(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

Size: px
Start display at page:

Download "(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)"

Transcription

1 ,, (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) fujii@econ.kobe-u.ac.jp 082e527e@stu.kobe-u.ac.jp iritani@econ.kobe-u.ac.jp

2 (2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

3 (A), (B) Auerbach and Kotlikoff(1987) (2004) (2007) Diamond(1965) (1988) ( ) (2004) 5 (2001) (2001) 2

4 3 3 (A) (B) (C) 4 ( ) Negishi(1960) ( ) Negishi(1960) ( ) Negishi(1960) 3

5 W τw T bw B r (1 τ)w T + bw + B 1 + r (1) (1 τ)w T (bw + B)/(1 + r) t j W j t t T, B t t (τ t W j t + T ) = (bw j t 1 + B t) (2) j j 6 T, b (2) τ t, T, b, B t h a 1, a 2,, a h, (a j < a j+1 ) 6 4

6 d 1, d 2,, d h h d i = 1, d i 0 a j, d j t N t a j d j N t, j = 1, 2..., h t L t L t = (a 1 d 1 + a 2 d a h d h )N t = a j d j N t (3) 2.2 K L F (K, L) F 2 F 1 ( ) F K = F K (K, L) > 0, F L = F L (K, L) > 0, F KK = 2 F K 2 (K, L) < 0, F LL = 2 F L 2 (K, L) < 0, f(k) = F (k, 1), k = K/L f (k) > 0 f (k) < 0 F (K, L) lim f (k) = k 0 lim f (k) = 0. k 1 w t, r t t t F K = F K (Kd t, L d t ) = r t, F L = F L (Kd t, L d t ) = w t (4) 5

7 (Kt d, L d t ) L d t = L t (4) 1 Kt d (r t ) 2 w t k = K/L Lf(k) = F (K, L) f(k) kf (k) = F L f(k(r t )) k(r t )f (k(r t )) = w t, k(r t )L t = K d t (r t ) 1 w t F K (K d t (r t ), L t ) = r t dk d t dr t < 0, dw t dr t < 0 (5) 2.3 t t N t 1, N t S t 1 K t (= S t 1 ) L t r t w t t a i Wt i = a i w t (1 τ t )a i w t T a i ba i w t 1 + B t r t s t 1 t (1 τ t )a i w t T d i N t, i = 1,..., h ba i w t 1 + B t + r t s i t 1 d in t 1, i = 1,..., h u(c t, c t+1 ) u : R 2 + R 2 6

8 2 ( ) (1) R 2 + (quasi-concave) R2 ++ (2) x 1 0, x 2 0, u(x 1, 0) = u(0, x 2 ) = inf{u(x 1, x 2 ) (x 1, x 2 ) R 2 +} a i t max u(c yi t, c yi coi t + s i t = (1 τ t )a i w t T, t+1) sub to (6) c oi t+1 = (1 + r t+1)s i t + ba i w t + B t+1 c y t, co t+1 t a i c y t co t+1 si t s i t t + 1 max u(c yi t, coi t+1) sub to c yi t + coi t r t+1 = I i t (7) I i a i I i t def 1 = (1 τ t )a i w t T + (ba i w t + B t+1 ) (8) 1 + r t+1 r t+1, w t, τ t B t+1 I i t(r t+1, w t, τ t, B t+1 ) c o t = c oi t d i N t 1 = { (1 + rt )s i } t 1 + ba i w t 1 + B t di N t 1 (τ t a i w t + T )d i N t = (ba i w t 1 + B t )d i N t 1 (9) 7

