C言語による数値計算プログラミング演習

Size: px
Start display at page:

Download "C言語による数値計算プログラミング演習"

Transcription

1 5. 行列の固有値問題 n n 正方行列 A に対する n 個の固有値 λ i (i=1,,,n) と対応する固有ベクトル u i は次式を満たす Au = λ u i i i a11 a1 L a1 n u1i a1 a a n u i A =, ui = M O M M an 1 an L ann uni これらはまとめて, つぎのように書ける 5.1 ヤコビ法 = Λ, = [ u1 u u n ], Λ = AU U U L 実数対称行列 A の固有値と対応する固有ベクトルをすべて求める方法であり, 古典的ではあるが, 行列サイズが 10 以下ならば現在でも使用されている 直交行列 P を用いて A の相似変換 ( すなわち直交変換 )Ã=P T AP を行い, 対角行列に収束させていくと, 対角要素が固有値となる ( 相似変換に関して固有値は不変 ) λ1 0 λ O 0 λ n アルゴリズム A:= 与えられた行列 U:=I( 単位行列 ) for m=1,, { 収束条件を満たす ( すべての非対角要素がεより小さくなる ) まで繰り返す for i=1 to n-1 {A の対角要素を除いた上三角部分を走査 for j=i+1 to n if a ij ε then { 非対角要素で絶対値がεより大きい要素 a ij を零にする変換 θ:=(1/)cot -1 ((a ii -a jj )/(a ij )) A:=P T AP {A の直交変換 ( 非対角要素 a ij を零にする ) U:=UP {U の変換 n n- n-1 n

2 A の直交変換 Ã=P T AP はつぎのように書き表せ, cotθ = (a ii -a jj )/(a ij ) ã ii = (1/)(a ii +a jj ) + (1/)(a ii -a jj )cosθ + a ij sinθ ã jj = (1/)(a ii +a jj ) - (1/)(a ii -a jj )cosθ - a ij sinθ ã ij = ã ji = 0 ã ik = ã ki = a ik cosθ + a jk sinθ (k=1,,,n, ただし k i,j) ã jk = ã kj = -a ik sinθ + a jk cosθ (k=1,,,n, ただし k i,j) ã kl = a kl (k,l=1,,,n, ただし k,l i,j) U の変換 Ũ=UP はつぎのようになる ũ ki = u ki cosθ + u kj sinθ (k=1,,,n) ũ kj = -u ki sinθ + u kj cosθ (k=1,,,n) ũ kl = u kl (k,l=1,,,n, ただし l i,j) 計算誤差を少なくするための注意 : 実際の数値計算においては,θ を求めることなく, 代数式から cosθ, sinθ, cosθ, sinθ を求めるほうが, 計算時間, 計算誤差とも少なくできる 一般に,cotα( あるいは tanα=cot -1 α) から cosα, sinα を求める場合, cotα 1 のとき sin α= 1, cosα = cotα sinα 1+ cot α cotα 1 のとき tanα = 1 1, cos α = 1, sinα = tanα cosα cotα 1+ tan α により計算すると,1 よりはるかに大きい数の二乗を行わずにすむのでオーバーフローを避けることができ, かつ 0 による割算を避けることができる cotθ から cosθ, sinθ を求めるときはこの関係を用いる さらに cosθ, sinθ を求めるときには半角公式を用いるが, 桁落ちを避けるため倍角公式も併用して, cos θ 0 1 のとき cos θ = (1 + cos θ), sinθ = sin θ (cos θ ) cosθ 0 1 のとき sin θ = (1 cos θ), cosθ = sin θ (sin θ ) により計算する 実用に耐える数値計算では, このような細部にまで注意が払われていることに留意しよう プログラム /* solve eigen-value problem for a symmetric matrix */ /* by Jacobi's method */ #include <stdio.h> #include <math.h> #define NMAX 0 int jacobi(float); float a[nmax][nmax], u[nmax][nmax];

