観測量と物理量の関係.pptx
|
|
|
- ゆめじ くぬぎ
- 8 years ago
- Views:
Transcription
1 (I! F! ( (! "! (#, $ #, $!! di! d"! =!I! + B! (T ex T ex : "! n 2 / g 2 = exp(! h! n 1 / g 1 kt ex " I! ("! = I! (0e "! +! e ("! " #! B! [T ex ("! ]d " d! " = # " ds = h" 4$ %("(n dsb h" 1 12 [1! exp(! ] kt ex 0 "! (RL Eq.1.78
2 d! " = # " ds = h" 4$ %("(n dsb h" 1 12 [1! exp(! ] kt ex B 12 = cm -3 A 21 2h! 3 / c 2 = 32" 4 µ 12 3ch 2 d! " = 8# 3 µ 12 [ " c $("]dn 1[1! exp(! h" ] kt ex dn 1 =n 1 ds (n 1 cm -2 (line profile "v=c/[!$(!] d! = 8" 3 µ 12 (km s -1-1 dn 1 h# [1" exp(" ]!v kt ex d! " (RL Eq.1.78 (RL Eq ~ 1!!!("!!(" d! =1 "v/c=1/[!$ (!]!!! v I! "! (0 %! (& bg ($(!"0 "! ( "!!I! = I! " B! = e ("! "" # $! B! [T ex (" #! ]! d "#! " (1" e "! B! 0 T ex!i!!i! = I! " B! = (1" e "! [B! (T ex " B! ]! " = N 1 [ " c #("]8$ 3 µ 12 [1! exp(! h" kt ex ] B!! "" # (
3 "! F! F! = " I! (",#cos" d! cos# #=0 (cos# P! (#, $ ( F! = " I! (",#P! (",#d! P! (0, 0 =1 P! (#, $ (0, 0 $ % "! A = P! (",#d! P = 1 2 A ed! " I! (",#P! (",#d! A e A e $ % =& 2 ( P=kT A d! (! T A =! 2 2k 1 " I " (#,$P " (#,$d! =! 2 I "! A 2k "! =%! (T R T R (T B "! =2kT R /& 2! T A = 1 " T R (!,"P # (!,"d! = T R! A D A e #D 2 $ A #(&/D 2
4 "! F! = " I! P! (",#d! = I!! A T A = 1 " T R P! (",#d! = T R! A "! ($ s F! = " I!! d! = I!! S! S T A = 1! " P! (",#d! = T S R! A! S! A!I! = (1! e! " [B! (T ex! B! ]!T A = (1! e! " [T ex!t bg ] ( T A!T A T bg! "! T R =& 2 "! /2k T R T ( T R =! 2 I! 2k = h! k 1 exp(h! / kt!1 " f (T ( (T A ( (T R =T A */'
5 " I! ("! = I! (0e "! +! e ("! " #! B! [T ex ("! ]d " d! " = 8# 3 µ 12 0 [ " c $("]dn h" 1 [1! exp(! ] kt ex (!I = (1" e! [B " (T ex " B " ]! = 8" 3 µ 12 N 1 h# [1" exp(" ]!v kt ex "!!I = (1" e! [B " (T ex " B " ]! = 8" 3 µ 12 N 1 h# [1" exp(" ]!v kt ex n 1 n 2 ( n 1 n 2 i n i n 0 n i / n 0 = exp(-e i / kt k n i n i (rate equations (
6 (rate equations dn j dt dn j dt = (All transitions to j-(all transitions from j!=!0 =! [(Transition to j -(Transition from j]+! [(Transition to j -(Transition from j] Radiative dn j dt Collisional =![(A ij + B ij Jn i " B ji Jn j ]"![(A ji + B ji Jn j " B ij Jn i ]+!(C ij n i -C ji n j i> j i< j C ij i!j (s -1 ( (~80%~20% n (cm -3 v (cm/s ((v (cm 2 C ij = n <! ij v > i# j C ij n i = C ji n j C ij C ji = n j n i = g j g i exp(! E ij kt C ij = n <! ij v > v (( v C ij C ji = g j g i exp(! E ij kt k T k C ij (C ji
7 dn j dt =![(A ij + B ij Jn i! B ji Jn j ]!![(A ji + B ji Jn j! B ij Jn i ]+!(C ij n i -C ji n j = 0 i> j i< j J J n j I I n j n j ( 3 K I J n j I J ( I J ( n j i! j!i = (1" e! [B " (T ex " B " ] # B " (T ex " B " ("" T ex (n(h 2, N mol, T k (T ex =T k "" ( T k 12 CO ( 12 CO ( ( T k (J, K=(1, 1(2, 2 CO
8 !I = (1" e! [B " (T k " B " ] #![B " (T k " B " ]! = 8" 3 µ 12 N 1 h# [1" exp(" ]!v kt k N 1 T k ("v T k ( N 1 N mol (cm -2 N mol = N 1 Z g 1 exp(!e 10 kt k Z"E CO C 18 O CO (isotopologues 13 CO C 18 O Dickman (1978, ApJS, 37, CO (J=1-0 (Av; N H =2$10 21 Av cm -2 N(H 2 = (5.0 ± 2.5!10 5!N( 13 CO N( 13 CO = N 0 Z =!v( 13 CO!" (1" 0!Z 8! 3 µ 2 1" exp("h# / kt k N(H 2 (cm -2 (cm 2 H 2 ($