9 3 B τ t (c yi t + s i t)d i N t + = (a i w t τa i w t T t )d i N t + a i w t d i N t +(1 + r t ) c oi t d i N t 1 = F (K t, L t ) + K t (10) (τa i w t + T )d i N t + s i t 1d i N t 1 = w t ( bai w t 1 + B + (1 + r t )s i ) t 1 di N t 1 (ba i w t 1 + B)d i N t 1 a i d i N t + (1 + r t )K t = w t L t + r t K t + K t = F (K t, L t ) + K t = t t + 1 r t+1 t + 1 L t+1 = a i d i N t+1 K t+1 F K t+1 (K t+1, L t+1 ) = r t+1 K d t+1 (r t+1) h si t(r t+1 )d i N t K d t+1(r t+1 ) = s i t(r t+1 )d i N t (11) r t+1 1 8

10 t = 1 K 1, w 0, s i 0, N t(t = 0, 1, 2,... ), d i, a i T, b, B t (t = 0, 1, 2,... ), 1 w 0 h si 0 (r 1)d i N 0 F K (K 1, L 1 ) r 1 r 1 = F K (K 1, L 1 ) r 1 w 1 = F L (K 1, L 1 ) (τ 1 a i w 1 + T )d i N 1 = (ba i w 0 + B 1 )d i N 0 τ 1 1 t 1 t 2 K d 2 (r 2 ) = h si 1 (r 2)d i N 1 (12) r2 2 K 2 = K2 d(r 2 ) 2 t 2 r t, L t, K t (4) (9) (11) F L (Kt d, L t ) = w t (τ t a i w t + T )d i N t = (ba i w t 1 + B t )d i N t 1 Kt+1(r d t+1 ) = s i t(r t+1 )d i N t w t, τ t, r t+1 Kt+1 d (r t+1) F K (Kt+1 d, L t+1) = r t+1 T, b, B t d i, a i, N t (t = 0, 1, 2... ) w t, τ t (11) (12) 9

11 F K (K t+1, L t+1 ) = r t+1 K d t+1 (r t+1) k(r t+1 ) = K d t+1 (r t+1)/l t+1 K d t+1 (r t+1) = L t+1 k(r t+1 ) r t+1 = f (k(r t+1 )), 1 = f dk dr t+1 r t+1 0 k(r t+1 ) r t+1 k(r t+1 ) 0 t+1 h si t(r t+1 )d i N t = S t (r t+1 ) 3 ds t (r t+1 )/dr t+1 0 ˆr S t (ˆr) > 0 r t+1 S t (r t+1 ) > Kt+1 d (r t+1) r t+1 Kt+1 d (r t+1) > S t (r t+1 ) r t+1 Kt+1 d (r t+1) < S t (r t+1 ) r Kt+1 d (r ) = S t (r ) t = 1 t = 2 10

12 8 t s i t = s i, c y t = cy, c o t = c o, K t = K, N t = N, L t = L, w t = w, r t = r, τ t = τ, B t = B, I i t = I i t = 1, 2, L = h a id i N r F K (K d, L) = 0, w F L (K d, L) = 0 (13a) (τa i w + T )d i N K d (ba i w + B)d i N = 0 s i (w, τ, r, B)d i N = 0 (13b) (13c) 9 (w, r, K d, τ) B c y (r, I j ), c o (r, I j ) (13a) (13c) 4 τ > b. 4 (13b) (τ b) h a iwd i = B T 4 B > T a 13c (13a) K d (r) 13a 2 w = F L (K d (r), L) = w(r) 8 Diamond(1965) 9 s i 11

13 (13b) (13c) 13c 1 + r (τa i w(r) + T )d i (1 + r)k d (r) (1 + r) (ba i w(r) + B)d i = 0 s i (w(r), τ, r, B)d i N = 0 r, τ 2 (7) I i def = (1 τ)a i w(r) T + ba iw(r) + B, i = 1, 2,..., h 1 + r (1 + r)s i = c oi (r, I i ) (ba i w + B), S = 14b (1 + r)k d (r) s i d i N (14a) (14b) { c oi ( r, I i) (ba i w(r) + B) } d i N = 0 (15) 14a 15 r, T h (τ b)a dw h id i J = dr a iw(r)d i ( K d + (1 + r) dkd dr S + (1 + r) S ) h c oi r I i a iwd i N K d = S J J = (τ b)a i d i dw dr c oj I j a jwd j N (1 + r) ( dk d a i w(r)d i dr S ) r J (14a) (14b) r, τ ψ 1 (r, τ), ψ 2 (r, τ) ṙ = ψ 2 (r, τ), τ = ψ 1 (r, τ) J > 0 5 J > 0 12

