C言語による数値計算プログラミング演習
|
|
|
- このか わしあし
- 7 years ago
- Views:
Transcription
1 6. 関数近似 : 補間と補外 6. ラグランジュ補間法 互いに異なる点 x,x,,x とそれらの点における関数値 f(x ),f(x ),,f(x ) が与えられているとする これらの 点を補間するたかだか - 次の補間多項式 F (x) は, ラグランジュ基底関数 L k (-) (x) を用いて ( ) () F( x) = f( xk) Lk ( x) k= L ( x ) = と書ける これは, 次の多項式 を導入すると ( x x )( x x ) L( x x )( x x ) L( x x ) ( ) k k+ k l ( xk x)( xk x) L( xk xk )( xk xk+ ) L( xk x π ( x) = ( x x )( x x ) L ( x x ) ( ) = ( )( ) L( )( ) L ( ) π x k xk x xk x xk xk xk xk+ xk x であるので,() 式は π (x) がくくり出された形でつぎのようにも表すことができる () F ( x) = π ( x) k= f( xk ) ( x x ) π ( x ) k k ) アルゴリズム 6.. () 式に基づくもの : (x,f ),(x,f ),,(x,f ) := 与えられた 点のデータ fx=0 for k= to p=q= for = to f k the p:=p*(x-x ) q:=q*(x k -x ) ed fx:=fx+f k *p/q ed ed プログラム /* Lagraga terpolato */ /* gve data: values of (x, f) */ /* terpolato pot xx */ /* terpolated value f(xx) s computed */ #clude <stdo.h> #defe NMAX 0
2 t ; float x[nmax], f[nmax]; vod ma(vod) t,k; float xx,fx,p,q; prtf("lagraga terpolato "); prtf("umber of data? "); scaf("%d",&); for(=0;<;++) prtf("x[%d], f[%d]? ",+,+); scaf("%g%g", &x[], &f[]); prtf("terpolato pot xx? "); scaf("%g", &xx); fx=0; for(k=0;k<;k++) p=; q=; for(=0;<;++) f(!=k) p *= xx-x[]; q *= x[k]-x[]; fx += f[k]*p/q; prtf(" terpolated value at x=%g: ",xx); prtf("f(%g)=%g ",xx,fx); /* read put data */ /* terpolato */ アルゴリズム 6.. () 式に基づくもの : (x,f ),(x,f ),,(x,f ) := 与えられた 点のデータ for k= to q= for = to f k the q:=q(x k -x ) d k :=q ed ed p=, sum=0 for k= to p :=p(x-x k ) σ:=σ+f k /((x-x k )d k ) ed fx:=pσ
3 プログラム /* Lagraga terpolato */ /* gve data: values of (x, f) */ /* terpolato pot xx */ /* terpolated value f(xx) s computed */ #clude <stdo.h> #defe NMAX 0 t ; float x[nmax], f[nmax]; vod ma(vod) t,k; float xx,fx,p,q,sum,pd[nmax]; prtf("lagraga terpolato "); prtf("umber of data? "); scaf("%d",&); for(=0;<;++) prtf("x[%d], f[%d]? ",+,+); scaf("%g%g", &x[], &f[]); prtf("terpolato pot xx? "); scaf("%g", &xx); for(k=0;k<;k++) q=; for(=0;<;++) f(!=k) q *=x[k]-x[]; pd[k]=q; p=; sum=0; for(k=0;k<;k++) p *= xx-x[k]; sum += f[k]/((xx-x[k])*pd[k]); fx=p*sum; prtf(" terpolated value at x=%g: ",xx); prtf("f(%g)=%g ",xx,fx); /* d[k] */ /* terpolato */ 問題 水の動粘性係数 ν は, 常温の範囲では以下のとおりである 3
