(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

Size: px
Start display at page:

Download "(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)"

Transcription

1 ,, (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) [email protected] [email protected] [email protected]

2 (2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

3 (A), (B) Auerbach and Kotlikoff(1987) (2004) (2007) Diamond(1965) (1988) ( ) (2004) 5 (2001) (2001) 2

4 3 3 (A) (B) (C) 4 ( ) Negishi(1960) ( ) Negishi(1960) ( ) Negishi(1960) 3

5 W τw T bw B r (1 τ)w T + bw + B 1 + r (1) (1 τ)w T (bw + B)/(1 + r) t j W j t t T, B t t (τ t W j t + T ) = (bw j t 1 + B t) (2) j j 6 T, b (2) τ t, T, b, B t h a 1, a 2,, a h, (a j < a j+1 ) 6 4

6 d 1, d 2,, d h h d i = 1, d i 0 a j, d j t N t a j d j N t, j = 1, 2..., h t L t L t = (a 1 d 1 + a 2 d a h d h )N t = a j d j N t (3) 2.2 K L F (K, L) F 2 F 1 ( ) F K = F K (K, L) > 0, F L = F L (K, L) > 0, F KK = 2 F K 2 (K, L) < 0, F LL = 2 F L 2 (K, L) < 0, f(k) = F (k, 1), k = K/L f (k) > 0 f (k) < 0 F (K, L) lim f (k) = k 0 lim f (k) = 0. k 1 w t, r t t t F K = F K (Kd t, L d t ) = r t, F L = F L (Kd t, L d t ) = w t (4) 5

7 (Kt d, L d t ) L d t = L t (4) 1 Kt d (r t ) 2 w t k = K/L Lf(k) = F (K, L) f(k) kf (k) = F L f(k(r t )) k(r t )f (k(r t )) = w t, k(r t )L t = K d t (r t ) 1 w t F K (K d t (r t ), L t ) = r t dk d t dr t < 0, dw t dr t < 0 (5) 2.3 t t N t 1, N t S t 1 K t (= S t 1 ) L t r t w t t a i Wt i = a i w t (1 τ t )a i w t T a i ba i w t 1 + B t r t s t 1 t (1 τ t )a i w t T d i N t, i = 1,..., h ba i w t 1 + B t + r t s i t 1 d in t 1, i = 1,..., h u(c t, c t+1 ) u : R 2 + R 2 6

8 2 ( ) (1) R 2 + (quasi-concave) R2 ++ (2) x 1 0, x 2 0, u(x 1, 0) = u(0, x 2 ) = inf{u(x 1, x 2 ) (x 1, x 2 ) R 2 +} a i t max u(c yi t, c yi coi t + s i t = (1 τ t )a i w t T, t+1) sub to (6) c oi t+1 = (1 + r t+1)s i t + ba i w t + B t+1 c y t, co t+1 t a i c y t co t+1 si t s i t t + 1 max u(c yi t, coi t+1) sub to c yi t + coi t r t+1 = I i t (7) I i a i I i t def 1 = (1 τ t )a i w t T + (ba i w t + B t+1 ) (8) 1 + r t+1 r t+1, w t, τ t B t+1 I i t(r t+1, w t, τ t, B t+1 ) c o t = c oi t d i N t 1 = { (1 + rt )s i } t 1 + ba i w t 1 + B t di N t 1 (τ t a i w t + T )d i N t = (ba i w t 1 + B t )d i N t 1 (9) 7

9 3 B τ t (c yi t + s i t)d i N t + = (a i w t τa i w t T t )d i N t + a i w t d i N t +(1 + r t ) c oi t d i N t 1 = F (K t, L t ) + K t (10) (τa i w t + T )d i N t + s i t 1d i N t 1 = w t ( bai w t 1 + B + (1 + r t )s i ) t 1 di N t 1 (ba i w t 1 + B)d i N t 1 a i d i N t + (1 + r t )K t = w t L t + r t K t + K t = F (K t, L t ) + K t = t t + 1 r t+1 t + 1 L t+1 = a i d i N t+1 K t+1 F K t+1 (K t+1, L t+1 ) = r t+1 K d t+1 (r t+1) h si t(r t+1 )d i N t K d t+1(r t+1 ) = s i t(r t+1 )d i N t (11) r t+1 1 8