3 int n; void main(void) { int mcum,i,j; float eps; printf("order of a Symmetric matrix: n? "); scanf("%d",&n); printf("input Lower triangle of matrix n"); printf("? A(%d, j), j=1,%d : ", i+1, i+1); for(j=0;j<=i;j++){ scanf("%g",&a[i][j]); a[j][i]=a[i][j]; printf(" nsymmetric matrix: A n"); for(j=0;j<n;j++) printf(" %15.6e", a[i][j]); printf(" n"); for(j=0;j<i;j++) u[i][j]=u[j][i]=0; u[i][i]=1; mcum= 0; /* initial set for cumulative number of transformations */ while(printf(" ntolerance : eps? "), scanf("%g",&eps)!=eof){ mcum += jacobi(eps); printf("cumulative no. of transformations=%d n", mcum); printf(" n"); for(i=0;i<n;i++) printf(" %15.6e", a[i][i]); printf(" n n"); for(j=0;j<n;j++) printf(" %15.6e", u[i][j]); printf(" n"); int jacobi(float eps) { int i,j,k,m,mcycle; float p,q,t,s,c,c,s,r; m=0; /* initial set for transformation counter (total) */ 3

4 while(1){ mcycle=0; /* initial set for transformation counter (one cycle) */ for(i=0;i<n-1;i++) for(j=i+1;j<n;j++) if( fabs(a[i][j])>=eps ){ m++; mcycle++; /* increment of transformation counters */ p= (a[i][i]-a[j][j])/; q=a[i][j]; if( fabs(p)<fabs(q) ){ t=p/q; /* t=cot( theta) */ s= 1/sqrt(1+t*t); if(q<0) s= -s; c= t*s; else{ t=q/p; /* t=tan( theta) */ c= 1/sqrt(1+t*t); if(p<0) c= -c; s= t*c; if(c>0){ c= sqrt( (1+c)/ ); s= s/c/; else{ s= sqrt( (1-c)/ ); c= s/s/; r= (a[i][i]+a[j][j])/; a[i][i]= r + p*c + q*s; a[j][j]= r - p*c - q*s; a[i][j]= a[j][i]=0; for(k=0;k<n;k++) if( (k!=i)&&(k!=j) ){ p= a[i][k]; q=a[j][k]; a[i][k]= a[k][i]= p*c+q*s; a[j][k]= a[k][j]= -p*s+q*c; for(k=0;k<n;k++){ p= u[k][i]; q= u[k][j]; u[k][i]= p*c+q*s; u[k][j]=-p*s+q*c; if(mcycle==0) return(m); /* return no. of transformations (total) */ 実行例 教科書章末問題 の質点 ばね系の固有値問題をヤコビ法により解く (1) 運動方程式はつぎのように行列 ベクトル表示される 4

5 M&& s = Ks s1 m1 0 0 k1+ k k 0 s = s, M = 0 m 0, K = k k + k k 3 3 s m3 0 k3 k3 () 系は固有振動数 ω の調和運動をしているとすれば, 解は振幅を s = xe iωt と表され, これを運動方程式に代入すると, 一般固有値問題 K x = ω M x となるので, 結局, 標準固有値問題 Ax 1 = λx ( ここに, A= M K, λ = ω ) を得る m 1 =m =m 3 =m, k 1 =k =k 3 =k とすると, 行列 A は 1 0 k A = 1 1 m と表される いま k/m=1 として, 標準固有値問題を解く 実行開始 Order of a Symmetric matrix: n? 3 Input Lower triangle of matrix? A( 1, j), j=1, 1 :? A(, j), j=1, : -1? A( 3, j), j=1, 3 : Symmetric matrix: A e e e e e e e e e+00 Tolerance : eps? 0.1 cumulative no. of transformations= e e e e e e e e e e e e-01 Tolerance : eps? 0.01 cumulative no. of transformations= e e e e e e e e e e e e-01 Tolerance : eps? x T = [ x1, x, x] として

