(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)
|
|
|
- ありおき おなか
- 7 years ago
- Views:
Transcription
1 ,, (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) [email protected] [email protected] [email protected]
2 (2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)
3 (A), (B) Auerbach and Kotlikoff(1987) (2004) (2007) Diamond(1965) (1988) ( ) (2004) 5 (2001) (2001) 2
4 3 3 (A) (B) (C) 4 ( ) Negishi(1960) ( ) Negishi(1960) ( ) Negishi(1960) 3
5 W τw T bw B r (1 τ)w T + bw + B 1 + r (1) (1 τ)w T (bw + B)/(1 + r) t j W j t t T, B t t (τ t W j t + T ) = (bw j t 1 + B t) (2) j j 6 T, b (2) τ t, T, b, B t h a 1, a 2,, a h, (a j < a j+1 ) 6 4
6 d 1, d 2,, d h h d i = 1, d i 0 a j, d j t N t a j d j N t, j = 1, 2..., h t L t L t = (a 1 d 1 + a 2 d a h d h )N t = a j d j N t (3) 2.2 K L F (K, L) F 2 F 1 ( ) F K = F K (K, L) > 0, F L = F L (K, L) > 0, F KK = 2 F K 2 (K, L) < 0, F LL = 2 F L 2 (K, L) < 0, f(k) = F (k, 1), k = K/L f (k) > 0 f (k) < 0 F (K, L) lim f (k) = k 0 lim f (k) = 0. k 1 w t, r t t t F K = F K (Kd t, L d t ) = r t, F L = F L (Kd t, L d t ) = w t (4) 5
7 (Kt d, L d t ) L d t = L t (4) 1 Kt d (r t ) 2 w t k = K/L Lf(k) = F (K, L) f(k) kf (k) = F L f(k(r t )) k(r t )f (k(r t )) = w t, k(r t )L t = K d t (r t ) 1 w t F K (K d t (r t ), L t ) = r t dk d t dr t < 0, dw t dr t < 0 (5) 2.3 t t N t 1, N t S t 1 K t (= S t 1 ) L t r t w t t a i Wt i = a i w t (1 τ t )a i w t T a i ba i w t 1 + B t r t s t 1 t (1 τ t )a i w t T d i N t, i = 1,..., h ba i w t 1 + B t + r t s i t 1 d in t 1, i = 1,..., h u(c t, c t+1 ) u : R 2 + R 2 6
8 2 ( ) (1) R 2 + (quasi-concave) R2 ++ (2) x 1 0, x 2 0, u(x 1, 0) = u(0, x 2 ) = inf{u(x 1, x 2 ) (x 1, x 2 ) R 2 +} a i t max u(c yi t, c yi coi t + s i t = (1 τ t )a i w t T, t+1) sub to (6) c oi t+1 = (1 + r t+1)s i t + ba i w t + B t+1 c y t, co t+1 t a i c y t co t+1 si t s i t t + 1 max u(c yi t, coi t+1) sub to c yi t + coi t r t+1 = I i t (7) I i a i I i t def 1 = (1 τ t )a i w t T + (ba i w t + B t+1 ) (8) 1 + r t+1 r t+1, w t, τ t B t+1 I i t(r t+1, w t, τ t, B t+1 ) c o t = c oi t d i N t 1 = { (1 + rt )s i } t 1 + ba i w t 1 + B t di N t 1 (τ t a i w t + T )d i N t = (ba i w t 1 + B t )d i N t 1 (9) 7
9 3 B τ t (c yi t + s i t)d i N t + = (a i w t τa i w t T t )d i N t + a i w t d i N t +(1 + r t ) c oi t d i N t 1 = F (K t, L t ) + K t (10) (τa i w t + T )d i N t + s i t 1d i N t 1 = w t ( bai w t 1 + B + (1 + r t )s i ) t 1 di N t 1 (ba i w t 1 + B)d i N t 1 a i d i N t + (1 + r t )K t = w t L t + r t K t + K t = F (K t, L t ) + K t = t t + 1 r t+1 t + 1 L t+1 = a i d i N t+1 K t+1 F K t+1 (K t+1, L t+1 ) = r t+1 K d t+1 (r t+1) h si t(r t+1 )d i N t K d t+1(r t+1 ) = s i t(r t+1 )d i N t (11) r t+1 1 8