9 !I = (1" e! [B " (T ex " B " ]! = 8" 3 µ 12 N 1 h# [1" exp(" ]!v kt ex ( T ex (n(h 2, N mol, T k I (n(h 2, T k I ( (Sobolev V(RR (Large Velocity Gradient Goldreich & Kwan (1974, ApJ, 189, 441; GK74 Scoville & Solomon (1974, ApJ, 187, L71; SS74 Castor (1970, MNRAS, 149, 111 Townes & Schawlow (1975; TS75
10 The Large Velocity Gradient (LVG Approximation LVG V(R R (rate equations (Emergent Specific Intensity LVG Sobolev WR ( T ex!i = (1" e! [B(T ex " B ]!!I = $ e (! "! # B[T ex (! # ]d! # " (1" e! B 0 T B = (1! e! [ f (T ex! f ] f (T! h! k 1 exp(h! / kt "1
11 n 2 n 1 = g 2 g 1 exp(! h! 12 kt ex GK74 n 2 n 1 = exp(! h! 12 kt ex n 1, n 2 ( g J =2J+1! " J=0 g J =1 o o /(g J n mol (n mol ' d! = 8" 3 µ 12 dn 1 h# [1" exp(" ]!v kt ex J (=0, 1, 2,! ( "J=1 1J2J+1 dn J g J dn d! J,J+1 = 8" 3 µ J,J+1! J,J+1 = 8" 3 µ J,J+1 N!v g (n " n J J J+1 dn!v g J ( " +1
12 µ (J, J+1 TS75 (Eq.1-76 µ J,J+1 = µ 2 J +1 2J +1 µ J,J+1 g J = µ J+1, J g J+1 g J =2J+1 µ J+1,J = µ 2 J +1 2J + 3 µ! J,J+1 = 8" 3 µ 2 ' ' N!v (J +1( " +1 B J+1,J = g J g J+1 B J,J+1 =!!!!!!!!= 32" 4 µ 2 3ch 2 J +1 2J + 3 E J = hbj(j +1 A J+1,J! J+1,J = (E J+1! E J / h = 2B(J +1 2h! 3 J+1,J!!!!/c = 32" 4 µ J+1,J 2 3ch 2 (RL Eq (GK74 Eq.4
13 T B (J +1, J = (1! e! J,J+1 [ f [T ex (J, J +1]! f ]! J+1,J = 8" 3 µ 2 N!v (J +1( " +1 ( f [T ex (J, J +1] = h! k 1 / +1!1 µj N "V N (N/"V (+1 / T A (J=0, 1, 2,3! (rate equations T A n(h 2, T k, N dn g J J = g J+1 +1 A J+1,J + (g J+1 +1 B J+1,J! g J B J,J+1 J J+1,J dt!!!!!!!!!!!!g J A J,J-1! (g J B J,J-1! g J-1-1 B J-1,J J J,J-1 #!!!!!!!!!!!+ (C LJ g J g L n L! C JL g L g J L"J (GK74 Eq.10 C JL [C 12 /C 21 =exp(-h# 12 /kt k ]C C JL C JL /g L Sobolev
14 Castor (1970 1! exp(!"! = " * J J+1,J = (1!! J+1,J B(T ex +! J+1,J B [g J+1 +1 A J+1,J + (g J+1 +1 B J+1,J! g J B J,J+1 B ]! J+1,J![g J A J,J-1 + (g J B J,J-1! g J-1-1 B J-1,J B ]! J,J-1 + #(C LJ g J g L n L! C JL g L g J = 0 L"J! J+1,J = 1! exp(!" J+1,J " J+1,J (GK74 Eq.11 ( g J+1 +1 A J+1,J + (g J+1 +1 B J+1,J! g J B J,J+1 B(T ex = 0
15 T ex T B = (1! e! [ f (T ex! f ]!!!!!"![ f (T ex! f ]!!!(! # 0!!!!!" f (T ex! f!!!(! # $ ( f (T! h! k 1 exp(h! / kt "1 LVG T ex C N/%V Cn(H 2 +He<&v> (T ex!c!(n / "v!n < " v > n(h 2 +He (N/%V (photon trapping LVG J IJ " " J C IJ =n(h 2, He, <& IJ v> n(h 2 T k T k <& IJ v> T k, N/"V, n(h 2 ( (T k, N/"V, n(h 2 (N/DV, T ex ( T A (, T ex => T A (T k, N/"V, n(h 2 T B T k T B (N/"V, n, T B (n mol /(dv/dr, n, T B (X mol /(dv/dr, n [X mol =n mol /n(h 2 ] T k 12 CO N/ "Vn(H 2 2
16 CO (SS74 (N/%V $n(h 2 CO (Ratio (superthermal (population inversion (SS74 Fig. 1b. The ratio of antenna temperature in the CO J=2 1 and J=1 0 transitions obtained from 10- level calculations at T k =40 K.