6 cumulative no. of transformations= e e e e e e e e e e e e-01 Tolerance : eps? 1.0e-6 cumulative no. of transformations= e e e e e e e e e e e e-01 Tolerance : eps? ^Z (control と Z を同時に押す ) (Enter Key を押す ) 入力終了コードの入力 おしまい 参考文献 葉子 : 数値計算の基礎 解法と誤差, コロナ社 (007) 森口繁一, 伊理正夫, 武市正人編 :C による算法痛論, 東京大学出版会 (000) Heath, Michael T.: Scientific Computing, An Introductory Survey, McGraw-Hill(00) 6

C言語による数値計算プログラミング演習

C言語による数値計算プログラミング演習 8. 数値積分 任意の区間 [,b] における f() の定積分 b () I = f ( ) d の値は, つぎのように n 点の関数値の和により近似的に与えられる () In = Ak f ( k) n k = このとき, k を分点,A k を重みという 8. ニュートン コーツ ( 複合型 ) 積分公式 積分区間 [,b] を等分割して n 個の分点をとり, 被積分関数 f() を n- 次ラグランジュ補間多項式で近似して得られる積分公式を

More information

弾性定数の対称性について

弾性定数の対称性について () by T. oyama () ij C ij = () () C, C, C () ij ji ij ijlk ij ij () C C C C C C * C C C C C * * C C C C = * * * C C C * * * * C C * * * * * C () * P (,, ) P (,, ) lij = () P (,, ) P(,, ) (,, ) P (, 00,

More information

Microsoft PowerPoint - Eigen.pptx

Microsoft PowerPoint - Eigen.pptx 固有値解析 中島研吾 東京大学情報基盤センター同大学院情報理工学系研究科数理情報学専攻数値解析 ( 科目番号 -58) 行列の固有値問題 べき乗法 対称行列の固有値計算法 : ヤコビ法 A 行列の固有値問題 標準固有値問題 (Stndrd vlue Prolem を満足する と を求める : 固有値 (eigenvlue) : 固有ベクトル (eigenvector) 一般固有値問題 (Generl

More information

C言語による数値計算プログラミング演習

C言語による数値計算プログラミング演習 6. 関数近似 : 補間と補外 6. ラグランジュ補間法 互いに異なる点 x,x,,x とそれらの点における関数値 f(x ),f(x ),,f(x ) が与えられているとする これらの 点を補間するたかだか - 次の補間多項式 F (x) は, ラグランジュ基底関数 L k (-) (x) を用いて ( ) () F( x) = f( xk) Lk ( x) k= L ( x ) = と書ける これは,

More information

[ 1] 1 Hello World!! 1 #include <s t d i o. h> 2 3 int main ( ) { 4 5 p r i n t f ( H e l l o World!! \ n ) ; 6 7 return 0 ; 8 } 1:

[ 1] 1 Hello World!! 1 #include <s t d i o. h> 2 3 int main ( ) { 4 5 p r i n t f ( H e l l o World!! \ n ) ; 6 7 return 0 ; 8 } 1: 005 9 7 1 1.1 1 Hello World!! 5 p r i n t f ( H e l l o World!! \ n ) ; 7 return 0 ; 8 } 1: 1 [ ] Hello World!! from Akita National College of Technology. 1 : 5 p r i n t f ( H e l l o World!! \ n ) ;

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

スライド 1

スライド 1 数値解析 平成 30 年度前期第 10 週 [6 月 12 日 ] 静岡大学工学研究科機械工学専攻ロボット 計測情報分野創造科学技術大学院情報科学専攻 三浦憲二郎 講義アウトライン [6 月 12 日 ] 連立 1 次方程式の直接解法 ガウス消去法 ( 復習 ) 部分ピボット選択付きガウス消去法 連立 1 次方程式 連立 1 次方程式の重要性 非線形の問題は基本的には解けない. 非線形問題を線形化して解く.