10 t = 1 K 1, w 0, s i 0, N t(t = 0, 1, 2,... ), d i, a i T, b, B t (t = 0, 1, 2,... ), 1 w 0 h si 0 (r 1)d i N 0 F K (K 1, L 1 ) r 1 r 1 = F K (K 1, L 1 ) r 1 w 1 = F L (K 1, L 1 ) (τ 1 a i w 1 + T )d i N 1 = (ba i w 0 + B 1 )d i N 0 τ 1 1 t 1 t 2 K d 2 (r 2 ) = h si 1 (r 2)d i N 1 (12) r2 2 K 2 = K2 d(r 2 ) 2 t 2 r t, L t, K t (4) (9) (11) F L (Kt d, L t ) = w t (τ t a i w t + T )d i N t = (ba i w t 1 + B t )d i N t 1 Kt+1(r d t+1 ) = s i t(r t+1 )d i N t w t, τ t, r t+1 Kt+1 d (r t+1) F K (Kt+1 d, L t+1) = r t+1 T, b, B t d i, a i, N t (t = 0, 1, 2... ) w t, τ t (11) (12) 9
11 F K (K t+1, L t+1 ) = r t+1 K d t+1 (r t+1) k(r t+1 ) = K d t+1 (r t+1)/l t+1 K d t+1 (r t+1) = L t+1 k(r t+1 ) r t+1 = f (k(r t+1 )), 1 = f dk dr t+1 r t+1 0 k(r t+1 ) r t+1 k(r t+1 ) 0 t+1 h si t(r t+1 )d i N t = S t (r t+1 ) 3 ds t (r t+1 )/dr t+1 0 ˆr S t (ˆr) > 0 r t+1 S t (r t+1 ) > Kt+1 d (r t+1) r t+1 Kt+1 d (r t+1) > S t (r t+1 ) r t+1 Kt+1 d (r t+1) < S t (r t+1 ) r Kt+1 d (r ) = S t (r ) t = 1 t = 2 10
12 8 t s i t = s i, c y t = cy, c o t = c o, K t = K, N t = N, L t = L, w t = w, r t = r, τ t = τ, B t = B, I i t = I i t = 1, 2, L = h a id i N r F K (K d, L) = 0, w F L (K d, L) = 0 (13a) (τa i w + T )d i N K d (ba i w + B)d i N = 0 s i (w, τ, r, B)d i N = 0 (13b) (13c) 9 (w, r, K d, τ) B c y (r, I j ), c o (r, I j ) (13a) (13c) 4 τ > b. 4 (13b) (τ b) h a iwd i = B T 4 B > T a 13c (13a) K d (r) 13a 2 w = F L (K d (r), L) = w(r) 8 Diamond(1965) 9 s i 11
13 (13b) (13c) 13c 1 + r (τa i w(r) + T )d i (1 + r)k d (r) (1 + r) (ba i w(r) + B)d i = 0 s i (w(r), τ, r, B)d i N = 0 r, τ 2 (7) I i def = (1 τ)a i w(r) T + ba iw(r) + B, i = 1, 2,..., h 1 + r (1 + r)s i = c oi (r, I i ) (ba i w + B), S = 14b (1 + r)k d (r) s i d i N (14a) (14b) { c oi ( r, I i) (ba i w(r) + B) } d i N = 0 (15) 14a 15 r, T h (τ b)a dw h id i J = dr a iw(r)d i ( K d + (1 + r) dkd dr S + (1 + r) S ) h c oi r I i a iwd i N K d = S J J = (τ b)a i d i dw dr c oj I j a jwd j N (1 + r) ( dk d a i w(r)d i dr S ) r J (14a) (14b) r, τ ψ 1 (r, τ), ψ 2 (r, τ) ṙ = ψ 2 (r, τ), τ = ψ 1 (r, τ) J > 0 5 J > 0 12
14 5 (B) (τ) (τ) T ) 5 6 c > Negishi(1960) 3. 3 r, I j, w, K, τ, c kj, k = y, o B Ĩ j (B) = I j (r(b), w(b), τ(b), B), w(b) = w(r(b)) c kj (B) = c kj (r(b), Ĩj (B)), k = y, o, K(B) = K(r(B)) 13
15 5.1 J = 0 r, τ B 14a 15 dr J db 1 dτ = ( ) h c oi 1 db I i 1 + r 1 d i N 5 c oi dr db = I i a iwd i N ( ) c oi 1 a i wd i I i 1 + r 1 d i N J 2 0 < c oi / I i < 1 dr db > 0 (16) (14a) (16) dτ db a i wd i = (b τ) a j dw dr dr db d j + 1 > 1 (17) d K(B) db = dk dr dr db = 1 dr F KK db < 0 (18) 2 5, 6 B 14