10 t = 1 K 1, w 0, s i 0, N t(t = 0, 1, 2,... ), d i, a i T, b, B t (t = 0, 1, 2,... ), 1 w 0 h si 0 (r 1)d i N 0 F K (K 1, L 1 ) r 1 r 1 = F K (K 1, L 1 ) r 1 w 1 = F L (K 1, L 1 ) (τ 1 a i w 1 + T )d i N 1 = (ba i w 0 + B 1 )d i N 0 τ 1 1 t 1 t 2 K d 2 (r 2 ) = h si 1 (r 2)d i N 1 (12) r2 2 K 2 = K2 d(r 2 ) 2 t 2 r t, L t, K t (4) (9) (11) F L (Kt d, L t ) = w t (τ t a i w t + T )d i N t = (ba i w t 1 + B t )d i N t 1 Kt+1(r d t+1 ) = s i t(r t+1 )d i N t w t, τ t, r t+1 Kt+1 d (r t+1) F K (Kt+1 d, L t+1) = r t+1 T, b, B t d i, a i, N t (t = 0, 1, 2... ) w t, τ t (11) (12) 9

11 F K (K t+1, L t+1 ) = r t+1 K d t+1 (r t+1) k(r t+1 ) = K d t+1 (r t+1)/l t+1 K d t+1 (r t+1) = L t+1 k(r t+1 ) r t+1 = f (k(r t+1 )), 1 = f dk dr t+1 r t+1 0 k(r t+1 ) r t+1 k(r t+1 ) 0 t+1 h si t(r t+1 )d i N t = S t (r t+1 ) 3 ds t (r t+1 )/dr t+1 0 ˆr S t (ˆr) > 0 r t+1 S t (r t+1 ) > Kt+1 d (r t+1) r t+1 Kt+1 d (r t+1) > S t (r t+1 ) r t+1 Kt+1 d (r t+1) < S t (r t+1 ) r Kt+1 d (r ) = S t (r ) t = 1 t = 2 10

12 8 t s i t = s i, c y t = cy, c o t = c o, K t = K, N t = N, L t = L, w t = w, r t = r, τ t = τ, B t = B, I i t = I i t = 1, 2, L = h a id i N r F K (K d, L) = 0, w F L (K d, L) = 0 (13a) (τa i w + T )d i N K d (ba i w + B)d i N = 0 s i (w, τ, r, B)d i N = 0 (13b) (13c) 9 (w, r, K d, τ) B c y (r, I j ), c o (r, I j ) (13a) (13c) 4 τ > b. 4 (13b) (τ b) h a iwd i = B T 4 B > T a 13c (13a) K d (r) 13a 2 w = F L (K d (r), L) = w(r) 8 Diamond(1965) 9 s i 11

13 (13b) (13c) 13c 1 + r (τa i w(r) + T )d i (1 + r)k d (r) (1 + r) (ba i w(r) + B)d i = 0 s i (w(r), τ, r, B)d i N = 0 r, τ 2 (7) I i def = (1 τ)a i w(r) T + ba iw(r) + B, i = 1, 2,..., h 1 + r (1 + r)s i = c oi (r, I i ) (ba i w + B), S = 14b (1 + r)k d (r) s i d i N (14a) (14b) { c oi ( r, I i) (ba i w(r) + B) } d i N = 0 (15) 14a 15 r, T h (τ b)a dw h id i J = dr a iw(r)d i ( K d + (1 + r) dkd dr S + (1 + r) S ) h c oi r I i a iwd i N K d = S J J = (τ b)a i d i dw dr c oj I j a jwd j N (1 + r) ( dk d a i w(r)d i dr S ) r J (14a) (14b) r, τ ψ 1 (r, τ), ψ 2 (r, τ) ṙ = ψ 2 (r, τ), τ = ψ 1 (r, τ) J > 0 5 J > 0 12