17 (SS74 CS µ µ µ (n(h 2 ~10 3 cm -3 CS (T ex <T k ; sub-thermal CS! Fig. 2. Contours of antenna temperature in the J=1 0, 2 1, 3 2 CS transitions from 10-level calculations at T k =40 K. (SS74 CO T B ~ N/"V T B ~n(h 2 Fig. 3. The dramatic effects of radiative trapping are demonstrated for the J=1 0 CO transition in the two-level approximation. Dashed contours are obtained for excitation only by H 2 collisions; solid contours include excitation by trapped radiation.
18 (Sakamoto et al. 1994
AHPを用いた大相撲の新しい番付編成
5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i
輻射の量子論、選択則、禁制線、許容線
Radiative Processes in Astrophysics 005/8/1 http://wwwxray.ess.sci.osaka- u.ac.jp/~hayasida Semi-Classical Theory of Radiative Transitions r r 1/ 4 H = ( cp ea) m c + + eφ nonrelativistic limit, Coulomb
006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................
positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100
positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc
「諸雑公文書」整理の中間報告
30 10 3 from to 10 from to ( ) ( ) 20 20 20 20 20 35 8 39 11 41 10 41 9 41 7 43 13 41 11 42 7 42 11 41 7 42 10 4 4 8 4 30 10 ( ) ( ) 17 23 5 11 5 8 8 11 11 13 14 15 16 17 121 767 1,225 2.9 18.7 29.8 3.9
(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)
( ) ( ) 2002.11 1 1 1.1 (Blackbody Radiation).............................. 1 1.2 (Stefan-Boltzmann s Law)................ 1 1.3 (Wien s Displacement Law)....................... 2 1.4 (Kirchhoff s Law)...........................
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
弾性定数の対称性について
() by T. oyama () ij C ij = () () C, C, C () ij ji ij ijlk ij ij () C C C C C C * C C C C C * * C C C C = * * * C C C * * * * C C * * * * * C () * P (,, ) P (,, ) lij = () P (,, ) P(,, ) (,, ) P (, 00,
The Physics of Atmospheres CAPTER :
The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(
空き容量一覧表(154kV以上)
1/3 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量 覧 < 留意事項 > (1) 空容量は 安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発 する場合があります (3) 表 は 既に空容量がないため
2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし
1/8 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発生する場合があります (3)
atomic line spectrum emission line absorption line atom proton neutron nuclei electron Z atomic number A mass number neutral atom ion energy
1 22 22.1 atomic line spectrum emission line absorption line atom proton neutronnuclei electron Z atomic number A mass number neutral atom ion energy level ground stateexcited state ionized state 22.2
1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV
I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co
16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)
1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)
1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )
II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re
II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier
01_教職員.indd
T. A. H. A. K. A. R. I. K. O. S. O. Y. O. M. K. Y. K. G. K. R. S. A. S. M. S. R. S. M. S. I. S. T. S. K.T. R. T. R. T. S. T. S. T. A. T. A. D. T. N. N. N. Y. N. S. N. S. H. R. H. W. H. T. H. K. M. K. M.