16 5.2 Blanchard and Fisher(1989) De la Croix(2002) Heijdra(2009) 1 Negishi(1960) Negishi(1960) 1 2 u i (c yi, c oi ) = {c yi } α i {c oi } β i, i = 1, 2 0 < α i < 1, 0 < β i < 1, α i + β i < 1, i = 1, 2 CK δ L 1 δ, 0 < δ < 1 W Ben = 2 u id i W R = min(u 1, u 2 ) 1 2 τ B W Ben W R 1 G(u i )di, P G(u i ) = exp βu i i β u i 1 ρ a 1 ρ 1 15
17 1: B W Ben W R 1 2 (α 1, β 1 ) (0.2919, ) (0.3496, ) (α 2, β 2 ) (0.6620, ) ( , ) (a 1, a 2 ) (6.834, ) (8.714, ) (d 1, d 2 ) (0.1370, ) (0.2475, ) (C, δ) (10, ) (10, ) (τ, b, B, T ) (0.21,0.2,0.5,0.4) (0.2037,0.2,0.5,0.4) dw Ben db > > 0 dw R db > > 0 Negishi(1960) Negishi(1960) c yj (B)d j N + K(B) = c oj (B)d j N = F ( K(B), L) s j (B)d j N, B (17) (1 + r) d c yj db d j + d c oj db d j = r s j (B) def = (1 τ)a j w(b) T (B) c yj (B) ( dτ ) db a d w j w + (1 τ)a j d j N < 0 db j B V j (B) = u j ( c yj (B), c oj (B)) j dv j db = λ d c yj j db + λ j r d c oj db λ j j Negishi(1960) (19) α j u j ( c yj, c oj )d j N, α j = 1/λ j, j = 1, 2,..., h (20) 16
18 (19) d db α j u j ( c yj (B), c oj (B))d j N = r ) ((1 + r) d cyj db + d coj d j N < 0 db 3 5, 6 Negishi(1960) negishi Negishi (1960) (20) Negishi Ĩj µ, σ, CV B 11 Ĩ i def = (1 τ(b))a i w(b) T + ba i w(b) + B, i = 1, 2,..., h 1 + r(b) dĩj db = dτ db a jw + (( 1 τ + b ) dw a j 1 + r dr ba ) jw + B dr (1 + r) 2 db r (21) (2005) (2006) (2008) 17
19 τ b > 0 dr/db > 0 (17) dτ/db > 0 (21) B µ = h Ii d i (17) dµ db = = < 0 dĩj db d i (( 1 τ + b ) dw a j 1 + r dr ba ) jw + B dr (1 + r) 2 d j db r dτ a j wd j db 1 dσ 2 2 db < 0 (22) 12 CV = h ) 2 (Ĩj d j 1 µ B CV 2 dcv 2 db = 2 (( ) ( )) Bµ 3 φ(b)2 2 ρ(b)σ a Bρ (B) Bφ (B) ρ(b) φ(b) (23) 13 φ(b) = (1 τ)w + bw/(1 + r), φ d((1 τ)w + bw/(1 + r)) (B) =, db ρ(b) = T + B/(1 + r), ρ d( T + B/(1 + r)) (B) = db φ(b) a i w ρ(b)
20 φ(b) > 0, φ (B) < 0, ρ (B) < 0 ρ(b) Bφ /φ B Bρ /ρ B 4 5,6 Bφ /φ > Bρ /ρ, 4 2 τ) B 5.4 B Negishi(1960) B Negishi(1960) B Negishi(1960) B B Negishi(1960) B Negishi(1960) Negishi(1960) 19
21 7 u i (x i ), x i = (c yi, c oi ) m (0 < m < 1) 0 < m < 1 Negishi(1960) u i (x i ) u(x i ) (1, 1/(1 + r), I j ) I j j j i x j c ji (1, 1/(1 + r), I i ) = I i c ji (1, 1/(1 + r)), j = y, o c ji (1, 1/(1 + r)) = c ji (1, 1/(1 + r), 1), j, i v j v j = V (1, 1/(1 + r), I j ) = {I j } m V (1, 1/(1 + r), 1) a j λ j λ j = m{i j } m 1 V (1, 1/(1 + r), 1) Negishi(1960) α j 1 α j = {I j } 1 m {I 1 } 1 m d {I h } 1 m d h I 1 ( B Ik Ik φ ) (B) B I1 = φ(b)ρ(b)(a 1 a k ) φ(b) ρ (B) ρ(b) α 1 B = (1 m)φ(b)ρ(b) ({I 1 } 1 m d {I h } 1 m d h ) 2 B {I 1 } m {I k } m d k (a 1 a k ) α h B = k=2 (1 m)φ(b)ρ(b) ({I 1 } 1 m d {I h } 1 m d h ) 2 B {I h } m {I k } m d k (a h a k ) h 1 k=1 { } ρ (B) ρ(b) B + φ (B) φ(b) B { } ρ (B) ρ(b) B + φ (B) φ(b) B 20