More information

Microsoft PowerPoint - Eigen.ppt [互換モード]

Microsoft PowerPoint - Eigen.ppt [互換モード] 固有値解析 中島研吾 東京大学情報基盤センター同大学院情報理工学系研究科数理情報学専攻数値解析 ( 科目番号 58) 行列の固有値問題 べき乗法 対称行列の固有値計算法 Eige Eige A 行列の固有値問題 標準固有値問題 (Stdrd Eigevle Problem を満足する と を求める : 固有値 (eigevle) : 固有ベクトル (eigevetor) 一般固有値問題 (Geerl

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

C言語による数値計算プログラミング演習

C言語による数値計算プログラミング演習 4. 連立一次方程式の解法 4. LU 分解法 同じ係数行列 A( サイズ n n) をもつ m 組の連立 次方程式 AX = B ( ただし A=[ ij ] は n 行 n 列の正則行列,B=[b ij ] と X=[x ij ] は n 行 m 列の行列 ) を同時に解く 行列 A,B を並置して 個の配列 A (n 行 n+m 列 ) を作成し, i,n+j =b ij (i=,,n; j=,,m)

More information

Taro-再帰関数Ⅲ(公開版).jtd

Taro-再帰関数Ⅲ(公開版).jtd 0. 目次 1 1. ソート 1 1. 1 挿入ソート 1 1. 2 クイックソート 1 1. 3 マージソート - 1 - 1 1. ソート 1 1. 1 挿入ソート 挿入ソートを再帰関数 isort を用いて書く 整列しているデータ (a[1] から a[n-1] まで ) に a[n] を挿入する操作を繰り返す 再帰的定義 isort(a[1],,a[n]) = insert(isort(a[1],,a[n-1]),a[n])

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

+   1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm..... + http://krishnathphysaitama-uacjp/joe/matrix/matrixpdf 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm (1) n m () (n, m) ( ) n m B = ( ) 3 2 4 1 (2) 2 2 ( ) (2, 2) ( ) C = ( 46

More information

/* do-while */ #include <stdio.h> #include <math.h> int main(void) double val1, val2, arith_mean, geo_mean; printf( \n ); do printf( ); scanf( %lf, &v

/* do-while */ #include <stdio.h> #include <math.h> int main(void) double val1, val2, arith_mean, geo_mean; printf( \n ); do printf( ); scanf( %lf, &v 1 http://www7.bpe.es.osaka-u.ac.jp/~kota/classes/jse.html [email protected] /* do-while */ #include #include int main(void) double val1, val2, arith_mean, geo_mean; printf( \n );

More information

行列、ベクトル

行列、ベクトル 行列 (Mtri) と行列式 (Determinnt). 行列 (Mtri) の演算. 和 差 積.. 行列とは.. 行列の和差 ( 加減算 ).. 行列の積 ( 乗算 ). 転置行列 対称行列 正方行列. 単位行列. 行列式 (Determinnt) と逆行列. 行列式. 逆行列. 多元一次連立方程式のコンピュータによる解法. コンピュータによる逆行列の計算.. 定数項の異なる複数の方程式.. 逆行列の計算

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

[1] #include<stdio.h> main() { printf("hello, world."); return 0; } (G1) int long int float ± ±

[1] #include<stdio.h> main() { printf(hello, world.); return 0; } (G1) int long int float ± ± [1] #include printf("hello, world."); (G1) int -32768 32767 long int -2147483648 2147483647 float ±3.4 10 38 ±3.4 10 38 double ±1.7 10 308 ±1.7 10 308 char [2] #include int a, b, c, d,

More information

USB 0.6 https://duet.doshisha.ac.jp/info/index.jsp 2 ID TA DUET 24:00 DUET XXX -YY.c ( ) XXX -YY.txt() XXX ID 3 YY ID 5 () #define StudentID 231

USB 0.6 https://duet.doshisha.ac.jp/info/index.jsp 2 ID TA DUET 24:00 DUET XXX -YY.c ( ) XXX -YY.txt() XXX ID 3 YY ID 5 () #define StudentID 231 0 0.1 ANSI-C 0.2 web http://www1.doshisha.ac.jp/ kibuki/programming/resume p.html 0.3 2012 1 9/28 0 [ 01] 2 10/5 1 C 2 3 10/12 10 1 2 [ 02] 4 10/19 3 5 10/26 3 [ 03] 6 11/2 3 [ 04] 7 11/9 8 11/16 4 9 11/30