Mott散乱によるParity対称性の破れを検証
Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ
2004
2008 3 20 400 1 1,222 7 1 2 3 55.8 54.8 3 35.8 6 64.0 50.5 93.5 1 1,222 1 1,428 1 1,077 6 64.0 52.5 80.5 56.6 81.5 30.2 1 2 3 7 70.5 1 65.6 2 61.3 3 51.1 1 54.0 2 49.8 3 32.0 68.8 37.0 34.3 2008 3 2 93.5
Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,
,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:[email protected] E-mail:[email protected] E-mail:[email protected] 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)
取扱説明書[N906i]
237 1 dt 2 238 1 i 1 p 2 1 ty 239 240 o p 1 i 2 1 u 1 i 2 241 1 p v 1 d d o p 242 1 o o 1 o 2 p 243 1 o 2 p 1 o 2 3 4 244 q p 245 p p 246 p 1 i 1 u c 2 o c o 3 o 247 1 i 1 u 2 co 1 1 248 1 o o 1 t 1 t
http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg
H22環境地球化学4_化学平衡III_ ppt
1 2 3 2009年度 環境地球化学 大河内 温度上昇による炭酸水の発泡 気泡 温度が高くなると 溶けきれなくなった 二酸化炭素が気泡として出てくる 4 2009年度 環境地球化学 圧力上昇による炭酸水の発泡 栓を開けると 瓶の中の圧力が急激に 小さくなるので 発泡する 大河内 5 CO 2 K H CO 2 H 2 O K H + 1 HCO 3- K 2 H + CO 3 2- (M) [CO
1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載
1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります
MOSFET HiSIM HiSIM2 1
MOSFET 2007 11 19 HiSIM HiSIM2 1 p/n Junction Shockley - - on-quasi-static - - - Y- HiSIM2 2 Wilson E f E c E g E v Bandgap: E g Fermi Level: E f HiSIM2 3 a Si 1s 2s 2p 3s 3p HiSIM2 4 Fermi-Dirac Distribution
m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d
m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m
(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c
10. : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck constant J: Ĵ 2 = J(J +1),Ĵz = J J: (J = 1 2 for 1 H) I m A 173/197 10.1
D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco
post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)
QMI_10.dvi
... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy
LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)
338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x
閨75, 縺5 [ ィ チ573, 縺 ィ ィ
39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,
...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1...
DT-870/5100 &DT-5042RFB ...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1....39 5-2...40 5-3...43...49
[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt
3.4.7 [.] =e j(t+/4), =5e j(t+/3), 3 =3e j(t+/6) ~ = ~ + ~ + ~ 3 = e j(t+φ) =(e 4 j +5e 3 j +3e 6 j )e jt = e jφ e jt cos φ =cos 4 +5cos 3 +3cos 6 =.69 sin φ =sin 4 +5sin 3 +3sin 6 =.9 =.69 +.9 =7.74 [.]
(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)
,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:[email protected] E-mail:[email protected] E-mail:[email protected] 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)
K 1 mk(
R&D ATN K 1 mk(0.01 0.05 = ( ) (ITS-90)-59.3467 961.78 (T.J.Seebeck) A(+ T 1 I T 0 B - T 1 T 0 E (Thermoelectromotive force) AB =d E(AB) /dt=a+bt----------------- E(AB) T1 = = + + E( AB) α AB a b ( T0
syuryoku
248 24622 24 P.5 EX P.212 2 P271 5. P.534 P.690 P.690 P.690 P.690 P.691 P.691 P.691 P.702 P.702 P.702 P.702 1S 30% 3 1S 3% 1S 30% 3 1S 3% P.702 P.702 P.702 P.702 45 60 P.702 P.702 P.704 H17.12.22 H22.4.1
土壌環境行政の最新動向(環境省 水・大気環境局土壌環境課)
201022 1 18801970 19101970 19201960 1970-2 1975 1980 1986 1991 1994 3 1999 20022009 4 5 () () () () ( ( ) () 6 7 Ex Ex Ex 8 25 9 10 11 16619 123 12 13 14 5 18() 15 187 1811 16 17 3,000 2241 18 19 ( 50
i 18 2H 2 + O 2 2H 2 + ( ) 3K
i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................
スライド 1
Matsuura Laboratory SiC SiC 13 2004 10 21 22 H-SiC ( C-SiC HOY Matsuura Laboratory n E C E D ( E F E T Matsuura Laboratory Matsuura Laboratory DLTS Osaka Electro-Communication University Unoped n 3C-SiC
4/15 No.