4 T [ ] ν[m /s] E E E E E-07 ラグランジュ補間により, 水温 8. のときの動粘性係数を求めよ 実行例 プログラム 6.., プログラム 6.. とも実行結果は以下のようになる 実行開始 Lagraga terpolato umber of data? 5 x[], f[]? e-6 x[], f[]? e-6 x[3], f[3]? e-6 x[4], f[4]? e-7 x[5], f[5]? e-7 terpolato pot xx? 8. terpolated value at x=8.: f(8.)=.04948e おしまい スプライン補間法 互いに異なる点 x 0 < x < < x とそれらの点における関数値 y 0 =f(x 0 ),y =f(x ),,y =f(x ) が与えられているとする 小区間 [x -,x ] ごとに 3 次エルミート補間関数 ( 階導関数の連続性を保証 )s (x) を用いると, x x x x x x x x = h h h h s ( x) ( 3y hy ) ( y hy ) ( 3y hy ) ( y hy ) h = x x となる 更に隣接する小区間上の補間関数と 階導関数まで連続に接続する条件 s (x )=s + (x ) を課すると,y に関する方程式 y + + y + y + = y + y + y +, =,, L, h h h+ h+ h h h+ h+ を得る 端点 x=x 0,x においては, 階微係数が零となる条件を課すると, 3 3 y + y = y + y h h h h y + y = y + y h h h h となる これらは,y に関する三項方程式となっているので, アルゴリズム 4.3. により y は求まる 点 x がどの区間にあるかを判定すれば,x におけるスプライン補間関数 s (x) の値は定まる プログラム 6.. /* Sple Iterpolato */ /* gve data: umber of tervals: */ 4
5 /* x_, y_, =0,,..., */ /* terpolated value f(xx) s computed */ /* for x_0 <= xx <= x_ */ #clude <stdo.h> #clude <math.h> #defe NMAX 50 float yy(float xx,float x0,float x,float y0,float y,float dy0,float dy) float z0,z; z0=(xx-x0)/(x-x0); z=(xx-x)/(x0-x); retur(z*z*((3*y0-(x0-x)*dy0)-z*(*y0-(x0-x)*dy0)) +z0*z0*((3*y-(x-x0)*dy)-z0*(*y-(x-x0)*dy))); vod ma(vod) t,,j,m; float x[nmax],y[nmax],h[nmax],a[nmax],b[nmax],c[nmax],d[nmax]; float x0,dx,xx,yyj; /* read put data */ prtf("sple terpolato "); prtf("umber of tervals? "); scaf("%d",&); for(=0;<=;++) prtf("x[%d], y[%d]? ",,); scaf("%g%g", &x[], &y[]); /* set coeffcets of three-term equatos */ for(=;<=;++) h[]=x[]-x[-]; for(=;<;++) a[]=/h[]+/h[+]; b[]=/h[+]; c[]=/h[]; d[]=3/(h[]*h[])*(y[]-y[-]) +3/(h[+]*h[+])*(y[+]-y[]); /* ed-pot codto at x[0] */ a[0]=/h[]; b[0]=/h[]; c[0]=0; d[0]=3/(h[]*h[])*(y[]-y[0]); /* y"=0 */ /* ed-pot codto at x[] */ a[]=/h[]; b[]=0; c[]=/h[]; d[]=3/(h[]*h[])*(y[]-y[-]); /* y"=0 */ /* a[]=; b[]=0; c[]=0; d[]=(y[]-y[-])/h[]; */ /* solve three-term equatos */ /* forward */ b[0] /= a[0]; d[0] /= a[0]; for(=;<=;++) 5
6 a[] -= c[]*b[-]; d[] -= c[]*d[-]; d[] /= a[]; b[] /= a[]; for(=-;>=0;--) d[] -=b[]*d[+]; /* backward */ /* terpolated values */ prtf("tal value ad terval of x for terpolated results, x0, dx? "); scaf("%g%g", &x0,&dx); prtf(" tx t terpolato "); m=(t)floor((x[]-x0)/dx + 0.5); =; /* tal set for terval couter */ for(j=0;j<=m;j++) xx=x0+j*dx; label0:f(xx<x[] ==) yyj= yy(xx,x[-],x[],y[-],y[],d[-],d[]); prtf("%5.6e %5.6e ", xx, yyj); f(xx>=(x[]+0.*dx) && ==) break; else ++; goto label0; 問題 水の動粘性係数 ν の常温での温度依存性は 6. 節 ラグランジュ補間法 の問題で記したとおりである スプライン補間により, 水温が 0~30[ ] のときの動粘性係数を求め, グラフ表示せよ 実行例 実行開始 Sple terpolato umber of tervals? 4 は小区間数であることに注意 x[0], y[0]? e-6 ( データ点数は+) x[], y[]? e-6 x[], y[]? e-6 x[3], y[3]? e-7 x[4], y[4]? e-7 tal value ad terval of x for terpolated results, x0, dx? 初期値 0, 増分 0.のxの値に対する補間値を求める x terpolato e e e e e e e e e e e e e e-06 6
