Microsoft PowerPoint - Eigen.ppt [互換モード]

Size: px
Start display at page:

Download "Microsoft PowerPoint - Eigen.ppt [互換モード]"

Transcription

1 固有値解析 中島研吾 東京大学情報基盤センター同大学院情報理工学系研究科数理情報学専攻数値解析 ( 科目番号 58)

2 行列の固有値問題 べき乗法 対称行列の固有値計算法 Eige

3 Eige A 行列の固有値問題 標準固有値問題 (Stdrd Eigevle Problem を満足する と を求める : 固有値 (eigevle) : 固有ベクトル (eigevetor) 一般固有値問題 (Geerl Eigevle Problem) A M ここでは標準固有値問題を扱う固有値 固有振動数 行列の性質に影響 : スペクトル半径 条件数

4 固有値問題の例 (/) 4 Eige m m 運動方程式 ) ( ) ( m m m m m m dt d / / / /

5 固有値問題の例 (/) 5 Eige m m m m dt d / / / / t j e m m m m A / / / / 振動的な解を仮定 A ω( 固有円振動数 )

6 Eige 6 固有値問題の例 (/) 固有振動数 (Ntrl Freqe) ( 構造物などの ) 力学システムには 固有振動数が存在する. 固有振動数あるいは それに近い周波数で力学システムを加振すると システムは共振を起す. 共振したシステムは 非常に大きな変位 ひずみ 応力を生じて システムが崩壊 破損する! 共振を避けたり 抑制したりする設計が必要 ( 耐震設計 免振設計など )

7 固有値問題の計算 (/) 7 Eige A の固有値 固有ベクトルを求めよ. A I A det I A 特性方程式 ) det( I A 特性方程式 = 5 5 5

8 固有値問題の計算 (/) 8 Eige A より この連立方程式は 必ず不定したがって のどちらか一方を定数をおく. たとえば = とおけば =(-λ) 固有ベクトル :

9 Eige 9 固有値問題の計算例 (/) 一般の 元の正方行列 A の固有値 固有ベクトルは 前述したような方法で求めることができる 特性方程式は固有値 λ についての 次の代数方程式 ( 非線形 ) det( A I) 大規模な次元 (> 6 ) を有する行列の固有値問題も扱える方法が開発されている : 実に様々な解法がある 実用上重要なのは ( 絶対値 ) 最大 最小固有値重根があると特別な扱い必要 - 本講義では基本的に重根は無しとする

10 行列の固有値問題 べき乗法 対称行列の固有値計算法 Eige

11 Eige べき乗法 (Power Method) 絶対値最大の実固有値とそれに対応する固有ベクトルを求める方法 適当な初期ベクトル () から始めて () () ( ) A A () () A ( ) A をどんどん乗じていく但し 単に乗じていくだけでは 発散したり 原点に収束したりしてしまうので 常に () の大きさを一定 ( 例えば =) に保つ必要がある. () は絶対値最大の固有値に対応する固有ベクトルに収束していく

12 Eige べき乗法のアルゴリズム Ste : () = である初期ベクトル () を選び = とする Ste : 以下のように (+) を更新する : ( ) A ( ) Ste : =+ として Ste を繰り返す ( ) ( ) ( ) ( ) ( ) () :A の絶対値最大の実固有値に収束 :A の絶対値最大の実固有値に対応する固有ベクトルに収束

13 Eige べき乗法が最大固有値に収束する理由 (/) () A () () A A () ) ( ) ( 固有値 ( 絶対値の大きさ順 ) それに対応する固有ベクトル ( 一次独立と仮定 )

14 Eige 4 べき乗法が最大固有値に収束する理由 (/) if ) ( lim i i i ) ( : if べき乗法によって求められるベクトル () の 方向 が最大固有値 に対応する固有ベクトル のそれに収束していく

15 Eige 5 べき乗法が最大固有値に収束する理由 (/) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( Α ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (

16 Eige べき乗法の収束 i i i lim i / が より充分小さいことが収束に影響 特に以下の成立が高速な収束に必要 6

17 Eige A べき乗法の例 (/) の絶対値最大の固有値およびその固有ベクトルをべき乗法により求めよ. 回目 A 7

18 Eige べき乗法の例 (/) 回目 A

19 Eige べき乗法の例 (/) 回目 A 前述した厳密解

20 Eige 逆べき乗法 絶対値 最小 の実固有値とそれに対応する固有ベクトルを求める方法 A A A A として A にべき乗法を適用する LU A として LU 分解を求めておくと効率が良い

21 Eige べき乗法の加速手法 : 原点移動 (Shift) / の値を小さくすることにより収束を加速する A A B B : B I I A I where : ostt : 行列 Bの固有値 (: 行列 Aの固有値 ) 行列 Bの固有ベクトル (Aの固有ベクトルに一致) 適当な定数 を選択することにより行列 Bの絶対値最大 / 番目に大きな固有値の比を小さくできれば 行列 Bにべき乗法を適用した方が良い 行列 B の固有値行列 A