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

行列の反復解法 1. 点 Jacobi 法 数値解法の重要な概念の一つである反復法を取り上げ 連立一次方程式 Au=b の反復解法を調べる 行列のスペクトル半径と収束行列の定義を与える 行列のスペクトル半径行列 Aの固有値の絶対値の最大値でもって 行列 Aのスペクトル半径 r(a) を与える 収束行

行列の反復解法 1. 点 Jacobi 法 数値解法の重要な概念の一つである反復法を取り上げ 連立一次方程式 Au=b の反復解法を調べる 行列のスペクトル半径と収束行列の定義を与える 行列のスペクトル半径行列 Aの固有値の絶対値の最大値でもって 行列 Aのスペクトル半径 r(a) を与える 収束行 行列の反復解法 1. 点 Jacobi 法 数値解法の重要な概念の一つである反復法を取り上げ 連立一次方程式 Au=b の反復解法を調べる 行列のスペクトル半径と収束行列の定義を与える 行列のスペクトル半径行列 Aの固有値の絶対値の最大値でもって 行列 Aのスペクトル半径 r(a) を与える 収束行列 B が正方行列で のとき B を収束行列と呼ぶ 定理収束行列のスペクトル半径は である 簡単な証明もし

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

行列代数2010A

行列代数2010A a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a

More information

経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17)

経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17) 経済数学演習問題 8 年 月 9 日 I a, b, c R n に対して a + b + c a + b + c + a, b + b, c + a, c が成立することを示しましょう. 線型代数学 教科書 ページ 演習.7 II a R n がすべての x R n に対して垂直, すなわち a, x x R n が成立するとします. このとき a となることを示しましょう. 線型代数学 教科書

More information

C言語による数値計算プログラミング演習

C言語による数値計算プログラミング演習 11. 離散フーリエ変換 時間領域における連続関数 x(t) は, 周波数領域の連続関数 (f) を介して, フーリエ変換 (Fourier transform) : i2π ft ( f) = xte ( ) dt 逆フーリエ変換 (inverse Fourier transform): 2 x() t = ( f) e i π ft df と展開される x(t) は区間 [,T] 以外では とすると,

More information

C 2 / 21 1 y = x 1.1 lagrange.c 1 / Laglange / 2 #include <stdio.h> 3 #include <math.h> 4 int main() 5 { 6 float x[10], y[10]; 7 float xx, pn, p; 8 in

C 2 / 21 1 y = x 1.1 lagrange.c 1 / Laglange / 2 #include <stdio.h> 3 #include <math.h> 4 int main() 5 { 6 float x[10], y[10]; 7 float xx, pn, p; 8 in C 1 / 21 C 2005 A * 1 2 1.1......................................... 2 1.2 *.......................................... 3 2 4 2.1.............................................. 4 2.2..............................................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

09.pptx

09.pptx 講義内容 数値解析 第 9 回 5 年 6 月 7 日 水 理学部物理学科情報理学コース. 非線形方程式の数値解法. はじめに. 分法. 補間法.4 ニュートン法.4. 多変数問題への応用.4. ニュートン法の収束性. 連立 次方程式の解法. 序論と行列計算の基礎. ガウスの消去法. 重対角行列の場合の解法項目を変更しました.4 LU 分解法.5 特異値分解法.6 共役勾配法.7 反復法.7. ヤコビ法.7.