14 5 (B) (τ) (τ) T ) 5 6 c > Negishi(1960) 3. 3 r, I j, w, K, τ, c kj, k = y, o B Ĩ j (B) = I j (r(b), w(b), τ(b), B), w(b) = w(r(b)) c kj (B) = c kj (r(b), Ĩj (B)), k = y, o, K(B) = K(r(B)) 13

15 5.1 J = 0 r, τ B 14a 15 dr J db 1 dτ = ( ) h c oi 1 db I i 1 + r 1 d i N 5 c oi dr db = I i a iwd i N ( ) c oi 1 a i wd i I i 1 + r 1 d i N J 2 0 < c oi / I i < 1 dr db > 0 (16) (14a) (16) dτ db a i wd i = (b τ) a j dw dr dr db d j + 1 > 1 (17) d K(B) db = dk dr dr db = 1 dr F KK db < 0 (18) 2 5, 6 B 14

16 5.2 Blanchard and Fisher(1989) De la Croix(2002) Heijdra(2009) 1 Negishi(1960) Negishi(1960) 1 2 u i (c yi, c oi ) = {c yi } α i {c oi } β i, i = 1, 2 0 < α i < 1, 0 < β i < 1, α i + β i < 1, i = 1, 2 CK δ L 1 δ, 0 < δ < 1 W Ben = 2 u id i W R = min(u 1, u 2 ) 1 2 τ B W Ben W R 1 G(u i )di, P G(u i ) = exp βu i i β u i 1 ρ a 1 ρ 1 15

17 1: B W Ben W R 1 2 (α 1, β 1 ) (0.2919, ) (0.3496, ) (α 2, β 2 ) (0.6620, ) ( , ) (a 1, a 2 ) (6.834, ) (8.714, ) (d 1, d 2 ) (0.1370, ) (0.2475, ) (C, δ) (10, ) (10, ) (τ, b, B, T ) (0.21,0.2,0.5,0.4) (0.2037,0.2,0.5,0.4) dw Ben db > > 0 dw R db > > 0 Negishi(1960) Negishi(1960) c yj (B)d j N + K(B) = c oj (B)d j N = F ( K(B), L) s j (B)d j N, B (17) (1 + r) d c yj db d j + d c oj db d j = r s j (B) def = (1 τ)a j w(b) T (B) c yj (B) ( dτ ) db a d w j w + (1 τ)a j d j N < 0 db j B V j (B) = u j ( c yj (B), c oj (B)) j dv j db = λ d c yj j db + λ j r d c oj db λ j j Negishi(1960) (19) α j u j ( c yj, c oj )d j N, α j = 1/λ j, j = 1, 2,..., h (20) 16

18 (19) d db α j u j ( c yj (B), c oj (B))d j N = r ) ((1 + r) d cyj db + d coj d j N < 0 db 3 5, 6 Negishi(1960) negishi Negishi (1960) (20) Negishi Ĩj µ, σ, CV B 11 Ĩ i def = (1 τ(b))a i w(b) T + ba i w(b) + B, i = 1, 2,..., h 1 + r(b) dĩj db = dτ db a jw + (( 1 τ + b ) dw a j 1 + r dr ba ) jw + B dr (1 + r) 2 db r (21) (2005) (2006) (2008) 17