22 Eige 原点移動の効果 下記の条件において A の絶対値最大の固有値およびその固有ベクトルをべき乗法 原点移動付きべき乗法により求めよ. A (). 4 原点移動無し 原点移動有り.E+.E+.5E E+.6585E+.684E E+ 5.68E E+

23 Eige べき乗法 原点移動付きべき乗法の例 べき乗法 do iter= Y()= A()*X() + A()*X() Y()= A()*X() + A()*X() EIGEN= X()*Y() + X()*Y() DL= dsqrt(y()**+y()**) X()= Y()/DL X()= Y()/DL eddo 原点移動付きべき乗法 X()=.d; X()=.d A()= A() - SHIFT A()= A() - SHIFT do iter= Y()= A()*X() + A()*X() Y()= A()*X() + A()*X() EIGEN= X()*Y() + X()*Y() + SHIFT DL= dsqrt(y()**+y()**) X()= Y()/DL X()= Y()/DL eddo

24 行列の固有値問題 べき乗法 対称行列の固有値計算法 Eige 4

25 Eige 5 対称行列の固有値計算法 実対称行列の固有値 実数 弾性振動問題などで工学的に重要な実対称行列の固有値計算法として代表的な手法について紹介する : ハウスホルダ変換 (Hoseholder) による三重対角化 ( tridigoliztio) 二分法 (Bi-Setio) による固有値計算 逆反復法による固有ベクトル計算

26 Eige 6 相似変換 (Similr Trsformtio) N Nの正方行列 A Bに対して以下を満たすような正則行列 Pが存在するとする : B= P - A P このときAとBは相似 (similr) であると呼び BはAを相似変換した行列であると言う AとBが相似であればそれらの固有値は一致する 任意の固有値に対するBの固有ベクトルを とすると A の固有ベクトルは P となる

27 Eige 7 Hoseholder 変換 : 三重対角化 (/6) N 次のベクトル に対して以下の行列 Q を定義するとき 行列 Q による相似変換をハウスホルダー変換 (Hoseholder) と呼ぶ : Q I T T 変換行列 Q は対称かつ直交 : Q T T T T I I T T I T Q Q T Q QQ T T I I I T T T T I 4

28 Hoseholder 変換 : 三重対角化 (/6) 8 Eige 以下に示す対称行列 A を Q によって三重対角化する : ~ A A

29 Hoseholder 変換 : 三重対角化 (/6) 9 Eige N 次のベクトル を以下のように置く : s s s s

30 Hoseholder 変換 : 三重対角化 (4/6) Eige 変換行列 Q を以下のように置く : T I Q s Q

31 Hoseholder 変換 : 三重対角化 (5/6) Eige s s Q AQ AQ Q B i i s sig s は以下のようにとられる 桁落ちを防ぐため と s の符号は同じになるようにする :

32 Hoseholder 変換 : 三重対角化 (6/6) Eige s s Q AQ AQ Q B この操作を (-) 回繰り返すことによって行列 A は三重対角行列に変換可能される A ~ 新たな A とする

33 Hoseholder 変換 : 非対称行列の場合 Eige 三重対角行列ではなく 下記に示すような上ヘッセンベルク行列 (Hesseberg) となる * * * * * * * * * * * * * * * * * * ~ A

34 Eige 4 スツルム列 (Strm Chi/Seqee) 実区間 [b] において 実係数を持つ多項式 f() が与えられた場合 以下の4 条件を満たす実係数多項式の列 f() f () f () f ()... f l () は実区間 [b] においてスツルム列をなすという 但し f ()=f() 実区間 [b] 内の全ての点 に対して 隣り合うつの多項式 f () f + () は同時にとならない 実区間 [b] 内のある点 で f ( )= ならば f - ( ) f + ( )< 列の最後の式 f l () は実区間 [b] において一定の符号を持つ 4ある点 で f( )= ならば f ( ) f ( )>である

35 Eige 5 スツルムの定理 (Strm s Theorem) 多項式の列 f() f () f () f ()... f l () が実区間 [b] においてスツルム列をなし f() f(b) とする を固定して関数列 f() f () f () f ()... f l () を左から右に見ていったときの符号の変化の回数を N() とする 多項式 f() の実区間 [b] に存在する零点 ( 解 ) の個数 は以下の式で与えられる ( 証明略 ): = N() - N(b)

36 二分法 (/4) 6 Eige 三重対角行列に対して行列を考え その第 主小行列を と置く : A ~ A I ~ これを最後の行に関して展開すると以下の漸化式を得る : = について成立するように下記のように仮定しておく :

37 Eige 7 二分法 (/4) = のとき以下の 次多項式の根が A ~ の固有値 Aの固有値 : I ~ A 上記多項式の以下の列はスツルム列を構成する ( 証明付録 ) 対称行列の固有値は全て実数であり 以下を仮定すると : 実区間 [b] に存在する零点 ( 固有値 ) の個数 は : = N() - N(b) = なら実区間 [b] に固有値が 個存在 より大きい固有値の個数は N() 証明略 スツルムの定理より導かれる

38 Eige 8 二分法 (/4) 二分法では スツルムの定理を用いて行列の特性方程式の根の存在範囲を狭めて行くことで固有値の近似解を得る ある適当な実定数 [b] に関して もし ( 番目に大きい固有値 ) が区間 [b] の間に存在するのであれば 以下が成立 : N N b b 区間 [b] を半分に狭めるために 点の中点 を考える もし が区間 [] に存在するならば 下記が成立する : N N そうでなければ は区間 [b] に存在する の存在する区間を改めて [b] と設定し以上を繰り返す 正の微少量 に対して -b <ならば = (+b)/として終了

39 Eige 9 二分法 (4/4) [b] の初期値は前述のゲルシュゴリンの定理 ( 次頁 ) を使用して以下のように設定することができる : r r m i i i i b r 予め b を固定して絞りこめば最大固有値を最初に求められる (+) 番目に大きい固有値は を上限値として繰り返し適用することで計算できる 逆に を固定して絞りこめば最小固有値を最初に求めることができ 番目に小さい固有値を下限として (+) 番目に小さい固有値を求められる

40 Eige 4 ゲルシュゴリンの定理 (Gershgori) 中心が ii 半径 r i ij i j の円で囲まれた複素平面内の領域を S i このとき 行列 A( ij ) の全ての固有値 は和集合存在する すなわち以下を満たす行番号 iが存在 : ii ( 証明 ) i j ij S i i の内部に を A= を満たすAの固有ベクトルとする の絶対値最大の成分を i とするとき A= の第 i 行を書き下すと以下を得る ii i j これから直ちに結論を得る ij j i

41 Eige 4 逆反復法による固有ベクトル計算 Iverse Itertio 二分法によって求めた固有値を とすると適当な初期ベクトル () について以下の方程式を解いていくと : i i I A i のとき (i) は固有値 の固有ベクトルに収束していくことが期待される

42 計算例 (/) 4 Eige A

43 Eige 4 計算例 (/) =.7E+ {5.57E- 5.87E E-.678E-.578E-.7E-} =.988E+ {5.87E-.578E- -.7E E E E-} = 7.747E- {4.565E- -.7E E E-.678E- 5.87E-} 4 = 4.46E- {.678E E E- 5.87E-.7E E-} 5 =.89E- {.578E E-.678E-.7E E E-} 6 =.65E- {.7E E- 5.87E E E E-}

44 44 本講義のまとめ スーパーコンピューティングへの招待 連立一次方程式の解法 ( 直接法 反復法 ) 偏微分方程式の数値解法 固有値解法 C 言語によるプログラミング ( 入門編 ) 基礎的な事項 ( 様々な原理 ) の説明 証明 数学的な背景をしっかりと理解した上で自分でプログラムを作って動かして見ることが重要 色々なことにチャレンジしてほしい 計算機を使いこなせること ( 数学的背景を理解した上でプログラムを作れること ) は チャレンジ可能性の幅を大きく広げることになる

45 もし ()= - ()= が成立すると 下記漸化式より - ()= となる : 従って 全ての j について j ()= となってしまうため 下記よりこの仮定はあり得ない : スツルム列を構成することの証明 (/) 45 Eige 実区間内の全ての点 に対して 隣り合う つの多項式 () + () は同時に とならない 実区間内のある点 で ( )= ならば - ( ) + ( )< if

46 スツルム列を構成することの証明 (/) 46 Eige 列の最後の式 () は実区間において一定の符号を持つ 4 ある点 で ( )= ならば ( ) - ( )> である これは下記より明らか : (*)

47 スツルム列を構成することの証明 (/) 47 Eige ここで下記のように q を定義すると (*) は (*) のように表される : (*) q q q ところで 以下が成立する : q したがって (*) より以下が成立する : q q q

Microsoft PowerPoint - Eigen.pptx

Microsoft PowerPoint - Eigen.pptx 固有値解析 中島研吾 東京大学情報基盤センター同大学院情報理工学系研究科数理情報学専攻数値解析 ( 科目番号 -58) 行列の固有値問題 べき乗法 対称行列の固有値計算法 : ヤコビ法 A 行列の固有値問題 標準固有値問題 (Stndrd vlue Prolem を満足する と を求める : 固有値 (eigenvlue) : 固有ベクトル (eigenvector) 一般固有値問題 (Generl

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

09.pptx

09.pptx 講義内容 数値解析 第 9 回 5 年 6 月 7 日 水 理学部物理学科情報理学コース. 非線形方程式の数値解法. はじめに. 分法. 補間法.4 ニュートン法.4. 多変数問題への応用.4. ニュートン法の収束性. 連立 次方程式の解法. 序論と行列計算の基礎. ガウスの消去法. 重対角行列の場合の解法項目を変更しました.4 LU 分解法.5 特異値分解法.6 共役勾配法.7 反復法.7. ヤコビ法.7.