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

第6章 実験モード解析

第6章 実験モード解析 第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法

More information

1 4 2 EP) (EP) (EP)

1 4 2 EP) (EP) (EP) 2003 2004 2 27 1 1 4 2 EP) 5 3 6 3.1.............................. 6 3.2.............................. 6 3.3 (EP)............... 7 4 8 4.1 (EP).................... 8 4.1.1.................... 18 5 (EP)

More information

PC Windows 95, Windows 98, Windows NT, Windows 2000, MS-DOS, UNIX CPU

PC Windows 95, Windows 98, Windows NT, Windows 2000, MS-DOS, UNIX CPU 1. 1.1. 1.2. 1 PC Windows 95, Windows 98, Windows NT, Windows 2000, MS-DOS, UNIX CPU 2. 2.1. 2 1 2 C a b N: PC BC c 3C ac b 3 4 a F7 b Y c 6 5 a ctrl+f5) 4 2.2. main 2.3. main 2.4. 3 4 5 6 7 printf printf

More information

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i i j ij i j ii,, i j ij ij ij (, P P P P θ N θ P P cosθ N F N P cosθ F Psinθ P P F P P θ N P cos θ cos θ cosθ F P sinθ cosθ sinθ cosθ sinθ 5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6

More information

Taro-プログラミングの基礎Ⅱ(公

Taro-プログラミングの基礎Ⅱ(公 0. 目次 2. プログラムの作成 2. 1 コラッツ問題 自然数 n から出発して n が偶数ならば 2 で割り n が奇数ならば 3 倍して 1 を足す操作を行う この操作を繰り返すと最後に 1 になると予想されている 問題 1 自然数 aの操作回数を求めよ 問題 2 自然数 aから bまでのなかで 最大操作回数となる自然数を求めよ 2. 2 耐久数 正整数の各桁の数字を掛け 得られた結果についても同様の操作を繰り返す

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

#define N1 N+1 double x[n1] =.5, 1., 2.; double hokan[n1] = 1.65, 2.72, 7.39 ; double xx[]=.2,.4,.6,.8,1.2,1.4,1.6,1.8; double lagrng(double xx); main

#define N1 N+1 double x[n1] =.5, 1., 2.; double hokan[n1] = 1.65, 2.72, 7.39 ; double xx[]=.2,.4,.6,.8,1.2,1.4,1.6,1.8; double lagrng(double xx); main =1= (.5, 1.65), (1., 2.72), (2., 7.39).2,.4,.6,.8, 1., 1.2, 1.4, 1.6 1 1: x.2 1.4128.4 1.5372.6 1.796533.8 2.198 1.2 3.384133 1.4 4.1832 1.6 5.1172 8 7 6 5 y 4 3 2 1.5 1 1.5 2 x 1: /* */ #include

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

第7章 有限要素法のプログラミング

第7章 有限要素法のプログラミング April 3, 2019 1 / 34 7.1 ( ) 2 Poisson 2 / 34 7.2 femfp.c [1] main( ) input( ) assem( ) ecm( ) f( ) solve( ) gs { solve( ) output( ) 3 / 34 7.3 fopen() #include FILE *fopen(char *fname, char

More information

kiso2-06.key

kiso2-06.key 座席指定があります Linux を起動して下さい 第6回 計算機基礎実習II 計算機基礎実習II 2018 のウェブページか ら 以下の課題に自力で取り組んで下さい 第5回の復習課題(rev05) 第6回の基本課題(base06) 第5回課題の回答例 ex05-2.c 1. キーボードから整数値 a を入力すると a*a*a の値を出力することを繰り返すプログラムを作成しなさい 2. ただし 入力された

More information

comment.dvi

comment.dvi ( ) (sample1.c) (sample1.c) 2 2 Nearest Neighbor 1 (2D-class1.dat) 2 (2D-class2.dat) (2D-test.dat) 3 Nearest Neighbor Nearest Neighbor ( 1) 2 1: NN 1 (sample1.c) /* -----------------------------------------------------------------

More information

AHPを用いた大相撲の新しい番付編成

AHPを用いた大相撲の新しい番付編成 5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq 7 2003 6 26 ( ) 5 5.1 F K 0 (q 1,,q N,p 1,,p N ) (Q 1,,Q N,P 1,,P N ) Q i Q i (q, p). (1) P i P i (q, p), (2) (p i dq i P i dq i )df. (3) [ ] Q αq + βp, P γq + δp α, β, γ, δ [ ] PdQ pdq (γq + δp)(αdq +

More information