19 τ b > 0 dr/db > 0 (17) dτ/db > 0 (21) B µ = h Ii d i (17) dµ db = = < 0 dĩj db d i (( 1 τ + b ) dw a j 1 + r dr ba ) jw + B dr (1 + r) 2 d j db r dτ a j wd j db 1 dσ 2 2 db < 0 (22) 12 CV = h ) 2 (Ĩj d j 1 µ B CV 2 dcv 2 db = 2 (( ) ( )) Bµ 3 φ(b)2 2 ρ(b)σ a Bρ (B) Bφ (B) ρ(b) φ(b) (23) 13 φ(b) = (1 τ)w + bw/(1 + r), φ d((1 τ)w + bw/(1 + r)) (B) =, db ρ(b) = T + B/(1 + r), ρ d( T + B/(1 + r)) (B) = db φ(b) a i w ρ(b)

20 φ(b) > 0, φ (B) < 0, ρ (B) < 0 ρ(b) Bφ /φ B Bρ /ρ B 4 5,6 Bφ /φ > Bρ /ρ, 4 2 τ) B 5.4 B Negishi(1960) B Negishi(1960) B Negishi(1960) B B Negishi(1960) B Negishi(1960) Negishi(1960) 19

21 7 u i (x i ), x i = (c yi, c oi ) m (0 < m < 1) 0 < m < 1 Negishi(1960) u i (x i ) u(x i ) (1, 1/(1 + r), I j ) I j j j i x j c ji (1, 1/(1 + r), I i ) = I i c ji (1, 1/(1 + r)), j = y, o c ji (1, 1/(1 + r)) = c ji (1, 1/(1 + r), 1), j, i v j v j = V (1, 1/(1 + r), I j ) = {I j } m V (1, 1/(1 + r), 1) a j λ j λ j = m{i j } m 1 V (1, 1/(1 + r), 1) Negishi(1960) α j 1 α j = {I j } 1 m {I 1 } 1 m d {I h } 1 m d h I 1 ( B Ik Ik φ ) (B) B I1 = φ(b)ρ(b)(a 1 a k ) φ(b) ρ (B) ρ(b) α 1 B = (1 m)φ(b)ρ(b) ({I 1 } 1 m d {I h } 1 m d h ) 2 B {I 1 } m {I k } m d k (a 1 a k ) α h B = k=2 (1 m)φ(b)ρ(b) ({I 1 } 1 m d {I h } 1 m d h ) 2 B {I h } m {I k } m d k (a h a k ) h 1 k=1 { } ρ (B) ρ(b) B + φ (B) φ(b) B { } ρ (B) ρ(b) B + φ (B) φ(b) B 20

22 j = 1, 2,..., h α j B = (1 m)φ(b)ρ(b) ({I 1 } 1 m d {I h } 1 m d h ) 2 B k j{i j } m {I k } m d k (a j a k ) { } ρ (B) ρ(b) B + φ (B) φ(b) B x j = k j {Ij } m {I k } m d k (a j a k ) x j < x j+1 a 1 < a 2 < < a h x 1 < 0, x h > 0 n, 1 < n < h x n 1 < 0 < x n (i) (ii) B n (1 < n < h) (1)α 1,..., α n 1 (2)α n,..., α h Negishi(1960) (i) 4 2) 4, B negishi 2: 1 2 ( φ B φ, B ρ ) ρ ( , 2.045) ( , 3.470) 6 (A) (B) (C) 14 j x j 0 B 21

23 (A) (B) 1 1 (i) (ii) (i) (ii) Negishi(1960) (ii) (C) 3 1 (2002) (2004) 15 2 (2002b) r w 15 (2002) (2004) 22

24 3 (A) (B) (C) A 5 (22) (23) B Ĩi Ĩj ( Ĩ j = (1 τ) w + b w ) a j T + B 1 + r 1 + r = φ(b)a j + ρ(b) φ(b) > 0 dĩi /db, dµ/db (( db + φ (B) = dφ dτ (B) = w db ρ (B) = dρ db (B) = B dr (1 + r) 2 db r 1 τ + b 1 + r ) dw dr bw ) dr (1 + r) 2 db dĩj db = φ (B)a j + ρ (B), dµ db = φ (B)ā + ρ (B) ā = h a id i φ (B) < 0, ρ (B) < 0 σ 1 dσ 2 2 db = I i dii db d i I i dµ db d i ( = φ I i a i d i + ρ µ φ āµ ρ µ = φ ā I i a id i ā µ ( Ĩ j = Ĩ1 + (1 τ) w + b w ) (a j a 1 ) = 1 + r Ĩ1 + φ(b)(a j a 1 ), j = 1, 2,..., h ) 23

25 Ĩ i a id i ā = Ĩ 1 a id i ā µ = + φ ( Ĩ i d i = Ĩ1 + φ(b) a i d i ā a i = 1 ā ( ) ( ) ai d i ā a a i d i i a 1 = Ĩ1 + φ(b) ā a i a 1 ) a i d i a 1 a 2 i d i = 1 ā (ā2 + σ 2 a ) > ā = a i d i σ a a j, j = 1, 2,..., h Ĩ i a id i ā > µ (24) φ (B) < 0 1 dσ 2 2 db < 0 B 16 dcv 2 db = 2 µ 3 d i d j Ĩ j Ĩ i Ĩi B d i d j (Ĩj ) 2 Ĩi (25) B (25) d i d j Ĩ j Ĩ i Ĩi B = µ d i Ĩ i Ĩi B = µ d i Ĩ i (φ a i + ρ ) (25) d i d j (Ĩj ) 2 Ĩi B = = µφ d i a i Ĩ i + µ 2 ρ = µφ ( āĩ1 + φ(b) ( ā 2 + σ a 2 a 1 ā )) + µ 2 ρ d j (Ĩj ) 2 d i Ĩi B = d j (Ĩj ) 2 d i (φ a i + ρ ) = (µ 2 + σ 2 )(φ ā + ρ ) = φ µ 2 ā + ρ µ 2 + φ σ 2 ā + ρ σ

26 dcv 2 db = 2 ( ( µ 3 µφ āĩ1 + φ(b) ( ā 2 + σ 2 a a 1 ā )) ) (φ µ 2 ā + φ σ 2 ā + ρ σ 2 ) µ = φā + ρ = Ĩ1 + φ(b)(ā a 1 ), σ 2 = φ 2 σ a 2. dcv 2 db = 2 µ 3 B φ2 ρσ a 2 (( Bρ ρ ) ( Bφ )) φ B u(x i ), x i = (c yi, c oi ) m 0 < m < 1 V j λ j V j (1, 1/(1 + r), I j ) = {I j } m V (1, 1/(1 + r), 1), λ j = m{i j } m 1 V (1, 1/(1 + r), 1) α j 1 α j = {I j } 1 m {I 1 } 1 m d {I h } 1 m d h α j B = 1 m ({I 1 } 1 m d {I h } 1 m d h ) 2 ( Ĩ j = (1 τ) w + b w 1 + r ) a j T + Ĩ j = Ĩ1 + φ(b)(a j a 1 ), j = 1, 2,..., h ( ) {I j } m {I k } m I j d k B Ik Ik B Ij k j B 1 + r = φ(b)a j + ρ(b), φ(b) > 0 I j B Ik Ik B Ij = (a j a k ) φ(b)ρ(b) B { } ρ (B) ρ(b) B + φ (B) φ(b) B 25

27 j = 1, 2,..., h α j B = (1 m)φ(b)ρ(b) ({I 1 } 1 m d {I h } 1 m d h ) 2 B k j{i j } m {I k } m d k (a j a k ) { } ρ (B) ρ(b) B + φ (B) φ(b) B x j = k j {Ij } m {I k } m d k (a j a k ) a 1 < a k < a h, k = 2,..., h 1 j 1 x j x j+1 = {I k } m d k ((a j a k ){I j } m (a j+1 a k ){I j+1 } m ) k=1 {I j+1 } m {I j } m d j+1 (a j+1 a j ) + {I j } m {I j+1 } m d j (a j a j+1 ) + k=j+2 k j, j + 1 {I k } m d k ((a j a k ){I j } m (a j+1 a k ){I j+1 } m ) (a j a k ){I j } m (a j+1 a k ){I j+1 } m = {Ij } 1 m {I j+1 } 1 m + I k ( {I j+1 } m {I j } m) φ(b) < 0 x j < x j+1 x 1 = {I 1 } m I k m (a 1 a k ) < 0 k=2 h 1 x h = {I h } m I k m (a h a k ) > 0 k=1 n, 1 < n < h x n 1 < 0 < x n 17 α j B > 0 (B) ρ ρ(b) B < (B) φ φ(b) B, j = 1,..., n 1 α k B < 0, k = n,..., h 17 j x j 0 26