4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem
slide1.dvi
1. 2/ 121 a x = a t 3/ 121 a x = a t 4/ 121 a > 0 t a t = a t t {}}{ a a a t 5/ 121 a t+s = = t+s {}}{ a a a t s {}}{{}}{ a a a a = a t a s (a t ) s = s {}}{ a t a t = a ts 6/ 121 a > 0 t a 0 t t = 0 +
H22応用物理化学演習1_濃度.ppt
1 2 4/12 4/19 4/27 5/10 5/17 5/24 5/31 (20 ) (20 ) (10 ) (50 ) 3 (mole fraction) X = (mol) (mol) i n 1, n 2,, n x N i X i = n i = n i n 1 + n 2 + + n x N 4 (molarity, M) 1 dm 3 ( L) (mol) (mol/l) = 1 L
Netcommunity SYSTEM X7000 IPコードレス電話機 取扱説明書
4 5 6 7 8 9 . 4 DS 0 4 5 4 4 4 5 5 6 7 8 9 0 4 5 6 7 8 9 4 5 6 4 0 4 4 4 4 5 6 7 8 9 40 4 4 4 4 44 45 4 6 7 5 46 47 4 5 6 48 49 50 5 4 5 4 5 6 5 5 6 4 54 4 5 6 7 55 5 6 4 56 4 5 6 57 4 5 6 7 58 4
.A. D.S
1999-1- .A. D.S 1996 2001 1999-2- -3- 1 p.16 17 18 19 2-4- 1-5- 1~2 1~2 2 5 1 34 2 10 3 2.6 2.85 3.05 2.9 2.9 3.16 4 7 9 9 17 9 25 10 3 10 8 10 17 10 18 10 22 11 29-6- 1 p.1-7- p.5-8- p.9 10 12 13-9- 2
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx
PowerPoint Presentation
2010 KEK (Japan) (Japan) (Japan) Cheoun, Myun -ki Soongsil (Korea) Ryu,, Chung-Yoe Soongsil (Korea) 1. S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 #013009 (1998) Magnetar : ~ 10 15 G ~ 10 17 19 G (?)
レジャー産業と顧客満足の課題
1 1983 1983 2 3700 4800 5500 3300 15 3 100 1000 JR 4 14 2000 55% 72% 1878 2000 5 ( ) 22 1,040 5 946 42 15 25 30 30 4 14 39 1 24 8 6 390 33 800 34 34 3 35 () 37 40 1 50 40 46 47 2 55 4.43 4 16.98 40 55
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
K E N Z OU
K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................
1 発病のとき
A A 1944 19 60 A 1 A 20 40 2 A 4 A A 23 6 A A 13 10 100 2 2 360 A 19 2 5 A A A A A TS TS A A A 194823 6 A A 23 A 361 A 3 2 4 2 16 9 A 7 18 A A 16 4 16 3 362 A A 6 A 6 4 A A 363 A 1 A A 1 A A 364 A 1 A
2014_VERAum.pptx
VERA+NRO45m VLBI Mapping of SiO v=2/v=3 J=1 0 Masers using modified coordinate of NRO45m September 24, 2014 Miyako Oyadomari Kagoshima University 12 th Mizusawa VLBI Observatory User s Meeting @MITAKA
1 1 1 11 25 2 28 2 2 6 10 8 30 4 26 1 38 5 1 2 25 57ha 25 3 24ha 3 4 83km2 15cm 5 8ha 30km2 8ha 30km2 4 14
3 9 11 25 1 2 2 3 3 6 7 1 2 4 2 1 1 1 11 25 2 28 2 2 6 10 8 30 4 26 1 38 5 1 2 25 57ha 25 3 24ha 3 4 83km2 15cm 5 8ha 30km2 8ha 30km2 4 14 60 m3 60 m3 4 1 11 26 30 2 3 15 50 2 1 4 7 110 2 4 21 180 1 38
縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () "64": ィャ 9997ィ
34978 998 3. 73 68, 86 タ7 9 9989769 438 縺48 縺 378364 タ 縺473 399-4 8 637744739 683 6744939 3.9. 378,.. 68 ィ 349 889 3349947 89893 683447 4 334999897447 (9489) 67449, 6377447 683, 74984 7849799 34789 83747
読めば必ずわかる 分散分析の基礎 第2版
2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)
km2 km2 km2 km2 km2 22 4 H20 H20 H21 H20 (H22) (H22) (H22) L=600m L=430m 1 H14.04.12 () 1.6km 2 H.14.05.31 () 3km 3 4 5 H.15.03.18 () 3km H.15.06.20 () 1.1km H.15.06.30 () 800m 6 H.15.07.18