22 j = 1, 2,..., h α j B = (1 m)φ(b)ρ(b) ({I 1 } 1 m d {I h } 1 m d h ) 2 B k j{i j } m {I k } m d k (a j a k ) { } ρ (B) ρ(b) B + φ (B) φ(b) B x j = k j {Ij } m {I k } m d k (a j a k ) x j < x j+1 a 1 < a 2 < < a h x 1 < 0, x h > 0 n, 1 < n < h x n 1 < 0 < x n (i) (ii) B n (1 < n < h) (1)α 1,..., α n 1 (2)α n,..., α h Negishi(1960) (i) 4 2) 4, B negishi 2: 1 2 ( φ B φ, B ρ ) ρ ( , 2.045) ( , 3.470) 6 (A) (B) (C) 14 j x j 0 B 21
23 (A) (B) 1 1 (i) (ii) (i) (ii) Negishi(1960) (ii) (C) 3 1 (2002) (2004) 15 2 (2002b) r w 15 (2002) (2004) 22
24 3 (A) (B) (C) A 5 (22) (23) B Ĩi Ĩj ( Ĩ j = (1 τ) w + b w ) a j T + B 1 + r 1 + r = φ(b)a j + ρ(b) φ(b) > 0 dĩi /db, dµ/db (( db + φ (B) = dφ dτ (B) = w db ρ (B) = dρ db (B) = B dr (1 + r) 2 db r 1 τ + b 1 + r ) dw dr bw ) dr (1 + r) 2 db dĩj db = φ (B)a j + ρ (B), dµ db = φ (B)ā + ρ (B) ā = h a id i φ (B) < 0, ρ (B) < 0 σ 1 dσ 2 2 db = I i dii db d i I i dµ db d i ( = φ I i a i d i + ρ µ φ āµ ρ µ = φ ā I i a id i ā µ ( Ĩ j = Ĩ1 + (1 τ) w + b w ) (a j a 1 ) = 1 + r Ĩ1 + φ(b)(a j a 1 ), j = 1, 2,..., h ) 23
25 Ĩ i a id i ā = Ĩ 1 a id i ā µ = + φ ( Ĩ i d i = Ĩ1 + φ(b) a i d i ā a i = 1 ā ( ) ( ) ai d i ā a a i d i i a 1 = Ĩ1 + φ(b) ā a i a 1 ) a i d i a 1 a 2 i d i = 1 ā (ā2 + σ 2 a ) > ā = a i d i σ a a j, j = 1, 2,..., h Ĩ i a id i ā > µ (24) φ (B) < 0 1 dσ 2 2 db < 0 B 16 dcv 2 db = 2 µ 3 d i d j Ĩ j Ĩ i Ĩi B d i d j (Ĩj ) 2 Ĩi (25) B (25) d i d j Ĩ j Ĩ i Ĩi B = µ d i Ĩ i Ĩi B = µ d i Ĩ i (φ a i + ρ ) (25) d i d j (Ĩj ) 2 Ĩi B = = µφ d i a i Ĩ i + µ 2 ρ = µφ ( āĩ1 + φ(b) ( ā 2 + σ a 2 a 1 ā )) + µ 2 ρ d j (Ĩj ) 2 d i Ĩi B = d j (Ĩj ) 2 d i (φ a i + ρ ) = (µ 2 + σ 2 )(φ ā + ρ ) = φ µ 2 ā + ρ µ 2 + φ σ 2 ā + ρ σ
26 dcv 2 db = 2 ( ( µ 3 µφ āĩ1 + φ(b) ( ā 2 + σ 2 a a 1 ā )) ) (φ µ 2 ā + φ σ 2 ā + ρ σ 2 ) µ = φā + ρ = Ĩ1 + φ(b)(ā a 1 ), σ 2 = φ 2 σ a 2. dcv 2 db = 2 µ 3 B φ2 ρσ a 2 (( Bρ ρ ) ( Bφ )) φ B u(x i ), x i = (c yi, c oi ) m 0 < m < 1 V j λ j V j (1, 1/(1 + r), I j ) = {I j } m V (1, 1/(1 + r), 1), λ j = m{i j } m 1 V (1, 1/(1 + r), 1) α j 1 α j = {I j } 1 m {I 1 } 1 m d {I h } 1 m d h α j B = 1 m ({I 1 } 1 m d {I h } 1 m d h ) 2 ( Ĩ j = (1 τ) w + b w 1 + r ) a j T + Ĩ j = Ĩ1 + φ(b)(a j a 1 ), j = 1, 2,..., h ( ) {I j } m {I k } m I j d k B Ik Ik B Ij k j B 1 + r = φ(b)a j + ρ(b), φ(b) > 0 I j B Ik Ik B Ij = (a j a k ) φ(b)ρ(b) B { } ρ (B) ρ(b) B + φ (B) φ(b) B 25