28 [1] (2002),No.37,pp [2] (2001),42,pp [3] (2002b) - -,28,pp [4] (2004),167,pp.1-17 [5] (2004) Discussion Paper,No.408,pp.1-19 [6] (2005) [7] (2006) -,, 3 [8] (2008),, 6 [9] (2005),pp [10] (2007) 7,pp [11] (2010) Discussion Paper,No

29 [12] (1987) 6,pp [13] (1988),pp.1-15 [14] (2001),37,pp [15] (1999) [16] Auerbach, A. and Kotlikoff, L.J.(1987), Dynamic Fiscal Policy, Cambridge University Press. [17] Blanchard,O. and Fischer,S.(1989), Lectures on Macroeconomics, MIT Press. [18] Diamond, P.A.(1965), National Debt in a Neoclassical Growth Model, American Economic Review, Vol.55, No.5, pp [19] Heijdra,B.(2009), Foundations of Modern Macroeconomis Second Edition, Oxford University Press. [20] Negishi, T.(1960), Welfare Economics and Existence of an Equilibrium for a Competitive Economy, Metroeconomica, Vol.12, No.2-3, pp [21] Shimono, K. and Tachibanaki, T.(1985), Lifetime Income and Public Pension An Analysis of the Effect on Redistribution Using a Two-period Analysis, Journal of Public Economics, Vol.26, pp

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) , ,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)

More information

shuron.dvi

shuron.dvi 01M3065 1 4 1.1........................... 4 1.2........................ 5 1.3........................ 6 2 8 2.1.......................... 8 2.2....................... 9 3 13 3.1.............................

More information

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue 2012-06 Date Type Technical Report Text Version publisher URL http://hdl.handle.net/10086/23085 Right Hitotsubashi University Repository

More information

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2 2013 1 nabe@ier.hit-u.ac.jp 2013 4 11 Jorgenson Tobin q : Hayashi s Theorem : Jordan : 1 investment 1 2 3 4 5 6 7 8 *1 *1 93SNA 1 p.180 1936 100 1970 *2 DSGEDynamic Stochastic General Equilibrium New Keynesian

More information

2015 : (heterogenous) Heterogeneous homogeneous Heterogenous agent model Bewley 1 (The Overlapping-Generations Models:OLG) OLG OLG Allais (1

2015 : (heterogenous) Heterogeneous homogeneous Heterogenous agent model Bewley 1 (The Overlapping-Generations Models:OLG) OLG OLG Allais (1 2015 : 27 6 13 1 (heterogenous) Heterogeneous homogeneous Heterogenous agent model Bewley 1 (The Overlapping-Generations Models:OLG) OLG OLG Allais (1947) 2 Samuelson(1958) 3 OLG Solow Ramsey Samuelson

More information

~nabe/lecture/index.html 2

~nabe/lecture/index.html 2 2001 12 13 1 http://www.sml.k.u-tokyo.ac.jp/ ~nabe/lecture/index.html nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/11 3. 10/18 1 4. 10/25 2 5. 11/ 1 6. 11/ 8 7. 11/15 8. 11/22 9. 11/29 10. 12/ 6 1 11. 12/13