14 5 (B) (τ) (τ) T ) 5 6 c > Negishi(1960) 3. 3 r, I j, w, K, τ, c kj, k = y, o B Ĩ j (B) = I j (r(b), w(b), τ(b), B), w(b) = w(r(b)) c kj (B) = c kj (r(b), Ĩj (B)), k = y, o, K(B) = K(r(B)) 13

15 5.1 J = 0 r, τ B 14a 15 dr J db 1 dτ = ( ) h c oi 1 db I i 1 + r 1 d i N 5 c oi dr db = I i a iwd i N ( ) c oi 1 a i wd i I i 1 + r 1 d i N J 2 0 < c oi / I i < 1 dr db > 0 (16) (14a) (16) dτ db a i wd i = (b τ) a j dw dr dr db d j + 1 > 1 (17) d K(B) db = dk dr dr db = 1 dr F KK db < 0 (18) 2 5, 6 B 14

16 5.2 Blanchard and Fisher(1989) De la Croix(2002) Heijdra(2009) 1 Negishi(1960) Negishi(1960) 1 2 u i (c yi, c oi ) = {c yi } α i {c oi } β i, i = 1, 2 0 < α i < 1, 0 < β i < 1, α i + β i < 1, i = 1, 2 CK δ L 1 δ, 0 < δ < 1 W Ben = 2 u id i W R = min(u 1, u 2 ) 1 2 τ B W Ben W R 1 G(u i )di, P G(u i ) = exp βu i i β u i 1 ρ a 1 ρ 1 15

17 1: B W Ben W R 1 2 (α 1, β 1 ) (0.2919, ) (0.3496, ) (α 2, β 2 ) (0.6620, ) ( , ) (a 1, a 2 ) (6.834, ) (8.714, ) (d 1, d 2 ) (0.1370, ) (0.2475, ) (C, δ) (10, ) (10, ) (τ, b, B, T ) (0.21,0.2,0.5,0.4) (0.2037,0.2,0.5,0.4) dw Ben db > > 0 dw R db > > 0 Negishi(1960) Negishi(1960) c yj (B)d j N + K(B) = c oj (B)d j N = F ( K(B), L) s j (B)d j N, B (17) (1 + r) d c yj db d j + d c oj db d j = r s j (B) def = (1 τ)a j w(b) T (B) c yj (B) ( dτ ) db a d w j w + (1 τ)a j d j N < 0 db j B V j (B) = u j ( c yj (B), c oj (B)) j dv j db = λ d c yj j db + λ j r d c oj db λ j j Negishi(1960) (19) α j u j ( c yj, c oj )d j N, α j = 1/λ j, j = 1, 2,..., h (20) 16

18 (19) d db α j u j ( c yj (B), c oj (B))d j N = r ) ((1 + r) d cyj db + d coj d j N < 0 db 3 5, 6 Negishi(1960) negishi Negishi (1960) (20) Negishi Ĩj µ, σ, CV B 11 Ĩ i def = (1 τ(b))a i w(b) T + ba i w(b) + B, i = 1, 2,..., h 1 + r(b) dĩj db = dτ db a jw + (( 1 τ + b ) dw a j 1 + r dr ba ) jw + B dr (1 + r) 2 db r (21) (2005) (2006) (2008) 17