27 j = 1, 2,..., h α j B = (1 m)φ(b)ρ(b) ({I 1 } 1 m d {I h } 1 m d h ) 2 B k j{i j } m {I k } m d k (a j a k ) { } ρ (B) ρ(b) B + φ (B) φ(b) B x j = k j {Ij } m {I k } m d k (a j a k ) a 1 < a k < a h, k = 2,..., h 1 j 1 x j x j+1 = {I k } m d k ((a j a k ){I j } m (a j+1 a k ){I j+1 } m ) k=1 {I j+1 } m {I j } m d j+1 (a j+1 a j ) + {I j } m {I j+1 } m d j (a j a j+1 ) + k=j+2 k j, j + 1 {I k } m d k ((a j a k ){I j } m (a j+1 a k ){I j+1 } m ) (a j a k ){I j } m (a j+1 a k ){I j+1 } m = {Ij } 1 m {I j+1 } 1 m + I k ( {I j+1 } m {I j } m) φ(b) < 0 x j < x j+1 x 1 = {I 1 } m I k m (a 1 a k ) < 0 k=2 h 1 x h = {I h } m I k m (a h a k ) > 0 k=1 n, 1 < n < h x n 1 < 0 < x n 17 α j B > 0 (B) ρ ρ(b) B < (B) φ φ(b) B, j = 1,..., n 1 α k B < 0, k = n,..., h 17 j x j 0 26
28 [1] (2002),No.37,pp [2] (2001),42,pp [3] (2002b) - -,28,pp [4] (2004),167,pp.1-17 [5] (2004) Discussion Paper,No.408,pp.1-19 [6] (2005) [7] (2006) -,, 3 [8] (2008),, 6 [9] (2005),pp [10] (2007) 7,pp [11] (2010) Discussion Paper,No
29 [12] (1987) 6,pp [13] (1988),pp.1-15 [14] (2001),37,pp [15] (1999) [16] Auerbach, A. and Kotlikoff, L.J.(1987), Dynamic Fiscal Policy, Cambridge University Press. [17] Blanchard,O. and Fischer,S.(1989), Lectures on Macroeconomics, MIT Press. [18] Diamond, P.A.(1965), National Debt in a Neoclassical Growth Model, American Economic Review, Vol.55, No.5, pp [19] Heijdra,B.(2009), Foundations of Modern Macroeconomis Second Edition, Oxford University Press. [20] Negishi, T.(1960), Welfare Economics and Existence of an Equilibrium for a Competitive Economy, Metroeconomica, Vol.12, No.2-3, pp [21] Shimono, K. and Tachibanaki, T.(1985), Lifetime Income and Public Pension An Analysis of the Effect on Redistribution Using a Two-period Analysis, Journal of Public Economics, Vol.26, pp
Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,
,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:[email protected] E-mail:[email protected] E-mail:[email protected] 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)
shuron.dvi
01M3065 1 4 1.1........................... 4 1.2........................ 5 1.3........................ 6 2 8 2.1.......................... 8 2.2....................... 9 3 13 3.1.............................
2015 : (heterogenous) Heterogeneous homogeneous Heterogenous agent model Bewley 1 (The Overlapping-Generations Models:OLG) OLG OLG Allais (1
2015 : 27 6 13 1 (heterogenous) Heterogeneous homogeneous Heterogenous agent model Bewley 1 (The Overlapping-Generations Models:OLG) OLG OLG Allais (1947) 2 Samuelson(1958) 3 OLG Solow Ramsey Samuelson
4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.
A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c
20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................
: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =
72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)
23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/
2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................
.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T
NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977
2002 11 21 1 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2002 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture [email protected] 2 1. 10/10 2. 10/17 3. 10/24 4. 10/31 5. 11/ 7 6. 11/14
meiji_resume_1.PDF
β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E
linearal1.dvi
19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352
n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz
1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x
ver Web
ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3
II 2 II
II 2 II 2005 [email protected] 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................
20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33
v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i
1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [
21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........
D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco
post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)
X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2
I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT
I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345
m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d
m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m
βdxβ r a, < E e uγ r ha d E e r dx e r γd e r βdx 3.2 a = {a} γ = {γ} max E e r dx e r γd e r βdx, 2 s.. dx = qand + σndz, 1 E e r uγ ha d, 3 a arg maxã E e r uγ hã d. 4 3.3 γ = {γ : γ, γ} a = {a : a,
(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0
1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C
27 [email protected] 27 4 3 Jorgenson Tobin q : Hayashi s Theorem Jordan Saddle Path. GDP % GDP 2. 3. 4.. Tobin q 2 2. Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)
3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)
18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α
18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t
‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í
Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I
Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4
[2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =
ú r(ú) t n [;t] [;t=n]; (t=n; 2t=n]; (2t=n; 3t=n];:::; ((nä 1)t=n;t] n t 1 (nä1)t=n e Är(t)=n (nä 2)t=n e Är(t)=n e Är((nÄ1)t=n)=n t e Är(t)=n e Är((n
1 1.1 ( ) ö t 1 (1 +ö) Ä1 2 (1 +ö=2) Ä2 ö=2 n (1 +ö=n) Än n t (1 +ö=n) Änt t nt n t lim (1 n!1 +ö=n)änt = n!1 lim 2 4 1 + 1 n=ö! n=ö 3 5 Äöt = î lim s!1 í 1 + 1 ì s ï Äöt =e Äöt s e eëlim s!1 (1 + 1=s)
D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j
6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..