7 .40000e e e+0.509e e e e e-06 : : : : e e e e e e e e e e e e おしまい 動粘性係数の温度依存性はつぎのグラフに示される 動粘性係数.40E-06.30E-06 動粘性係数 [m^/sec].0e-06.0e-06.00e E E E 温度 [ ] 参考文献 葉子 : 数値計算の基礎 解法と誤差, コロナ社 (007) 森口繁一, 伊理正夫, 武市正人編 :C による算法痛論, 東京大学出版会 (000) Heath, Mchael T.: Scetfc Computg, A Itroductory Survey, McGraw-Hll(00) 7
C言語による数値計算プログラミング演習
8. 数値積分 任意の区間 [,b] における f() の定積分 b () I = f ( ) d の値は, つぎのように n 点の関数値の和により近似的に与えられる () In = Ak f ( k) n k = このとき, k を分点,A k を重みという 8. ニュートン コーツ ( 複合型 ) 積分公式 積分区間 [,b] を等分割して n 個の分点をとり, 被積分関数 f() を n- 次ラグランジュ補間多項式で近似して得られる積分公式を
C言語による数値計算プログラミング演習
5. 行列の固有値問題 n n 正方行列 A に対する n 個の固有値 λ i (i=1,,,n) と対応する固有ベクトル u i は次式を満たす Au = λ u i i i a11 a1 L a1 n u1i a1 a a n u i A =, ui = M O M M an 1 an L ann uni これらはまとめて, つぎのように書ける 5.1 ヤコビ法 = Λ, = [ u1 u u
f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y
017 8 10 f : R R f(x) = x n + x n 1 + 1, f(x) = sin 1, log x x n m :f : R n R m z = f(x, y) R R R R, R R R n R m R n R m R n R m f : R R f (x) = lim h 0 f(x + h) f(x) h f : R n R m m n M Jacobi( ) m n
Taro-数値計算の基礎Ⅱ(公開版)
0. 目次 1. 2 分法 2. はさみうち法 3. 割線法 4. 割線法 ( 2 次曲線近似 ) 5. ニュートン法 ( 接線近似 ) - 1 - 1. 2 分法 区間 [x0,x1] にある関数 f(x) の根を求める 区間 [x0,x1] を xm=(x0+x1)/2 で 2 等分し 区間 [x0,xm],[xm,x1] に分割する f(xm) の絶対値が十分小さい値 eps より小さいとき
5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)
5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x
最小二乗フィット、カイ二乗フィット、gnuplot
数値計算法 009 5/7 林田清 ( 大阪大学大学院理学研究科 ) 最尤法 (Maxmum Lkelhood Method) 回の ( 独立な ) 測定 xで, x,..., x 1 母集団が平均値 μgauss) 標準偏差 の正規 ( 分布の場合 1 回の測定で xから( xの間の値を観測する確率は + dx) dq = Pdx 1 1 x µ P exp π µ は不可知 推定値をとする µ
入試の軌跡
4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf
.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,
.1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,
7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a
9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,
1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1
1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +
6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4
35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m
= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (
+ + 3 + 4 +... π 6, ( ) 3 + 5 7 +... π 4, ( ). ( 3 + ( 5) + 7 + ) ( 9 ( ( + 3) 5 + ) ( 7 + 9 + + 3 ) +... log( + ), ) +... π. ) ( 3 + 5 e x dx π.......................................................................