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

スライド タイトルなし

スライド タイトルなし 線形代数 演習 (008 年度版 ) 008/5/6 線形代数 演習 Ⅰ コンピュータ グラフィックス, 次曲面と線形代数指南書第七の巻 直交行列, 実対称行列とその対角化, 次曲線池田勉龍谷大学理工学部数理情報学科 実行列, 正方行列, 実対称行列, 直交行列 a a N A am a MN 実行列 : すべての成分 a が実数である行列 ij ji ij 正方行列 : 行の数と列の数が等しい (

More information

行列の反復解法 1. 点 Jacobi 法 数値解法の重要な概念の一つである反復法を取り上げ 連立一次方程式 Au=b の反復解法を調べる 行列のスペクトル半径と収束行列の定義を与える 行列のスペクトル半径行列 Aの固有値の絶対値の最大値でもって 行列 Aのスペクトル半径 r(a) を与える 収束行

行列の反復解法 1. 点 Jacobi 法 数値解法の重要な概念の一つである反復法を取り上げ 連立一次方程式 Au=b の反復解法を調べる 行列のスペクトル半径と収束行列の定義を与える 行列のスペクトル半径行列 Aの固有値の絶対値の最大値でもって 行列 Aのスペクトル半径 r(a) を与える 収束行 行列の反復解法 1. 点 Jacobi 法 数値解法の重要な概念の一つである反復法を取り上げ 連立一次方程式 Au=b の反復解法を調べる 行列のスペクトル半径と収束行列の定義を与える 行列のスペクトル半径行列 Aの固有値の絶対値の最大値でもって 行列 Aのスペクトル半径 r(a) を与える 収束行列 B が正方行列で のとき B を収束行列と呼ぶ 定理収束行列のスペクトル半径は である 簡単な証明もし

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図 数学 Ⅱ < 公理 > 公理を論拠に定義を用いて定理を証明する 大小関係の公理 順序 >, =, > つ成立 >, > > 成立 順序と演算 > + > + >, > > 図形の公理 平行線の性質 錯角 同位角 三角形の合同条件 三角形の合同相似 量の公理 角の大きさ 線分の長さ < 空間における座漂とベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル

More information

航空機の運動方程式

航空機の運動方程式 可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

本日の講義内容 固有値 ( 線形代数 ) と応用問題 振動問題 ネットワーク定常問題 固有値計算アルゴリズム 密行列 べき乗法 ヤコビ法 ハウスホルダー三重対角 + 分割統治法 + 逆変換 疎行列 ランチョス法 ヤコビ デビッドソン法 その他 固有値計算ソフトウェア ScaLAPACK EigenE

本日の講義内容 固有値 ( 線形代数 ) と応用問題 振動問題 ネットワーク定常問題 固有値計算アルゴリズム 密行列 べき乗法 ヤコビ法 ハウスホルダー三重対角 + 分割統治法 + 逆変換 疎行列 ランチョス法 ヤコビ デビッドソン法 その他 固有値計算ソフトウェア ScaLAPACK EigenE Computer simulations create the future 固有値計算法 RIKEN AICS HPC Spring School 今村俊幸理化学研究所 AICS 2014/3/6 9:00~12:00 本日の講義内容 固有値 ( 線形代数 ) と応用問題 振動問題 ネットワーク定常問題 固有値計算アルゴリズム 密行列 べき乗法 ヤコビ法 ハウスホルダー三重対角 + 分割統治法 +

More information

行列、ベクトル

行列、ベクトル 行列 (Mtri) と行列式 (Determinnt). 行列 (Mtri) の演算. 和 差 積.. 行列とは.. 行列の和差 ( 加減算 ).. 行列の積 ( 乗算 ). 転置行列 対称行列 正方行列. 単位行列. 行列式 (Determinnt) と逆行列. 行列式. 逆行列. 多元一次連立方程式のコンピュータによる解法. コンピュータによる逆行列の計算.. 定数項の異なる複数の方程式.. 逆行列の計算

More information

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1> 3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1 代数 幾何 < ベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル :, 空間ベクトル : z,, z 成分での計算ができるようにすること ベクトルの内積 : os 平面ベクトル :,, 空間ベクトル :,,,, z z zz 4 ベクトルの大きさ 平面上 : 空間上 : z は 良く用いられる 5 m: に分ける点 : m m 図形への応用

More information

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft PowerPoint - H22制御工学I-2回.ppt 制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