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

Autumn II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 分析に用いるデータ

Autumn II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 分析に用いるデータ 212 Vol. 44 No. 2 I はじめに 2008 1 2 Autumn 08 213 II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 17 18 1 分析に用いるデータ 1 2005 10 12 200 2 2006 9 12 1 1 2 129 35 113 3 1 2 6 1 2 3 4 4 1

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

OHP.dvi

OHP.dvi 7 2010 11 22 1 7 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2010 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/18 3. 10/25 2, 3 4. 11/ 1 5. 11/ 8 6. 11/15 7. 11/22 8. 11/29 9. 12/ 6 skyline 10. 12/13

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

2002 11 21 1 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2002 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture nabe@sml.k.u-tokyo.ac.jp 2 1. 10/10 2. 10/17 3. 10/24 4. 10/31 5. 11/ 7 6. 11/14

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

2017 : (heterogenous) Heterogeneous homogeneous Heterogenous agent model Bewley 1 exante (The Overlapping-Generations Models:OLG) OLG OLG Al

2017 : (heterogenous) Heterogeneous homogeneous Heterogenous agent model Bewley 1 exante (The Overlapping-Generations Models:OLG) OLG OLG Al 2017 : 29 5 24 1 (heterogenous) Heterogeneous homogeneous Heterogenous agent model Bewley 1 exante (The Overlapping-Generations Models:OLG) OLG OLG Allais (1947) 2 Samuelson(1958) 3 OLG Solow Ramsey 1

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

untitled

untitled 2 21 1984 50 3500 4200 1 3 1 1985 1984 1 2 1984 50 3 2 3 4 1 1989 35 3 4 5 22 3 1 19811984 19841987 1989 1981 1985 13 1984 1984 1986 1985 20 10 1987 10 2 36 1989 65 1989 1953 1985 60 1933 6.71% 43 3.15%53

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

1 (2005) (2004) (2005) (2006) 1: (2007) 2 2 2: Auerbach, Gokhale and Kotlikoff(1991) Gokhale (2005)

1 (2005) (2004) (2005) (2006) 1: (2007) 2 2 2: Auerbach, Gokhale and Kotlikoff(1991) Gokhale (2005) 3 1 2 (2007) 3 3 1 2 3 2 1 2 JEL H55 Key words public pension social security subsidy general accounts sustainability generational accounts 1 2004 2000 2009 3 1 2 1 65 ecms1019@kwansei.ac.jp 1 1 (2005)

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate School of Economics and Institute of Economic Research

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

βdxβ r a, < E e uγ r ha d E e r dx e r γd e r βdx 3.2 a = {a} γ = {γ} max E e r dx e r γd e r βdx, 2 s.. dx = qand + σndz, 1 E e r uγ ha d, 3 a arg maxã E e r uγ hã d. 4 3.3 γ = {γ : γ, γ} a = {a : a,

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C 27 nabe@ier.hit-u.ac.jp 27 4 3 Jorgenson Tobin q : Hayashi s Theorem Jordan Saddle Path. GDP % GDP 2. 3. 4.. Tobin q 2 2. Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 [2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =

More information

ú r(ú) t n [;t] [;t=n]; (t=n; 2t=n]; (2t=n; 3t=n];:::; ((nä 1)t=n;t] n t 1 (nä1)t=n e Är(t)=n (nä 2)t=n e Är(t)=n e Är((nÄ1)t=n)=n t e Är(t)=n e Är((n

ú r(ú) t n [;t] [;t=n]; (t=n; 2t=n]; (2t=n; 3t=n];:::; ((nä 1)t=n;t] n t 1 (nä1)t=n e Är(t)=n (nä 2)t=n e Är(t)=n e Är((nÄ1)t=n)=n t e Är(t)=n e Är((n 1 1.1 ( ) ö t 1 (1 +ö) Ä1 2 (1 +ö=2) Ä2 ö=2 n (1 +ö=n) Än n t (1 +ö=n) Änt t nt n t lim (1 n!1 +ö=n)änt = n!1 lim 2 4 1 + 1 n=ö! n=ö 3 5 Äöt = î lim s!1 í 1 + 1 ì s ï Äöt =e Äöt s e eëlim s!1 (1 + 1=s)