変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,
変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +
NewBead_no27_0623.indd
No.27 2009 July * 1 5 7 9 10 11 13 14 2 1 2 3 4 ** * * * ** *** 5 * * ** * * * * * * * * * *** * * 6 *FC-309SD * * * * * * * 7 * * * * * 8 4 CVF CVF 9 10 JIS JIS Z 3312 JIS Z 3312 Y GW XX G XX X X X X
PowerPoint Presentation
応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,
モデリングとは
コンピュータグラフィックス基礎 第 5 回曲線 曲面の表現 ベジェ曲線 金森由博 学習の目標 滑らかな曲線を扱う方法を学習する パラメトリック曲線について理解する 広く一般的に使われているベジェ曲線を理解する 制御点を入力することで ベジェ曲線を描画するアプリケーションの開発を行えるようになる C++ 言語の便利な機能を使えるようになる 要素数が可変な配列としての std::vector の活用 計算機による曲線の表現
8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性 座標独立性 曲線上の点を直接に計算可能 多価の曲線も表現可能 gx 低次の多項式は 計
8. 自由曲線 曲面. 概論. ベジエ曲線 曲面. ベジエ曲線 曲面の数学. OeGLによる実行. URS. スプライン関数. スプライン曲線 曲面. URS 曲線 曲面 4. OeGLによる実行 8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性
Microsoft Word - 資料 (テイラー級数と数値積分).docx
δx δx n x=0 sin x = x x3 3 + x5 5 x7 7 +... x ak = (-mod(k,2))**(k/2) / fact_k ( ) = a n δ x n f x 0 + δ x a n = f ( n) ( x 0 ) n f ( x) = sin x n=0 58 I = b a ( ) f x dx ΔS = f ( x)h I = f a h h I = h
II Time-stamp: <05/09/30 17:14:06 waki> ii
II [email protected] 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................
x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x
[ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),
X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2
1 28 6 12 7 1 7.1...................................... 2 7.1.1............................... 2 7.1.2........................... 2 7.2...................................... 3 7.3...................................
A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)
7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A =
5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................
5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)
..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A
.. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.
( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )
( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)
統計学のポイント整理
.. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!
Gmech08.dvi
145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2
³ÎΨÏÀ
2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p
Microsoft Word - NumericalComputation.docx
数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.
l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r
2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx
,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.
9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,
4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx
4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan
( ) ( ) ( ) i (i = 1, 2,, n) x( ) log(a i x + 1) a i > 0 t i (> 0) T i x i z n z = log(a i x i + 1) i=1 i t i ( ) x i t i (i = 1, 2, n) T n x i T i=1 z = n log(a i x i + 1) i=1 x i t i (i = 1, 2,, n) n
BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF : B
2000 8 3.4 p q θ = 80 B E a H F b θ/2 O θ/2 D A B E BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF :
, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f
,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)
Microsoft Word - 03-数値計算の基礎.docx
δx f x 0 + δ x n=0 a n = f ( n) ( x 0 ) n δx n f x x=0 sin x = x x3 3 + x5 5 x7 7 +... x ( ) = a n δ x n ( ) = sin x ak = (-mod(k,2))**(k/2) / fact_k 10 11 I = f x dx a ΔS = f ( x)h I = f a h I = h b (
微分方程式 モデリングとシミュレーション
1 微分方程式モデリングとシミュレーション 2018 年度 2 質点の運動のモデル化 粒子と粒子に働く力 粒子の運動 粒子の位置の時間変化 粒子の位置の変化の割合 速度 速度の変化の割合 加速度 力と加速度の結び付け Newtonの運動方程式 : 微分方程式 解は 時間の関数としての位置 3 Newton の運動方程式 質点の運動は Newton の運動方程式で記述される 加速度は力に比例する 2