Microsoft PowerPoint - NA03-09black.ppt

Microsoft PowerPoint - NA03-09black.ppt きょうの講義 数値 記号処理 2003.2.6 櫻井彰人 NumSymbol@soft.ae.keo.ac.jp http://www.sakura.comp.ae.keo.ac.jp/ 数値計算手法の定石 多項式近似 ( 復習 )» 誤差と手間の解析も 漸化式» 非線型方程式の求解 数値演算上の誤差 数値計算上の誤差 打ち切り誤差 (truncaton error)» 使う公式を有限項で打ち切る

More information

åłºæœ›å•¤ï¼„åłºæœ›ã…Žã‡¯ã…‹ã…«ã†®æ±‡ã‡†æŒ¹

åłºæœ›å•¤ï¼„åłºæœ›ã…Žã‡¯ã…‹ã…«ã†®æ±‡ã‡†æŒ¹ 固有値と wxmaxima を使うと簡単に求めることができます. この頁 その他 固有値 固有ベクトル練習用の問題 (1) 2 次の正方行列が異なる 2 つの実固有値を持つ場合 引用元 : ラング 線形代数学 ( 下 ) ( 芹沢正三訳 / ちくま学芸文庫 )p.078 (2) 2 次の正方行列が 1 つの実固有値 (2 重解 ) を持つ場合 引用元 : ラング 線形代数学 ( 下 ) ( 芹沢正三訳

More information

Microsoft PowerPoint - H22制御工学I-10回.ppt

Microsoft PowerPoint - H22制御工学I-10回.ppt 制御工学 I 第 回 安定性 ラウス, フルビッツの安定判別 平成 年 6 月 日 /6/ 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

航空機の運動方程式

航空機の運動方程式 オブザーバ 状態フィードバックにはすべての状態変数の値が必要であった. しかしながら, システムの外部から観測できるのは出力だけであり, すべての状態変数が観測できるとは限らない. そこで, 制御対象システムの状態変数を, システムのモデルに基づいてその入出力信号から推定する方法を考える.. オブザーバとは 次元 m 入力 r 出力線形時不変システム x Ax Bu y Cx () の状態変数ベクトル

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

12.pptx

12.pptx 数値解析 第 1 回 15 年 7 月 8 日 水 ) 理学部物理学科情報理学コース 1 講義内容 1. 非線形方程式の数値解法 1.1 はじめに 1. 分法 1.3 補間法 1.4 ニュートン法 1.4.1 多変数問題への応用 1.4. ニュートン法の収束性. 連立 1 次方程式の解法.1 序論と行列計算の基礎. ガウスの消去法.3 3 重対角行列の場合の解法.4 LU 分解法.5 特異値分解法.6

More information

数学の世界

数学の世界 東京女子大学文理学部数学の世界 (2002 年度 ) 永島孝 17 6 行列式の基本法則と効率的な計算法 基本法則 三次以上の行列式についても, 二次の場合と同様な法則がなりたつ ここには三次の場合を例示するが, 四次以上でも同様である 1 単位行列の行列式の値は 1 である すなわち 1 0 0 0 1 0 1 0 0 1 2 二つの列を入れ替えると行列式の値は 1 倍になる 例えば a 13 a

More information

Microsoft PowerPoint - 4.pptx

Microsoft PowerPoint - 4.pptx while 文 (1) 繰り返しの必要性 while の形式と動作 繰り返しにより平 根を求める ( 演習 ) 繰り返しにより 程式の解を求める ( 課題 ) Hello. をたくさん表示しよう Hello. を画面に 3 回表示するには, 以下で OK. #include int main() { printf("hello. n"); printf("hello. n");

More information

2018年度 岡山大・理系数学

2018年度 岡山大・理系数学 08 岡山大学 ( 理系 ) 前期日程問題 解答解説のページへ 関数 f ( x) = ( + x) x について, 以下の問いに答えよ () f ( x ) = 0 を満たす x の値を求めよ () 曲線 y = f ( x ) について, 原点を通るすべての接線の方程式を求めよ (3) 曲線 y = f ( x ) について, 原点を通る接線のうち, 接点の x 座標が最大のものを L とする

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�)

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�) Cellulr uo nd heir eigenlues 東洋大学総合情報学部 佐藤忠一 Tdzu So Depren o Inorion Siene nd rs Toyo Uniersiy. まえがき 一次元セルオ-トマトンは数学的には記号列上の行列の固有値問題である 固有値問題の行列はふつう複素数体上の行列である 量子力学における固有値問題も無限次元ではあるが関数環上の行列でその成分は可換環である

More information

経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17)

経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17) 経済数学演習問題 8 年 月 9 日 I a, b, c R n に対して a + b + c a + b + c + a, b + b, c + a, c が成立することを示しましょう. 線型代数学 教科書 ページ 演習.7 II a R n がすべての x R n に対して垂直, すなわち a, x x R n が成立するとします. このとき a となることを示しましょう. 線型代数学 教科書

