 ) 1 今日の配布物 片面の用紙 1 枚 今日の課題が書かれています 本日の出欠を兼ねています 2/27 1 今日やること http://www.tnlab.ice.uec.ac.jp/~s-okubo/class/language/ にアクセスすると 教材があります 2007 年 06 月 25 日分と書いてある部分が 本日の教材です

More information

Microsoft PowerPoint - ロボットの運動学forUpload'C5Q [互換モード]

Microsoft PowerPoint - ロボットの運動学forUpload'C5Q [互換モード] ロボットの運動学 順運動学とは 座標系の回転と並進 同次座標変換行列 Denavit-Hartenberg の表記法 多関節ロボットの順運動学 レポート課題 & 中間試験について 逆運動学とは ヤコビアン行列 運動方程式 ( 微分方程式 ) ロボットの運動学 動力学 Equation of motion f ( ( t), ( t), ( t)) τ( t) 姿勢 ( 関節角の組合せ ) Posture

More information

レベルシフト回路の作成

レベルシフト回路の作成 レベルシフト回路の解析 群馬大学工学部電気電子工学科通信処理システム工学第二研究室 96305033 黒岩伸幸 指導教官小林春夫助教授 1 ー発表内容ー 1. 研究の目的 2. レベルシフト回路の原理 3. レベルシフト回路の動作条件 4. レベルシフト回路のダイナミクスの解析 5. まとめ 2 1. 研究の目的 3 研究の目的 信号レベルを変換するレベルシフト回路の設計法を確立する このために 次の事を行う

More information

演習2

演習2 神戸市立工業高等専門学校電気工学科 / 電子工学科専門科目 数値解析 2017.6.2 演習 2 山浦剛 (tyamaura@riken.jp) 講義資料ページ h t t p://clim ate.aic s. riken. jp/m embers/yamaura/num erical_analysis. html 曲線の推定 N 次多項式ラグランジュ補間 y = p N x = σ N x x

More information

【FdData中間期末過去問題】中学数学2年(連立方程式計算/加減法/代入法/係数決定)

【FdData中間期末過去問題】中学数学2年(連立方程式計算/加減法/代入法/係数決定) FdData 中間期末 : 中学数学 年 : 連立方程式計算 [ 元 1 次方程式 / 加減法 / 代入法 / 加減法と代入法 / 分数などのある連立方程式 / A=B=C, 元連立方程式 / 係数の決定 ] [ 数学 年 pdf ファイル一覧 ] 元 1 次方程式 次の方程式ア~カの中から, 元 1 次方程式をすべて選べ ア y = 6 イ x y = 5 ウ xy = 1 エ x + 5 = 9

More information

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て . 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など

More information

スライド 1

スライド 1 データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える

More information

カイ二乗フィット検定、パラメータの誤差

カイ二乗フィット検定、パラメータの誤差 統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,

More information

intra-mart Accel Platform — ViewCreator ユーザ操作ガイド   第6版  

intra-mart Accel Platform — ViewCreator ユーザ操作ガイド   第6版   Copyright 2012 NTT DATA INTRAMART CORPORATION 1 Top 目次 intra-mart Accel Platform ViewCreator ユーザ操作ガイド第 6 版 2016-04-01 改訂情報 ViewCreator について基本的な設定データ参照一覧リスト集計クロス集計とグラフ集計データ参照へのショートカットスマートフォンからの参照 2 改訂情報

More information

図 2.Cat2 ケーブルの減衰特性 通常伝送線路の減衰特性は 1-1) 式のように 3つのパラメータで近似されます DC 抵抗表皮効果誘電損失 A + f*b + f*c 1-1) ところが仕様書の特性を見ると0~825MHz までは-5dB でフラット 5.1GHz までは直線的な減衰になってい

図 2.Cat2 ケーブルの減衰特性 通常伝送線路の減衰特性は 1-1) 式のように 3つのパラメータで近似されます DC 抵抗表皮効果誘電損失 A + f*b + f*c 1-1) ところが仕様書の特性を見ると0~825MHz までは-5dB でフラット 5.1GHz までは直線的な減衰になってい LTSPICE による HDMI コンプライアンステストシミュレーション シグナル工房 : www.signalkhobho.com 野田敦人 LTSPICE はリニアテクノロジー社のノード制限のないフリーの SPICE 解析ツールです これまで LTSPICE でサポートされている伝送線路モデルは無損失の TLINE か一定損失の LTLINE であるため 広帯域の周波数特性が必要なタイムドメインのアイパターンシミュレーションには使われてきませんでした

More information