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

PFI

PFI PFI 23 3 3 PFI PFI 1 1 2 3 2.1................................. 3 2.2..................... 4 2.3.......................... 5 3 7 3.1................................ 7 3.2.................................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg ( 1905 1 1.1 0.05 mm 1 µm 2 1 1 2004 21 2004 7 21 2005 web 2 [1, 2] 1 1: 3.3 1/8000 1/30 3 10 10 m 3 500 m/s 4 1 10 19 5 6 7 1.2 3 4 v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt 6 6 10

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

Graduate School of Policy and Management, Doshisha University 53 動学的資本税協調と公的資本形成 あらまし Zodrow and Mieszkowski 1986 Wilson 1986 Batina はじめに Zodr

Graduate School of Policy and Management, Doshisha University 53 動学的資本税協調と公的資本形成 あらまし Zodrow and Mieszkowski 1986 Wilson 1986 Batina はじめに Zodr Graduate School of Policy and Management, Doshisha University 53 動学的資本税協調と公的資本形成 あらまし Zodrow and Mieszkowski 1986 Wilson 1986 Batina 2009 1. はじめに Zodrow and Mieszkowski 1986 Wilson 1986 Tax Competition

More information

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS () [REQ] 4. 4. () [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () 0 0 4. 5050 0 ) 00 4 30354045m/s 4. ) 4. AMEDAS ) 4. 0 3 ) 4. 0 4. 4 4.3(3) () [REQ] () [REQ] (3) [POS] () ()() 4.3 P = ρ d AnC DG ()

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i i j ij i j ii,, i j ij ij ij (, P P P P θ N θ P P cosθ N F N P cosθ F Psinθ P P F P P θ N P cos θ cos θ cosθ F P sinθ cosθ sinθ cosθ sinθ 5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

OHP.dvi

OHP.dvi t 0, X X t x t 0 t u u = x X (1) t t 0 u X x O 1 1 t 0 =0 X X +dx t x(x,t) x(x +dx,t). dx dx = x(x +dx,t) x(x,t) (2) dx, dx = F dx (3). F (deformation gradient tensor) t F t 0 dx dx X x O 2 2 F. (det F

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1 (3.5 3.8) 03032s 2006.7.0 n (n = 0,,...) n n = δ nn n n = I n=0 ψ = n C n n () C n = n ψ α = e 2 α 2 n=0 α, β α n n (2) β α = e 2 α 2 2 β 2 n=0 =0 = e 2 α 2 β n α 2 β 2 n=0 = e 2 α 2 2 β 2 +β α β n α!

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

,398 4% 017,

,398 4% 017, 6 3 JEL Classification: D4; K39; L86,,., JSPS 34304, 47301.. 1 01301 79 1 7,398 4% 017,390 01 013 1 1 01 011 514 8 1 Novos and Waldman (1984) Johnson (1985) Chen and Png (003) Arai (011) 3 1 4 3 4 5 0

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199 Nelson-Siegel Nelson-Siegel 1992 2007 15 1 Nelson and Siegel(1987) 2 FF VAR 1996 FF B) 1 Nelson-Siegel 15 90 1 Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel

More information

Report98.dvi

Report98.dvi 1 4 1.1.......................... 4 1.1.1.......................... 7 1.1..................... 14 1.1.................. 1 1.1.4........................... 8 1.1.5........................... 6 1.1.6 n...........................

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

untitled

untitled 8- My + Cy + Ky = f () t 8. C f () t ( t) = Ψq( t) () t = Ψq () t () t = Ψq () t = ( q q ) ; = [ ] y y y q Ψ φ φ φ = ( ϕ, ϕ, ϕ,3 ) 8. ψ Ψ MΨq + Ψ CΨq + Ψ KΨq = Ψ f ( t) Ψ MΨ = I; Ψ CΨ = C; Ψ KΨ = Λ; q

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information