More information

( ) 5 Reduction ( ) A M n (C) Av = λv (v 0) (11.1) λ C A (eigenvalue) v C n A λ (eigenvector) M n (R) A λ(a) A M n (R) n A λ

( ) 5 Reduction ( ) A M n (C) Av = λv (v 0) (11.1) λ C A (eigenvalue) v C n A λ (eigenvector) M n (R) A λ(a) A M n (R) n A λ 125 11 ( ) 5 Reduction 11.1 11.1.1 ( ) A M n (C) Av = λv (v 0) (11.1) λ C A (eigenvalue) v C n A λ (eigenvector) M n (R) A λ(a) 11.1.2 A M n (R) n A λi = 0 A C n 5 126 11 A n λ 1 (A) λ 2 (A) λ n (A) A

More information

memo

memo 数理情報工学特論第一 機械学習とデータマイニング 4 章 : 教師なし学習 3 かしまひさし 鹿島久嗣 ( 数理 6 研 ) kashima@mist.i.~ DEPARTMENT OF MATHEMATICAL INFORMATICS 1 グラフィカルモデルについて学びます グラフィカルモデル グラフィカルラッソ グラフィカルラッソの推定アルゴリズム 2 グラフィカルモデル 3 教師なし学習の主要タスクは

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

学習指導要領

学習指導要領 (1 ) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実 数の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい 実数の絶対値が実数と対応する点と原点との距離で あることを理解する ( 例 ) 次の値を求めよ (1) () 6 置き換えなどを利用して 三項の無理数の乗法の計

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

(Microsoft PowerPoint - \221\34613\211\361)

(Microsoft PowerPoint - \221\34613\211\361) 計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.

More information

Microsoft Word - 201hyouka-tangen-1.doc

Microsoft Word - 201hyouka-tangen-1.doc 数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見

More information

Chap2

Chap2 逆三角関数の微分 Arcsin の導関数を計算する Arcsin I. 初等関数の微積分 sin [, ], [π/, π/] cos sin / (Arcsin ) 計算力の体力をつけよう π/ π/ E. II- 次の関数の導関数を計算せよ () Arccos () Arctan E. I- の解答 不定積分あれこれ () Arccos n log C C (n ) n e e C log (log

More information

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位 http://totemt.sur.ne.p 外積 ( ベクトル積 ) の活用 ( 面積, 法線ベクトル, 平面の方程式 ) 3 次元空間の つのベクトルの積が つのベクトルを与えるようなベクトルの掛け算 ベクトルの積がベクトルを与えることからベクトル積とも呼ばれる これに対し内積は符号と大きさをもつ量 ( スカラー量 ) を与えるので, スカラー積とも呼ばれる 外積を使うと, 平行四辺形や三角形の面積,

More information

1.民営化

1.民営化 参考資料 最小二乗法 数学的性質 経済統計分析 3 年度秋学期 回帰分析と最小二乗法 被説明変数 の動きを説明変数 の動きで説明 = 回帰分析 説明変数がつ 単回帰 説明変数がつ以上 重回帰 被説明変数 従属変数 係数 定数項傾き 説明変数 独立変数 残差... で説明できる部分 説明できない部分 説明できない部分が小さくなるように回帰式の係数 を推定する有力な方法 = 最小二乗法 最小二乗法による回帰の考え方

More information

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ]

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ] Tsor th-ordr tsor by dcl xprsso m m Lm m k m k L mk kk quott rul by symbolc xprsso Lk X thrd-ordr tsor cotrcto j j Copyrght s rsrvd. No prt of ths documt my b rproducd for proft. テンソル ( その ) テンソル ( その

More information

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 . 三角関数 基本関係 t cot c sc c cot sc t 還元公式 t t t t t t cot t cot t 数学 数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 数学. 三角関数 5 積和公式 6 和積公式 数学. 三角関数 7 合成 t V v t V v t V V V V VV V V V t V v v 8 べき乗 5 6 6

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

20~22.prt

20~22.prt [ 三クリア W] 辺が等しいことの証明 ( 円周角と弦の関係利用 ) の の二等分線がこの三角形の外接円と交わる点をそれぞれ とするとき 60 ならば であることを証明せよ 60 + + 0 + 0 80-60 60 から ゆえに 等しい長さの弧に対する弦の長さは等しいから [ 三クリア ] 方べきの定理 接線と弦のなす角と円周角を利用 線分 を直径とする円 があり 右の図のように の延長上の点

More information

DVIOUT

DVIOUT 最適レギュレータ 松尾研究室資料 第 最適レギュレータ 節時不変型無限時間最適レギュレータ 状態フィードバックの可能な場合の無限時間問題における最適レギュレータについて確定系について説明する. ここで, レギュレータとは状態量をゼロにするようなコントローラのことである. なぜ, 無限時間問題のみを述べるかという理由は以下のとおりである. 有限時間の最適レギュレータ問題の場合の最適フィードバックゲインは微分方程式の解から構成される時間関数として表現される.