8 i, III,,,, III,, :!,,,, :!,,,,, 4:!,,,,,,!,,,, OK! 5:!,,,,,,,,,, OK 6:!, 0, 3:!,,,,! 7:!,,,,,, ii,,,,,, ( ),, :, ( ), ( ), :... : 3 ( )...,, () : ( )..., :,,, ( ), (,,, ),, (ϵ δ ), ( ), (ˆ ˆ;),,,,,,!,,,,.,,
行列代数2010A
a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a
NumericalProg09
数値解析および プログラミング演習 [08 第 9 回目 ] の解法 - 4. Ruge-Kua( ルンゲ クッタ 法 Ruge-Kua-Gill( ルンゲ クッタ ジル / ギル 法 5. 多段解法 解法の対象 常微分方程式 d( d 初期値条件 (, の変化に応じて変化する の値を求める. ( 0 ( 0 と 0 は,give 0 常微分方程式の初期値問題 と言う. 3 Ruge-Kua 法の導出
.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(
06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,
40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,
9.. x + y + 0. x,y, x,y, x r cos θ y r sin θ xy x y x,y 0,0 4. x, y 0, 0, r 0. xy x + y r 0 r cos θ sin θ r cos θ sin θ θ 4 y mx x, y 0, 0 x 0. x,y 0,0 x x + y x 0 x x + mx + m m x r cos θ 5 x, y 0, 0,
二次関数 1 二次関数とは ともなって変化する 2 つの数 ( 変数 ) x, y があります x y つの変数 x, y が, 表のように変化するとき y は x の二次関数 といいます また,2 つの変数を式に表すと, 2 y x となりま
二次関数 二次関数とは ともなって変化する つの数 ( 変数 ) x, y があります y 0 9 6 5 つの変数 x, y が, 表のように変化するとき y は x の二次関数 といいます また, つの変数を式に表すと, x となります < 二次関数の例 > x y 0 7 8 75 x ( 表の上の数 ) を 乗して 倍すると, y ( 表の下の数 ) になります x y 0 - -8-8 -
No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2
No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j
F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)
211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )
数値計算:有限要素法
( ) 1 / 61 1 2 3 4 ( ) 2 / 61 ( ) 3 / 61 P(0) P(x) u(x) P(L) f P(0) P(x) P(L) ( ) 4 / 61 L P(x) E(x) A(x) x P(x) P(x) u(x) P(x) u(x) (0 x L) ( ) 5 / 61 u(x) 0 L x ( ) 6 / 61 P(0) P(L) f d dx ( EA du dx
DVIOUT
A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)
i
i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,
9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x
2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin
熊本県数学問題正解
00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (
. p.1/14
. p.1/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y). p.2/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y) (x,y) h. p.2/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y) (x,y) h h { F 2 (x+ h,y) F 2 2(x h,y) F 2 1(x,y+ h)+f 2 1(x,y
C言語による数値計算プログラミング演習
4. 連立一次方程式の解法 4. LU 分解法 同じ係数行列 A( サイズ n n) をもつ m 組の連立 次方程式 AX = B ( ただし A=[ ij ] は n 行 n 列の正則行列,B=[b ij ] と X=[x ij ] は n 行 m 列の行列 ) を同時に解く 行列 A,B を並置して 個の配列 A (n 行 n+m 列 ) を作成し, i,n+j =b ij (i=,,n; j=,,m)
応力とひずみ.ppt
in [email protected] 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S
Microsoft PowerPoint - H22制御工学I-2回.ppt
制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し
1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp
1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete space T1 T2 =, X = X, X X = X T3 =, X =, X X = X 2 X
r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B
1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n
14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手
14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を
v er.1/ c /(21)
12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,
(, Goo Ishikawa, Go-o Ishikawa) ( ) 1
(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2
HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】
B A C E D 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 H G I F J M N L K Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01
FX ) 2
(FX) 1 1 2009 12 12 13 2009 1 FX ) 2 1 (FX) 2 1 2 1 2 3 2010 8 FX 1998 1 FX FX 4 1 1 (FX) () () 1998 4 1 100 120 1 100 120 120 100 20 FX 100 100 100 1 100 100 100 1 100 1 100 100 1 100 101 101 100 100