19 τ b > 0 dr/db > 0 (17) dτ/db > 0 (21) B µ = h Ii d i (17) dµ db = = < 0 dĩj db d i (( 1 τ + b ) dw a j 1 + r dr ba ) jw + B dr (1 + r) 2 d j db r dτ a j wd j db 1 dσ 2 2 db < 0 (22) 12 CV = h ) 2 (Ĩj d j 1 µ B CV 2 dcv 2 db = 2 (( ) ( )) Bµ 3 φ(b)2 2 ρ(b)σ a Bρ (B) Bφ (B) ρ(b) φ(b) (23) 13 φ(b) = (1 τ)w + bw/(1 + r), φ d((1 τ)w + bw/(1 + r)) (B) =, db ρ(b) = T + B/(1 + r), ρ d( T + B/(1 + r)) (B) = db φ(b) a i w ρ(b)

20 φ(b) > 0, φ (B) < 0, ρ (B) < 0 ρ(b) Bφ /φ B Bρ /ρ B 4 5,6 Bφ /φ > Bρ /ρ, 4 2 τ) B 5.4 B Negishi(1960) B Negishi(1960) B Negishi(1960) B B Negishi(1960) B Negishi(1960) Negishi(1960) 19

21 7 u i (x i ), x i = (c yi, c oi ) m (0 < m < 1) 0 < m < 1 Negishi(1960) u i (x i ) u(x i ) (1, 1/(1 + r), I j ) I j j j i x j c ji (1, 1/(1 + r), I i ) = I i c ji (1, 1/(1 + r)), j = y, o c ji (1, 1/(1 + r)) = c ji (1, 1/(1 + r), 1), j, i v j v j = V (1, 1/(1 + r), I j ) = {I j } m V (1, 1/(1 + r), 1) a j λ j λ j = m{i j } m 1 V (1, 1/(1 + r), 1) Negishi(1960) α j 1 α j = {I j } 1 m {I 1 } 1 m d {I h } 1 m d h I 1 ( B Ik Ik φ ) (B) B I1 = φ(b)ρ(b)(a 1 a k ) φ(b) ρ (B) ρ(b) α 1 B = (1 m)φ(b)ρ(b) ({I 1 } 1 m d {I h } 1 m d h ) 2 B {I 1 } m {I k } m d k (a 1 a k ) α h B = k=2 (1 m)φ(b)ρ(b) ({I 1 } 1 m d {I h } 1 m d h ) 2 B {I h } m {I k } m d k (a h a k ) h 1 k=1 { } ρ (B) ρ(b) B + φ (B) φ(b) B { } ρ (B) ρ(b) B + φ (B) φ(b) B 20

22 j = 1, 2,..., h α j B = (1 m)φ(b)ρ(b) ({I 1 } 1 m d {I h } 1 m d h ) 2 B k j{i j } m {I k } m d k (a j a k ) { } ρ (B) ρ(b) B + φ (B) φ(b) B x j = k j {Ij } m {I k } m d k (a j a k ) x j < x j+1 a 1 < a 2 < < a h x 1 < 0, x h > 0 n, 1 < n < h x n 1 < 0 < x n (i) (ii) B n (1 < n < h) (1)α 1,..., α n 1 (2)α n,..., α h Negishi(1960) (i) 4 2) 4, B negishi 2: 1 2 ( φ B φ, B ρ ) ρ ( , 2.045) ( , 3.470) 6 (A) (B) (C) 14 j x j 0 B 21

23 (A) (B) 1 1 (i) (ii) (i) (ii) Negishi(1960) (ii) (C) 3 1 (2002) (2004) 15 2 (2002b) r w 15 (2002) (2004) 22

24 3 (A) (B) (C) A 5 (22) (23) B Ĩi Ĩj ( Ĩ j = (1 τ) w + b w ) a j T + B 1 + r 1 + r = φ(b)a j + ρ(b) φ(b) > 0 dĩi /db, dµ/db (( db + φ (B) = dφ dτ (B) = w db ρ (B) = dρ db (B) = B dr (1 + r) 2 db r 1 τ + b 1 + r ) dw dr bw ) dr (1 + r) 2 db dĩj db = φ (B)a j + ρ (B), dµ db = φ (B)ā + ρ (B) ā = h a id i φ (B) < 0, ρ (B) < 0 σ 1 dσ 2 2 db = I i dii db d i I i dµ db d i ( = φ I i a i d i + ρ µ φ āµ ρ µ = φ ā I i a id i ā µ ( Ĩ j = Ĩ1 + (1 τ) w + b w ) (a j a 1 ) = 1 + r Ĩ1 + φ(b)(a j a 1 ), j = 1, 2,..., h ) 23

25 Ĩ i a id i ā = Ĩ 1 a id i ā µ = + φ ( Ĩ i d i = Ĩ1 + φ(b) a i d i ā a i = 1 ā ( ) ( ) ai d i ā a a i d i i a 1 = Ĩ1 + φ(b) ā a i a 1 ) a i d i a 1 a 2 i d i = 1 ā (ā2 + σ 2 a ) > ā = a i d i σ a a j, j = 1, 2,..., h Ĩ i a id i ā > µ (24) φ (B) < 0 1 dσ 2 2 db < 0 B 16 dcv 2 db = 2 µ 3 d i d j Ĩ j Ĩ i Ĩi B d i d j (Ĩj ) 2 Ĩi (25) B (25) d i d j Ĩ j Ĩ i Ĩi B = µ d i Ĩ i Ĩi B = µ d i Ĩ i (φ a i + ρ ) (25) d i d j (Ĩj ) 2 Ĩi B = = µφ d i a i Ĩ i + µ 2 ρ = µφ ( āĩ1 + φ(b) ( ā 2 + σ a 2 a 1 ā )) + µ 2 ρ d j (Ĩj ) 2 d i Ĩi B = d j (Ĩj ) 2 d i (φ a i + ρ ) = (µ 2 + σ 2 )(φ ā + ρ ) = φ µ 2 ā + ρ µ 2 + φ σ 2 ā + ρ σ

26 dcv 2 db = 2 ( ( µ 3 µφ āĩ1 + φ(b) ( ā 2 + σ 2 a a 1 ā )) ) (φ µ 2 ā + φ σ 2 ā + ρ σ 2 ) µ = φā + ρ = Ĩ1 + φ(b)(ā a 1 ), σ 2 = φ 2 σ a 2. dcv 2 db = 2 µ 3 B φ2 ρσ a 2 (( Bρ ρ ) ( Bφ )) φ B u(x i ), x i = (c yi, c oi ) m 0 < m < 1 V j λ j V j (1, 1/(1 + r), I j ) = {I j } m V (1, 1/(1 + r), 1), λ j = m{i j } m 1 V (1, 1/(1 + r), 1) α j 1 α j = {I j } 1 m {I 1 } 1 m d {I h } 1 m d h α j B = 1 m ({I 1 } 1 m d {I h } 1 m d h ) 2 ( Ĩ j = (1 τ) w + b w 1 + r ) a j T + Ĩ j = Ĩ1 + φ(b)(a j a 1 ), j = 1, 2,..., h ( ) {I j } m {I k } m I j d k B Ik Ik B Ij k j B 1 + r = φ(b)a j + ρ(b), φ(b) > 0 I j B Ik Ik B Ij = (a j a k ) φ(b)ρ(b) B { } ρ (B) ρ(b) B + φ (B) φ(b) B 25

27 j = 1, 2,..., h α j B = (1 m)φ(b)ρ(b) ({I 1 } 1 m d {I h } 1 m d h ) 2 B k j{i j } m {I k } m d k (a j a k ) { } ρ (B) ρ(b) B + φ (B) φ(b) B x j = k j {Ij } m {I k } m d k (a j a k ) a 1 < a k < a h, k = 2,..., h 1 j 1 x j x j+1 = {I k } m d k ((a j a k ){I j } m (a j+1 a k ){I j+1 } m ) k=1 {I j+1 } m {I j } m d j+1 (a j+1 a j ) + {I j } m {I j+1 } m d j (a j a j+1 ) + k=j+2 k j, j + 1 {I k } m d k ((a j a k ){I j } m (a j+1 a k ){I j+1 } m ) (a j a k ){I j } m (a j+1 a k ){I j+1 } m = {Ij } 1 m {I j+1 } 1 m + I k ( {I j+1 } m {I j } m) φ(b) < 0 x j < x j+1 x 1 = {I 1 } m I k m (a 1 a k ) < 0 k=2 h 1 x h = {I h } m I k m (a h a k ) > 0 k=1 n, 1 < n < h x n 1 < 0 < x n 17 α j B > 0 (B) ρ ρ(b) B < (B) φ φ(b) B, j = 1,..., n 1 α k B < 0, k = n,..., h 17 j x j 0 26

28 [1] (2002),No.37,pp [2] (2001),42,pp [3] (2002b) - -,28,pp [4] (2004),167,pp.1-17 [5] (2004) Discussion Paper,No.408,pp.1-19 [6] (2005) [7] (2006) -,, 3 [8] (2008),, 6 [9] (2005),pp [10] (2007) 7,pp [11] (2010) Discussion Paper,No

29 [12] (1987) 6,pp [13] (1988),pp.1-15 [14] (2001),37,pp [15] (1999) [16] Auerbach, A. and Kotlikoff, L.J.(1987), Dynamic Fiscal Policy, Cambridge University Press. [17] Blanchard,O. and Fischer,S.(1989), Lectures on Macroeconomics, MIT Press. [18] Diamond, P.A.(1965), National Debt in a Neoclassical Growth Model, American Economic Review, Vol.55, No.5, pp [19] Heijdra,B.(2009), Foundations of Modern Macroeconomis Second Edition, Oxford University Press. [20] Negishi, T.(1960), Welfare Economics and Existence of an Equilibrium for a Competitive Economy, Metroeconomica, Vol.12, No.2-3, pp [21] Shimono, K. and Tachibanaki, T.(1985), Lifetime Income and Public Pension An Analysis of the Effect on Redistribution Using a Two-period Analysis, Journal of Public Economics, Vol.26, pp

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) , ,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:[email protected] E-mail:[email protected] E-mail:[email protected] 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)

More information

shuron.dvi

shuron.dvi 01M3065 1 4 1.1........................... 4 1.2........................ 5 1.3........................ 6 2 8 2.1.......................... 8 2.2....................... 9 3 13 3.1.............................

More information

2015 : (heterogenous) Heterogeneous homogeneous Heterogenous agent model Bewley 1 (The Overlapping-Generations Models:OLG) OLG OLG Allais (1

2015 : (heterogenous) Heterogeneous homogeneous Heterogenous agent model Bewley 1 (The Overlapping-Generations Models:OLG) OLG OLG Allais (1 2015 : 27 6 13 1 (heterogenous) Heterogeneous homogeneous Heterogenous agent model Bewley 1 (The Overlapping-Generations Models:OLG) OLG OLG Allais (1947) 2 Samuelson(1958) 3 OLG Solow Ramsey Samuelson

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

2002 11 21 1 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2002 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture [email protected] 2 1. 10/10 2. 10/17 3. 10/24 4. 10/31 5. 11/ 7 6. 11/14

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

II 2 II

II 2 II II 2 II 2005 [email protected] 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

βdxβ r a, < E e uγ r ha d E e r dx e r γd e r βdx 3.2 a = {a} γ = {γ} max E e r dx e r γd e r βdx, 2 s.. dx = qand + σndz, 1 E e r uγ ha d, 3 a arg maxã E e r uγ hã d. 4 3.3 γ = {γ : γ, γ} a = {a : a,

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C 27 [email protected] 27 4 3 Jorgenson Tobin q : Hayashi s Theorem Jordan Saddle Path. GDP % GDP 2. 3. 4.. Tobin q 2 2. Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 [2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =

More information

ú r(ú) t n [;t] [;t=n]; (t=n; 2t=n]; (2t=n; 3t=n];:::; ((nä 1)t=n;t] n t 1 (nä1)t=n e Är(t)=n (nä 2)t=n e Är(t)=n e Är((nÄ1)t=n)=n t e Är(t)=n e Är((n

ú r(ú) t n [;t] [;t=n]; (t=n; 2t=n]; (2t=n; 3t=n];:::; ((nä 1)t=n;t] n t 1 (nä1)t=n e Är(t)=n (nä 2)t=n e Är(t)=n e Är((nÄ1)t=n)=n t e Är(t)=n e Är((n 1 1.1 ( ) ö t 1 (1 +ö) Ä1 2 (1 +ö=2) Ä2 ö=2 n (1 +ö=n) Än n t (1 +ö=n) Änt t nt n t lim (1 n!1 +ö=n)änt = n!1 lim 2 4 1 + 1 n=ö! n=ö 3 5 Äöt = î lim s!1 í 1 + 1 ì s ï Äöt =e Äöt s e eëlim s!1 (1 + 1=s)

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

PFI

PFI PFI 23 3 3 PFI PFI 1 1 2 3 2.1................................. 3 2.2..................... 4 2.3.......................... 5 3 7 3.1................................ 7 3.2.................................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg ( 1905 1 1.1 0.05 mm 1 µm 2 1 1 2004 21 2004 7 21 2005 web 2 [1, 2] 1 1: 3.3 1/8000 1/30 3 10 10 m 3 500 m/s 4 1 10 19 5 6 7 1.2 3 4 v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt 6 6 10

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : [email protected] E-mail : [email protected] SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

Graduate School of Policy and Management, Doshisha University 53 動学的資本税協調と公的資本形成 あらまし Zodrow and Mieszkowski 1986 Wilson 1986 Batina はじめに Zodr

Graduate School of Policy and Management, Doshisha University 53 動学的資本税協調と公的資本形成 あらまし Zodrow and Mieszkowski 1986 Wilson 1986 Batina はじめに Zodr Graduate School of Policy and Management, Doshisha University 53 動学的資本税協調と公的資本形成 あらまし Zodrow and Mieszkowski 1986 Wilson 1986 Batina 2009 1. はじめに Zodrow and Mieszkowski 1986 Wilson 1986 Tax Competition

More information

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS () [REQ] 4. 4. () [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () 0 0 4. 5050 0 ) 00 4 30354045m/s 4. ) 4. AMEDAS ) 4. 0 3 ) 4. 0 4. 4 4.3(3) () [REQ] () [REQ] (3) [POS] () ()() 4.3 P = ρ d AnC DG ()

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i i j ij i j ii,, i j ij ij ij (, P P P P θ N θ P P cosθ N F N P cosθ F Psinθ P P F P P θ N P cos θ cos θ cosθ F P sinθ cosθ sinθ cosθ sinθ 5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 [email protected] 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

,398 4% 017,

,398 4% 017, 6 3 JEL Classification: D4; K39; L86,,., JSPS 34304, 47301.. 1 01301 79 1 7,398 4% 017,390 01 013 1 1 01 011 514 8 1 Novos and Waldman (1984) Johnson (1985) Chen and Png (003) Arai (011) 3 1 4 3 4 5 0

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199 Nelson-Siegel Nelson-Siegel 1992 2007 15 1 Nelson and Siegel(1987) 2 FF VAR 1996 FF B) 1 Nelson-Siegel 15 90 1 Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

untitled

untitled 8- My + Cy + Ky = f () t 8. C f () t ( t) = Ψq( t) () t = Ψq () t () t = Ψq () t = ( q q ) ; = [ ] y y y q Ψ φ φ φ = ( ϕ, ϕ, ϕ,3 ) 8. ψ Ψ MΨq + Ψ CΨq + Ψ KΨq = Ψ f ( t) Ψ MΨ = I; Ψ CΨ = C; Ψ KΨ = Λ; q

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information