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information

2018年度 筑波大・理系数学

2018年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ < < とする 放物線 上に 点 (, ), A (ta, ta ), B( - ta, ta ) をとる 三角形 AB の内心の 座標を p とし, 外心の 座標を q とする また, 正の実数 a に対して, 直線 a と放物線 で囲まれた図形の面積を S( a) で表す () p, q を cos を用いて表せ S( p) () S(

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

2018年度 東京大・理系数学

2018年度 東京大・理系数学 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母

More information

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe Matr ad summato covto Krockr dlta δ ( ) ( ) prmutato symbol k (v prmutato) (odd prmutato) (othrs) gvalu dtrmat dt 6 k rst r s kt opyrght s rsrvd. No part of ths documt may b rproducd for proft. 行列 行 正方行列

More information

C言語による数値計算プログラミング演習

C言語による数値計算プログラミング演習 5. 行列の固有値問題 n n 正方行列 A に対する n 個の固有値 λ i (i=1,,,n) と対応する固有ベクトル u i は次式を満たす Au = λ u i i i a11 a1 L a1 n u1i a1 a a n u i A =, ui = M O M M an 1 an L ann uni これらはまとめて, つぎのように書ける 5.1 ヤコビ法 = Λ, = [ u1 u u

More information

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

2014年度 筑波大・理系数学

2014年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f ( x) = x x とする y = f ( x ) のグラフに点 P(, ) から引いた接線は 本あるとする つの接点 A (, f ( )), B(, f ( )), C(, f ( )) を頂点とする三角形の 重心を G とする () + +, + + および を, を用いて表せ () 点 G の座標を, を用いて表せ () 点 G

More information

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1> 人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形

More information

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め

More information

2017年度 金沢大・理系数学

2017年度 金沢大・理系数学 07 金沢大学 ( 理系 前期日程問題 解答解説のページへ 次の問いに答えよ ( 6 z + 7 = 0 を満たす複素数 z をすべて求め, それらを表す点を複素数平面上に図 示せよ ( ( で求めた複素数 z を偏角が小さい方から順に z, z, とするとき, z, z と 積 zz を表す 点が複素数平面上で一直線上にあることを示せ ただし, 偏角は 0 以上 未満とする -- 07 金沢大学

More information

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 = / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (.8 より ˆ ( ( ( q -, ( ( c ( H c c ë é ù û - Ü + c ( ( - に限る (. である 一方 フェルミ型は 成分をもち その成分を,,,,

More information

板バネの元は固定にします x[0] は常に0です : > x[0]:=t->0; (1.2) 初期値の設定をします 以降 for 文処理のため 空集合を生成しておきます : > init:={}: 30 番目 ( 端 ) 以外については 初期高さおよび初速は全て 0 にします 初期高さを x[j]

板バネの元は固定にします x[0] は常に0です : > x[0]:=t->0; (1.2) 初期値の設定をします 以降 for 文処理のため 空集合を生成しておきます : > init:={}: 30 番目 ( 端 ) 以外については 初期高さおよび初速は全て 0 にします 初期高さを x[j] 機械振動論固有振動と振動モード 本事例では 板バネを解析対象として 数値計算 ( シミュレーション ) と固有値問題を解くことにより振動解析を行っています 実際の振動は振動モードと呼ばれる特定パターンが複数組み合わされますが 各振動モードによる振動に分けて解析を行うことでその現象を捉え易くすることが出来ます そこで 本事例では アニメーションを活用した解析結果の可視化も取り入れています 板バネの振動

More information

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63> 力学 A 金曜 限 : 松田 微分方程式の解き方 微分方程式の解き方のところが分からなかったという声が多いので プリントにまとめます 数学的に厳密な話はしていないので 詳しくは数学の常微分方程式を扱っているテキストを参照してください また os s は既知とします. 微分方程式の分類 常微分方程式とは 独立変数 と その関数 その有限次の導関数 がみたす方程式 F,,, = のことです 次までの導関数を含む方程式を

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

スライド 1

スライド 1 数値解析 2019 年度前期第 13 週 [7 月 11 日 ] 静岡大学創造科学技術大学院情報科学専攻工学部機械工学科計測情報講座 三浦憲二郎 講義アウトライン [7 月 11 日 ] 関数近似と補間 最小 2 乗近似による関数近似 ラグランジュ補間 T.Kanai, U.Tokyo 関数近似 p.116 複雑な関数を簡単な関数で近似する 関数近似 閉区間 [a,b] で定義された関数 f(x)

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 第 1 章第 節実数 東高校学力スタンダード 4 実数 (P.3~7) 自然数 整数 有理数 無理数 実数のそれぞれの集 合について 四則演算の可能性について判断できる ( 例 ) 下の表において, それぞれの数の範囲で四則計算を考えるとき, 計算がその範囲で常にできる場合には