3/4/8:9 { } { } β β β α β α β β
α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3
PFI
PFI 23 3 3 PFI PFI 1 1 2 3 2.1................................. 3 2.2..................... 4 2.3.......................... 5 3 7 3.1................................ 7 3.2.................................
006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................
5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1
4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1
No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2
No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2
2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6
1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x
. P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +
y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =
y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K
II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F
1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (
1905 1 1.1 0.05 mm 1 µm 2 1 1 2004 21 2004 7 21 2005 web 2 [1, 2] 1 1: 3.3 1/8000 1/30 3 10 10 m 3 500 m/s 4 1 10 19 5 6 7 1.2 3 4 v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt 6 6 10
JFE.dvi
,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : [email protected] E-mail : [email protected] SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho
all.dvi
5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0
Graduate School of Policy and Management, Doshisha University 53 動学的資本税協調と公的資本形成 あらまし Zodrow and Mieszkowski 1986 Wilson 1986 Batina はじめに Zodr
Graduate School of Policy and Management, Doshisha University 53 動学的資本税協調と公的資本形成 あらまし Zodrow and Mieszkowski 1986 Wilson 1986 Batina 2009 1. はじめに Zodrow and Mieszkowski 1986 Wilson 1986 Tax Competition
() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS
() [REQ] 4. 4. () [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () 0 0 4. 5050 0 ) 00 4 30354045m/s 4. ) 4. AMEDAS ) 4. 0 3 ) 4. 0 4. 4 4.3(3) () [REQ] () [REQ] (3) [POS] () ()() 4.3 P = ρ d AnC DG ()
http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg
5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i
i j ij i j ii,, i j ij ij ij (, P P P P θ N θ P P cosθ N F N P cosθ F Psinθ P P F P P θ N P cos θ cos θ cosθ F P sinθ cosθ sinθ cosθ sinθ 5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6
Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence
Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................
K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................
simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =
II 6 [email protected] 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [
Grushin 2MA16039T
Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,
,398 4% 017,
6 3 JEL Classification: D4; K39; L86,,., JSPS 34304, 47301.. 1 01301 79 1 7,398 4% 017,390 01 013 1 1 01 011 514 8 1 Novos and Waldman (1984) Johnson (1985) Chen and Png (003) Arai (011) 3 1 4 3 4 5 0
24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x
24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),
1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199
Nelson-Siegel Nelson-Siegel 1992 2007 15 1 Nelson and Siegel(1987) 2 FF VAR 1996 FF B) 1 Nelson-Siegel 15 90 1 Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel
N cos s s cos ψ e e e e 3 3 e e 3 e 3 e
3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >
変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,
変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +
( ) Loewner SLE 13 February
( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d
,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.
9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,
,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising
,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free
20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................
untitled
8- My + Cy + Ky = f () t 8. C f () t ( t) = Ψq( t) () t = Ψq () t () t = Ψq () t = ( q q ) ; = [ ] y y y q Ψ φ φ φ = ( ϕ, ϕ, ϕ,3 ) 8. ψ Ψ MΨq + Ψ CΨq + Ψ KΨq = Ψ f ( t) Ψ MΨ = I; Ψ CΨ = C; Ψ KΨ = Λ; q
2017 II 1 Schwinger Yang-Mills 5. Higgs 1
2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2
研修コーナー
l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l
II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2
II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh
