040312研究会HPC2500.ppt
|
|
|
- めぐの はまもり
- 7 years ago
- Views:
Transcription
2 2
3 PRIMEPOWER VX/VPP300 VPP700 GP7000 AP3000 VPP5000 PRIMEPOWER 2000 PRIMEPOWER HPC
4 VPP5000 PRIMEPOWER ( 1 VU 9.6 GF 16GB 1 VU 9.6 GF 16GB 128 PE 1.22 TF 128 (6.2GF/) 798.7GF 512GB SMP 1 SMP 128 (6.2GF/) 798.7GF 512GB SMP 128 node 102.2TF 4
5 ( 128) ( 128) 128 ( 128) ( 128) DTU D T U D T U D T U D T U l l Adapter Adapter 16 DTU : Data Transfer Unit I/O 5
6 VPP
7 HPC / - ( M&A/M/A/DIV/) x 2 - / - 16-outstanding - - 7
8 MEM MEM prefetch X load X,fr4 miss waiting add fr4... load X,fr4 add fr4... hit time 8
9 JAXA Central Numerical Simulation System (CeNSS) PRIMEPOWER HPC2500 system was installed to the Japan Aerospace Exploration Agency (JAXA) on Oct as a main compute engine. Configuration of CeNSS PRIMEPOWER HPC2500 ~ 14 Compute Cabinets ~ -Peak Performance: 9.3TFlops -Memory (Total): 3.6TB HPC2500(1Cabinet): - : SPRAC64 V(1.3GHz) x Memory: 256GB Interconnect : - Crossbar Switch: 4GB/s(Bi-directional) (Node to Node communication) 9
10 Kyoto University The largest class of supercomputer system in the world. The largest supercomputer system among Japanese university centers. Configuration [PRIMEPOWER HPC2500] - 128/Node 11Cabinets (Compute Nodes) - 64/Node 1Cabinet (I/O Node) Supercomputer PRIMEPOWER HPC TFLOPS,, Memory:5.75TB 9.185TFLOPS PRIMEPOWER HPC2500 PRIMEPOWER HPC2500 PRIMEPOWER HPC2500 PRIMEPOWER HPC2500 PRIMEPOWER HPC2500 High Speed Optical Interconnect PRIMEPOWER HPC2500 PRIMEPOWER HPC2500 (IO Node) PRIMEPOWER HPC2500 PRIMEPOWER HPC2500 RAID ETERNUS6000 Model TB(RAID5) Tape Library Network Router PRIMEPOWER HPC2500 PRIMEPOWER HPC2500 PRIMEPOWER HPC2500 Pre-post operation 10
11 11
12 Parallelnavi DTU (BLASTBAND HPC) (GFS/GDS) Solaris TM Operating Environment (SRFS) 12
13 MPL Fortran C C++ MPI OpenMP Parallelnavi Workbench *2 SSL II C-SSL II BLAS LAPACK ScaLAPACK XPFortran *1 SSL II/XPF *3 *1:eXtended Parallel Fortran(VPP Fortran ). Parallelnavi *2: *3:SSL II/VPPXPFortran 13
14 14
15 Fortran C C++ OpenMP MPI ISO/IEC :1997 1:1997 JIS X3001-1:1998(Fortran95) 1:1998(Fortran95) (FORTRAN77/Fortran90 ) ISO/IEC 9899:1999(C99 ) X (ANSI 1989(ANSI CC )K&R ISO/IEC 14882:1998 (Rogue Wave Tools.h++ V8) OpenMP Fortran Application Program Interface Version 2.0 OpenMP C and C++ Application Program Interface Version 2.0 MPI-2: Extension to the Message-Passing Interface (July 18,1997) 15
16 OpenMP XPFortran MPI (VPP Fortran ) ( ) : : 16
17 XPFortran MPI MPI 17
18 MPI 18
19 program main dimension dif(1000),u(1000) : c = 2.0!$OMP PARALLEL DO do i = 2, 999 dif(i) = u(i+1) - c*u(i) + u(i-1) end do : end program main OpenMP program main include "mpif.h" real(kind=4),dimension(:),allocatable :: dif,u integer STATUS(MPI_STATUS_SIZE) : call MPI_INIT(ierr) call MPI_COMM_SIZE(MPI_COMM_WORLD, npe,ierr) call MPI_COMM_RANK(MPI_COMM_WORLD,myrank,ierr) im = 1000 ilen = (im + npe - 1 )/npe ist = myrank* iend = ist + ilen - 1 allocate( u(ist-1:iend+1), dif(ist:iend) ) nright = myrank + 1 nleft = myrank - 1 program main if(myrank== 0) then!xocl PROCESSOR P(4) nleft = MPI_PROC_NULL dimension u(1000),dif(1000) else if(myrank==npe-1) then!xocl INDEX PARTITION Q=(P,INDEX=1:1000) nright = MPI_PROC_NULL!XOCL GLOBAL u(/q(overlap=(1,1))),dif(/q) end if! call MPI_SENDRECV( u(iend ),1,MPI_REAL,nright,0, &!XOCL PARALLEL REGION u(ist-1 ),1,MPI_REAL, nleft,0, & MPI_COMM_WORLD,STATUS,IERR ) c = 2.0 call MPI_SENDRECV( u(ist ),1,MPI_REAL, nleft,1, &!XOCL OVERLAPFIX(u)(id) u(iend+1),1,mpi_real,nright,1, &!XOCL MOVE WAIT(id) MPI_COMM_WORLD,STATUS,IERR )!XOCL SPREAD DO REGIDENT(u,dif) /Q c = 2.0 do i = 2, 999 ist_do = max( 2,ist ) dif(i) = u(i+1) - c*u(i) + u(i-1) iend_do = min(999,iend) end do do i = ist_do, iend_do!xocl END SPREAD dif(i) = u(i+1) - c*u(i) + u(i-1) end do!xocl END PARALLEL XPFortran : MPI end program call MPI_FINALIZE(ierr) 19 end program main
20 * * : DO I=1,N SUM=SUM+A(I) END DO DO I=1,N Prefetch1 A(I+1):1 SUM = SUM + A(I) Prefetch2 A(I+17) :2 END DO 20
21 21 SSLII
22 VPP
23 : : DO I=1,1000 B(I)=(A(I)+A(I+1)/2.0) END DO : OpenMP :!$OMP PARALLEL DO DO I=1,1000 B(I)=(A(I)+A(I+1))/2.0 END DO!$OMP END PARALLEL DO : 23
24 Barrier ( ) micro-sec software hardware Barrier s
25 Scaling Factor NAS Parallel BT Class B 6.7 Gflops s HPC GHz OpenMP HPC2500 Linear Scaling VPP5000/1 25
26 OpenMP SPEC OMPM SPEC OMPM2001 OpneMP SPEC Rate Parallelnavi 2.3/HPC2500 (1.3GHz) Parallelnavi 2.3/HPC2500 (1.5GHz) HP Superdome (Itanium2, 1.5GHz) 5000 SGI Altix 3000 (Itanum2 1.5GHz) Others Number of Threads 26
27 MPI 27
28 Barrier MPI_Barrier HPC2500-H HPC2500-S micro sec # of process 28
29 MPI 29
30 30
31 31 / / / ( ) / ( ) ( ) ( ) MIPS, / / / MIPS, MIPS, / / /
32 common a,b,c,d real*8 a(4097,4096),b(4097,4096),c(4097,4096)!$omp PARALLEL DO do j=1,4096 do i=j,4096 a(i,j)=b(i,j)+c(i,j) enddo enddo Performance Analysis Elapsed User System e e e+00 Process ******************* + 77% e+02 Thread 0 ********** + 38% e+02 Thread 1-0% e+01 Thread 2 ********** - 39% e+01 Thread 3 ******************* - 76% e+01 Thread Balance against average time per Thread 32
33 ) common a,b,c,d real*8 a(4097,4096),b(4097,4096),c(4097,4096)!$omp PARALLEL DO SCHEDULE(STATIC,1) do j=1,4096 do i=j,4096 a(i,j)=b(i,j)+c(i,j) enddo enddo Performance Analysis Elapsed User System e e e+00 Process % e+01 Thread 0 0% e+01 Thread 1 + 1% e+01 Thread 2 0% e+01 Thread 3 0% e+01 Thread Balance against average time per Thread 33
34 34
35 35
01_OpenMP_osx.indd
OpenMP* / 1 1... 2 2... 3 3... 5 4... 7 5... 9 5.1... 9 5.2 OpenMP* API... 13 6... 17 7... 19 / 4 1 2 C/C++ OpenMP* 3 Fortran OpenMP* 4 PC 1 1 9.0 Linux* Windows* Xeon Itanium OS 1 2 2 WEB OS OS OS 1 OS
120802_MPI.ppt
CPU CPU CPU CPU CPU SMP Symmetric MultiProcessing CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CP OpenMP MPI MPI CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU MPI MPI+OpenMP CPU CPU CPU CPU CPU CPU CPU CP
MPI usage
MPI (Version 0.99 2006 11 8 ) 1 1 MPI ( Message Passing Interface ) 1 1.1 MPI................................. 1 1.2............................... 2 1.2.1 MPI GATHER.......................... 2 1.2.2
2012年度HPCサマーセミナー_多田野.pptx
! CCS HPC! I " [email protected]" " 1 " " " " " " " 2 3 " " Ax = b" " " 4 Ax = b" A = a 11 a 12... a 1n a 21 a 22... a 2n...... a n1 a n2... a nn, x = x 1 x 2. x n, b = b 1 b 2. b n " " 5 Gauss LU
untitled
I 9 MPI (II) 2012 6 14 .. MPI. 1-3 sum100.f90 4 istart=myrank*25+1 iend=(myrank+1)*25 0 1 2 3 mpi_recv 3 isum1 1 isum /tmp/120614/sum100_4.f90 program sum100_4 use mpi implicit none integer :: i,istart,iend,isum,isum1,ip
C/C++ FORTRAN FORTRAN MPI MPI MPI UNIX Windows (SIMD Single Instruction Multipule Data) SMP(Symmetric Multi Processor) MPI (thread) OpenMP[5]
MPI ( ) [email protected] 1 ( ) MPI MPI Message Passing Interface[2] MPI MPICH[3],LAM/MPI[4] (MIMDMultiple Instruction Multipule Data) Message Passing ( ) (MPI (rank) PE(Processing Element)
OpenMP¤òÍѤ¤¤¿ÊÂÎó·×»»¡Ê£±¡Ë
2012 5 24 scalar Open MP Hello World Do (omp do) (omp workshare) (shared, private) π (reduction) PU PU PU 2 16 OpenMP FORTRAN/C/C++ MPI OpenMP 1997 FORTRAN Ver. 1.0 API 1998 C/C++ Ver. 1.0 API 2000 FORTRAN
OpenMP¤òÍѤ¤¤¿ÊÂÎó·×»»¡Ê£±¡Ë
2011 5 26 scalar Open MP Hello World Do (omp do) (omp workshare) (shared, private) π (reduction) scalar magny-cours, 48 scalar scalar 1 % scp. ssh / authorized keys 133. 30. 112. 246 2 48 % ssh 133.30.112.246
スパコンに通じる並列プログラミングの基礎
2018.06.04 2018.06.04 1 / 62 2018.06.04 2 / 62 Windows, Mac Unix 0444-J 2018.06.04 3 / 62 Part I Unix GUI CUI: Unix, Windows, Mac OS Part II 2018.06.04 4 / 62 0444-J ( : ) 6 4 ( ) 6 5 * 6 19 SX-ACE * 6
OpenMP (1) 1, 12 1 UNIX (FUJITSU GP7000F model 900), 13 1 (COMPAQ GS320) FUJITSU VPP5000/64 1 (a) (b) 1: ( 1(a))
OpenMP (1) 1, 12 1 UNIX (FUJITSU GP7000F model 900), 13 1 (COMPAQ GS320) FUJITSU VPP5000/64 1 (a) (b) 1: ( 1(a)) E-mail: {nanri,amano}@cc.kyushu-u.ac.jp 1 ( ) 1. VPP Fortran[6] HPF[3] VPP Fortran 2. MPI[5]
スパコンに通じる並列プログラミングの基礎
2016.06.06 2016.06.06 1 / 60 2016.06.06 2 / 60 Windows, Mac Unix 0444-J 2016.06.06 3 / 60 Part I Unix GUI CUI: Unix, Windows, Mac OS Part II 0444-J 2016.06.06 4 / 60 ( : ) 6 6 ( ) 6 10 6 16 SX-ACE 6 17
Second-semi.PDF
PC 2000 2 18 2 HPC Agenda PC Linux OS UNIX OS Linux Linux OS HPC 1 1CPU CPU Beowulf PC (PC) PC CPU(Pentium ) Beowulf: NASA Tomas Sterling Donald Becker 2 (PC ) Beowulf PC!! Linux Cluster (1) Level 1:
<4D F736F F F696E74202D D F95C097F D834F E F93FC96E5284D F96E291E85F8DE391E52E >
SX-ACE 並列プログラミング入門 (MPI) ( 演習補足資料 ) 大阪大学サイバーメディアセンター日本電気株式会社 演習問題の構成 ディレクトリ構成 MPI/ -- practice_1 演習問題 1 -- practice_2 演習問題 2 -- practice_3 演習問題 3 -- practice_4 演習問題 4 -- practice_5 演習問題 5 -- practice_6
スパコンに通じる並列プログラミングの基礎
2018.09.10 [email protected] ( ) 2018.09.10 1 / 59 [email protected] ( ) 2018.09.10 2 / 59 Windows, Mac Unix 0444-J [email protected] ( ) 2018.09.10 3 / 59 Part I Unix GUI CUI:
OpenMP¤òÍѤ¤¤¿ÊÂÎó·×»»¡Ê£²¡Ë
2013 5 30 (schedule) (omp sections) (omp single, omp master) (barrier, critical, atomic) program pi i m p l i c i t none integer, parameter : : SP = kind ( 1. 0 ) integer, parameter : : DP = selected real
XcalableMP入門
XcalableMP 1 HPC-Phys@, 2018 8 22 XcalableMP XMP XMP Lattice QCD!2 XMP MPI MPI!3 XMP 1/2 PCXMP MPI Fortran CCoarray C++ MPIMPI XMP OpenMP http://xcalablemp.org!4 XMP 2/2 SPMD (Single Program Multiple Data)
untitled
RIKEN AICS Summer School 3 4 MPI 2012 8 8 1 6 MPI MPI 2 allocatable 2 Fox mpi_sendrecv 3 3 FFT mpi_alltoall MPI_PROC_NULL 4 FX10 /home/guest/guest07/school/ 5 1 A (i, j) i+j x i i y = Ax A x y y 1 y i
¥Ñ¥Ã¥±¡¼¥¸ Rhpc ¤Î¾õ¶·
Rhpc COM-ONE 2015 R 27 12 5 1 / 29 1 2 Rhpc 3 forign MPI 4 Windows 5 2 / 29 1 2 Rhpc 3 forign MPI 4 Windows 5 3 / 29 Rhpc, R HPC Rhpc, ( ), snow..., Rhpc worker call Rhpc lapply 4 / 29 1 2 Rhpc 3 forign
untitled
PC [email protected] muscle server blade server PC PC + EHPC/Eric (Embedded HPC with Eric) 1216 Compact PCI Compact PCIPC Compact PCISH-4 Compact PCISH-4 Eric Eric EHPC/Eric EHPC/Eric Gigabit
26
26 FIPP FAPP I/O LAMMPS LJ atomic fluid 32,000 atoms for 100 timesteps FX10 4 16 / (FIPP) FIPP fipp - C - d dir/ - Ihwm,call - i10 mpiexec./a.out GUI, fipppx - A - d dir/ - Ihwm,cpu,balance,call,src
ÊÂÎó·×»»¤È¤Ï/OpenMP¤Î½éÊâ¡Ê£±¡Ë
2015 5 21 OpenMP Hello World Do (omp do) Fortran (omp workshare) CPU Richardson s Forecast Factory 64,000 L.F. Richardson, Weather Prediction by Numerical Process, Cambridge, University Press (1922) Drawing
演習準備
演習準備 2014 年 3 月 5 日神戸大学大学院システム情報学研究科森下浩二 1 演習準備の内容 神戸大 FX10(π-Computer) 利用準備 システム概要 ログイン方法 コンパイルとジョブ実行方法 MPI 復習 1. MPIプログラムの基本構成 2. 並列実行 3. 1 対 1 通信 集団通信 4. データ 処理分割 5. 計算時間計測 2 神戸大 FX10(π-Computer) 利用準備
I I / 47
1 2013.07.18 1 I 2013 3 I 2013.07.18 1 / 47 A Flat MPI B 1 2 C: 2 I 2013.07.18 2 / 47 I 2013.07.18 3 / 47 #PJM -L "rscgrp=small" π-computer small: 12 large: 84 school: 24 84 16 = 1344 small school small
スーパーコンピュータ「京」の概要
Overview of the K computer System 宮崎博行 草野義博 新庄直樹 庄司文由 横川三津夫 渡邊貞 あらまし HPCI CPUOS LINPACK 10 PFLOPSCPU 8 Abstract RIKEN and Fujitsu have been working together to develop the K computer, with the aim of beginning
情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-HPC-139 No /5/29 Gfarm/Pwrake NICT NICT 10TB 100TB CPU I/O HPC I/O NICT Gf
Gfarm/Pwrake NICT 1 1 1 1 2 2 3 4 5 5 5 6 NICT 10TB 100TB CPU I/O HPC I/O NICT Gfarm Gfarm Pwrake A Parallel Processing Technique on the NICT Science Cloud via Gfarm/Pwrake KEN T. MURATA 1 HIDENOBU WATANABE
untitled
1 NAREGI 2 (NSF) CyberInfrastructure Teragrid (EU) E-Infrastructure EGEE Enabling Grids for E-science E ) DEISA (Distributed European Infrastructure for Supercomputing applications) EPSRC) UK e-science
~~~~~~~~~~~~~~~~~~ wait Call CPU time 1, latch: library cache 7, latch: library cache lock 4, job scheduler co
072 DB Magazine 2007 September ~~~~~~~~~~~~~~~~~~ wait Call CPU time 1,055 34.7 latch: library cache 7,278 750 103 24.7 latch: library cache lock 4,194 465 111 15.3 job scheduler coordinator slave wait
openmp1_Yaguchi_version_170530
並列計算とは /OpenMP の初歩 (1) 今 の内容 なぜ並列計算が必要か? スーパーコンピュータの性能動向 1ExaFLOPS 次世代スハ コン 京 1PFLOPS 性能 1TFLOPS 1GFLOPS スカラー機ベクトル機ベクトル並列機並列機 X-MP ncube2 CRAY-1 S-810 SR8000 VPP500 CM-5 ASCI-5 ASCI-4 S3800 T3E-900 SR2201
11042 計算機言語7回目 サポートページ:
11042 7 :https://goo.gl/678wgm November 27, 2017 10/2 1(print, ) 10/16 2(2, ) 10/23 (3 ) 10/31( ),11/6 (4 ) 11/13,, 1 (5 6 ) 11/20,, 2 (5 6 ) 11/27 (7 12/4 (9 ) 12/11 1 (10 ) 12/18 2 (10 ) 12/25 3 (11
HPEハイパフォーマンスコンピューティング ソリューション
HPE HPC / AI Page 2 No.1 * 24.8% No.1 * HPE HPC / AI HPC AI SGIHPE HPC / AI GPU TOP500 50th edition Nov. 2017 HPE No.1 124 www.top500.org HPE HPC / AI TSUBAME 3.0 2017 7 AI TSUBAME 3.0 HPE SGI 8600 System
09中西
PC NEC Linux (1) (2) (1) (2) 1 Linux Linux 2002.11.22) LLNL Linux Intel Xeon 2300 ASCIWhite1/7 / HPC (IDC) 2002 800 2005 2004 HPC 80%Linux) Linux ASCI Purple (ASCI 100TFlops Blue Gene/L 1PFlops (2005)
nakao
Fortran+Python 4 Fortran, 2018 12 12 !2 Python!3 Python 2018 IEEE spectrum https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018!4 Python print("hello World!") if x == 10: print
Microsoft PowerPoint - GPU_computing_2013_01.pptx
GPU コンピューティン No.1 導入 東京工業大学 学術国際情報センター 青木尊之 1 GPU とは 2 GPGPU (General-purpose computing on graphics processing units) GPU を画像処理以外の一般的計算に使う GPU の魅力 高性能 : ハイエンド GPU はピーク 4 TFLOPS 超 手軽さ : 普通の PC にも装着できる 低価格
インテル(R) Visual Fortran Composer XE
Visual Fortran Composer XE 1. 2. 3. 4. 5. Visual Studio 6. Visual Studio 7. 8. Compaq Visual Fortran 9. Visual Studio 10. 2 https://registrationcenter.intel.com/regcenter/ w_fcompxe_all_jp_2013_sp1.1.139.exe
23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h
23 FPGA CUDA Performance Comparison of FPGA Array with CUDA on Poisson Equation ([email protected]), ([email protected]), ([email protected]), ([email protected]),
26102 (1/2) LSISoC: (1) (*) (*) GPU SIMD MIMD FPGA DES, AES (2/2) (2) FPGA(8bit) (ISS: Instruction Set Simulator) (3) (4) LSI ECU110100ECU1 ECU ECU ECU ECU FPGA ECU main() { int i, j, k for { } 1 GP-GPU
[1] [2] [3] (RTT) 2. Android OS Android OS Google OS 69.7% [4] 1 Android Linux [5] Linux OS Android Runtime Dalvik Dalvik UI Application(Home,T
LAN Android Transmission-Control Middleware on multiple Android Terminals in a WLAN Environment with consideration of Round Trip Time Ai HAYAKAWA, Saneyasu YAMAGUCHI, and Masato OGUCHI Ochanomizu University
main.dvi
PC 1 1 [1][2] [3][4] ( ) GPU(Graphics Processing Unit) GPU PC GPU PC ( 2 GPU ) GPU Harris Corner Detector[5] CPU ( ) ( ) CPU GPU 2 3 GPU 4 5 6 7 1 [email protected] 45 2 ( ) CPU ( ) ( ) () 2.1
HPC可視化_小野2.pptx
大 小 二 生 高 方 目 大 方 方 方 Rank Site Processors RMax Processor System Model 1 DOE/NNSA/LANL 122400 1026000 PowerXCell 8i BladeCenter QS22 Cluster 2 DOE/NNSA/LLNL 212992 478200 PowerPC 440 BlueGene/L 3 Argonne
GPGPU
GPGPU 2013 1008 2015 1 23 Abstract In recent years, with the advance of microscope technology, the alive cells have been able to observe. On the other hand, from the standpoint of image processing, the
(^^
57 GRACE 2012 2 21 [email protected] 1996 1999 1998 1999 1999 (^^ 1962 2003 1979 11 43TFlops 2,000 40, Mem:128GB, 10GbE x 2 500TBytes Web Web IT SR16000 Model M1 22 Total: 172 TFlops Power 7
Microsoft PowerPoint - ★13_日立_清水.ppt
PC クラスタワークショップ in 京都 日立テクニカルコンピューティングクラスタ 2008/7/25 清水正明 日立製作所中央研究所 1 目次 1 2 3 4 日立テクニカルサーバラインナップ SR16000 シリーズ HA8000-tc/RS425 日立自動並列化コンパイラ 2 1 1-1 日立テクニカルサーバの歴史 最大性能 100TF 10TF 30 年間で百万倍以上の向上 (5 年で 10
Microsoft PowerPoint - 演習1:並列化と評価.pptx
講義 2& 演習 1 プログラム並列化と性能評価 神戸大学大学院システム情報学研究科横川三津夫 [email protected] 2014/3/5 RIKEN AICS HPC Spring School 2014: プログラム並列化と性能評価 1 2014/3/5 RIKEN AICS HPC Spring School 2014: プログラム並列化と性能評価 2 2 次元温度分布の計算
統計数理研究所とスーパーコンピュータ
スーパーコンピュータと統計数理研究所 統計数理研究所 統計科学技術センターセンター長 中野純司 目次 スーパーコンピュータとは いったい何? 本当に スーパー?: ノートパソコンとの比較 どのように使う?: 仕組みとソフトウェア 統計数理研究所の ( スーパー ) コンピュータ 必要性 導入の歴史 現在の統数研スパコン : A, I, C 2/44 目次 スーパーコンピュータとは いったい何? 本当に
IPSJ SIG Technical Report Vol.2013-ARC-206 No /8/1 Android Dominic Hillenbrand ODROID-X2 GPIO Android OSCAR WFI 500[us] GPIO GP
Android 1 1 1 1 1 Dominic Hillenbrand 1 1 1 ODROID-X2 GPIO Android OSCAR WFI 500[us] GPIO GPIO API GPIO API GPIO MPEG2 Optical Flow MPEG2 1PE 0.97[W] 0.63[W] 2PE 1.88[w] 0.46[W] 3PE 2.79[W] 0.37[W] Optical
スライド 1
High Performance and Productivity 並列プログラミング課題と挑戦 HPC システムの利用の拡大の背景 シュミレーションへの要求 より複雑な問題をより精度良くシュミレーションすることが求められている HPC システムでの並列処理の要求の拡大 1. モデル アルゴリズム 解析対象は何れもより複雑で 規模の大きなものになっている 2. マイクロプロセッサのマルチコア化 3.
MATLAB® における並列・分散コンピューティング ~ Parallel Computing Toolbox™ & MATLAB Distributed Computing Server™ ~
MATLAB における並列 分散コンピューティング ~ Parallel Computing Toolbox & MATLAB Distributed Computing Server ~ MathWorks Japan Application Engineering Group Takashi Yoshida 2016 The MathWorks, Inc. 1 System Configuration
DEIM Forum 2012 C2-6 Hadoop Web Hadoop Distributed File System Hadoop I/O I/O Hadoo
DEIM Forum 12 C2-6 Hadoop 112-86 2-1-1 E-mail: [email protected], [email protected] Web Hadoop Distributed File System Hadoop I/O I/O Hadoop A Study about the Remote Data Access Control for Hadoop
MPI MPI MPI.NET C# MPI Version2
MPI.NET C# 2 2009 2 27 MPI MPI MPI.NET C# MPI Version2 MPI (Message Passing Interface) MPI MPI Version 1 1994 1 1 1 1 ID MPI MPI_Send MPI_Recv if(rank == 0){ // 0 MPI_Send(); } else if(rank == 1){ // 1
07-二村幸孝・出口大輔.indd
GPU Graphics Processing Units HPC High Performance Computing GPU GPGPU General-Purpose computation on GPU CPU GPU GPU *1 Intel Quad-Core Xeon E5472 3.0 GHz 2 6 MB L2 cache 1600 MHz FSB 80 GFlops 1 nvidia
システムの政府調達に関する日米内外価格差調査
Table of Contents Executive Summary... 10 Methodology... 12... 13 PC... 13... 15... 17... 17... 18... 19 IT... 22 IT... 22 IT... 24 IT... 26 2001... 26 2002 IT... 33... 36... 36 List of Tables Table Page
大規模共有メモリーシステムでのGAMESSの利点
Technical white paper GAMESS GAMESS Gordon Group *1 Gaussian Gaussian1 Xeon E7 8 80 2013 4 GAMESS 1 RHF ROHF UHF GVB MCSCF SCF Energy CDFpEP CDFpEP CDFpEP CD-pEP CDFpEP SCF Gradient CDFpEP CDFpEP CDFpEP
nakayama15icm01_l7filter.pptx
Layer-7 SDN SDN NFV 50 % 3 MVNO 1 2 ICM @ 2015/01/16 2 1 1 2 2 1 2 2 ICM @ 2015/01/16 3 2 Service Dependent Management (SDM) SDM Simple Management of Access-Restriction Translator Gateway (SMART-GW) ICM
Slides: TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments
計算機アーキテクチャ第 11 回 マルチプロセッサ 本資料は授業用です 無断で転載することを禁じます 名古屋大学 大学院情報科学研究科 准教授加藤真平 デスクトップ ジョブレベル並列性 スーパーコンピュータ 並列処理プログラム プログラムの並列化 for (i = 0; i < N; i++) { x[i] = a[i] + b[i]; } プログラムの並列化 x[0] = a[0] + b[0];
研究背景 大規模な演算を行うためには 分散メモリ型システムの利用が必須 Message Passing Interface MPI 並列プログラムの大半はMPIを利用 様々な実装 OpenMPI, MPICH, MVAPICH, MPI.NET プログラミングコストが高いため 生産性が悪い 新しい並
XcalableMPによる NAS Parallel Benchmarksの実装と評価 中尾 昌広 李 珍泌 朴 泰祐 佐藤 三久 筑波大学 計算科学研究センター 筑波大学大学院 システム情報工学研究科 研究背景 大規模な演算を行うためには 分散メモリ型システムの利用が必須 Message Passing Interface MPI 並列プログラムの大半はMPIを利用 様々な実装 OpenMPI,
(Microsoft PowerPoint \211\211\217K3_4\201i\216R\226{_\211\272\215\342\201j.ppt [\214\335\212\267\203\202\201[\203h])
RIKEN AICS Summer School 演習 3 4 MPI による並列計算 2012 年 8 月 8 日 神戸大学大学院システム情報学研究科山本有作理化学研究所計算科学研究機構下坂健則 1 演習の目標 講義 6 並列アルゴリズム基礎 で学んだアルゴリズムのいくつかを,MPI を用いて並列化してみる これを通じて, 基本的な並列化手法と,MPI 通信関数の使い方を身に付ける 2 取り上げる例題と学習項目
C言語によるアルゴリズムとデータ構造
Algorithms and Data Structures in C 4 algorithm List - /* */ #include List - int main(void) { int a, b, c; int max; /* */ Ÿ 3Ÿ 2Ÿ 3 printf(""); printf(""); printf(""); scanf("%d", &a); scanf("%d",
インテル(R) Visual Fortran Composer XE 2013 Windows版 入門ガイド
Visual Fortran Composer XE 2013 Windows* エクセルソフト株式会社 www.xlsoft.com Rev. 1.1 (2012/12/10) Copyright 1998-2013 XLsoft Corporation. All Rights Reserved. 1 / 53 ... 3... 4... 4... 5 Visual Studio... 9...
untitled
A = QΛQ T A n n Λ Q A = XΛX 1 A n n Λ X GPGPU A 3 T Q T AQ = T (Q: ) T u i = λ i u i T {λ i } {u i } QR MR 3 v i = Q u i A {v i } A n = 9000 Quad Core Xeon 2 LAPACK (4/3) n 3 O(n 2 ) O(n 3 ) A {v i }
WinHPC ppt
MPI.NET C# 2 2009 1 20 MPI.NET MPI.NET C# MPI.NET C# MPI MPI.NET 1 1 MPI.NET C# Hello World MPI.NET.NET Framework.NET C# API C# Microsoft.NET java.net (Visual Basic.NET Visual C++) C# class Helloworld
fiš„v8.dvi
(2001) 49 2 333 343 Java Jasp 1 2 3 4 2001 4 13 2001 9 17 Java Jasp (JAva based Statistical Processor) Jasp Jasp. Java. 1. Jasp CPU 1 106 8569 4 6 7; [email protected] 2 106 8569 4 6 7; [email protected]
±é½¬£²¡§£Í£Ð£É½éÊâ
2012 8 7 1 / 52 MPI Hello World I ( ) Hello World II ( ) I ( ) II ( ) ( sendrecv) π ( ) MPI fortran C wget http://www.na.scitec.kobe-u.ac.jp/ yaguchi/riken2012/enshu2.zip unzip enshu2.zip 2 / 52 FORTRAN
GPU GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1
GPU 4 2010 8 28 1 GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1 Register & Shared Memory ( ) CPU CPU(Intel Core i7 965) GPU(Tesla