More information

NumericalProg09

NumericalProg09 数値解析および プログラミング演習 [08 第 9 回目 ] の解法 - 4. Ruge-Kua( ルンゲ クッタ 法 Ruge-Kua-Gill( ルンゲ クッタ ジル / ギル 法 5. 多段解法 解法の対象 常微分方程式 d( d 初期値条件 (, の変化に応じて変化する の値を求める. ( 0 ( 0 と 0 は,give 0 常微分方程式の初期値問題 と言う. 3 Ruge-Kua 法の導出

More information

< BD96CA E B816989A B A>

< BD96CA E B816989A B A> 数 Ⅱ 平面ベクトル ( 黄色チャート ) () () ~ () " 図 # () () () - - () - () - - () % から %- から - -,- 略 () 求めるベクトルを とする S であるから,k となる実数 k がある このとき k k, であるから k すなわち k$, 求めるベクトルは --,- - -7- - -, から また ',' 7 (),,-,, -, -,

More information

2015年度 京都大・理系数学

2015年度 京都大・理系数学 05 京都大学 ( 理系 ) 前期日程問題 解答解説のページへ つの関数 y= si( x+ ) と y = six のグラフの 0 x の部分で囲まれる領域 を, x 軸のまわりに 回転させてできる立体の体積を求めよ ただし, x = 0 と x = は領域を囲む線とは考えない -- 05 京都大学 ( 理系 ) 前期日程問題 解答解説のページへ次の つの条件を同時に満たす四角形のうち面積が最小のものの面積を求めよ

More information

スライド 1

スライド 1 数値解析 平成 30 年度前期第 10 週 [6 月 12 日 ] 静岡大学工学研究科機械工学専攻ロボット 計測情報分野創造科学技術大学院情報科学専攻 三浦憲二郎 講義アウトライン [6 月 12 日 ] 連立 1 次方程式の直接解法 ガウス消去法 ( 復習 ) 部分ピボット選択付きガウス消去法 連立 1 次方程式 連立 1 次方程式の重要性 非線形の問題は基本的には解けない. 非線形問題を線形化して解く.

More information

Microsoft PowerPoint - ce07-09b.ppt

Microsoft PowerPoint - ce07-09b.ppt 6. フィードバック系の内部安定性キーワード : 内部安定性, 特性多項式 6. ナイキストの安定判別法キーワード : ナイキストの安定判別法 復習 G u u u 制御対象コントローラ u T 閉ループ伝達関数フィードバック制御系 T 相補感度関数 S S T L 開ループ伝達関数 L いま考えているのは どの伝達関数,, T, L? フィードバック系の内部安定性 u 内部安定性 T G だけでは不十分

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 多倍長計算手法 平成 年度第 四半期 今回はパラメータ の設定と精度に関してまとめて記述しました ループ積分と呼ばれる数値積分計算では 質量 の光子や質量が非常に小さい事はわかっているが その値は不明なニュートリノに対して赤外発散を防ぐため微小量を与えて計算しています この設定する微少量の値により 結果の精度及び反復に要する時間が大きく作用したり 誤った値を得る事があります ここでは典型的な つのケースで説明します

More information

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす RTK-GPS 測位計算アルゴリズム -FLOT 解 - 東京海洋大学冨永貴樹. はじめに GPS 測量を行う際 実時間で測位結果を得ることが出来るのは今のところ RTK-GPS 測位のみである GPS 測量では GPS 衛星からの搬送波位相データを使用するため 整数値バイアスを決定しなければならず これが測位計算を複雑にしている所以である この整数値バイアスを決定するためのつの方法として FLOT

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

偏微分方程式、連立1次方程式、乱数

偏微分方程式、連立1次方程式、乱数 数値計算法 011/6/8 林田清 大阪大学大学院理学研究科 常微分方程式の応用例 1 Rutherford 散乱 ( 原子核同士の散乱 ; 金の薄膜に α 粒子をあてる ) 1 クーロン力 f= 4 0 r r r Ze y からf cos, si f f f y f f 粒子の 方向 y方向の速度と座標について dv Ze dvy Ze y, 3 3 dt 40m r dt 40m r d dy

More information

<8D828D5A838A817C A77425F91E6318FCD2E6D6364>

<8D828D5A838A817C A77425F91E6318FCD2E6D6364> 4 1 平面上のベクトル 1 ベクトルとその演算 例題 1 ベクトルの相等 次の問いに答えよ. ⑴ 右の図 1 は平行四辺形 である., と等しいベクトルをいえ. ⑵ 右の図 2 の中で互いに等しいベクトルをいえ. ただし, すべてのマス目は正方形である. 解 ⑴,= より, =,= より, = ⑵ 大きさと向きの等しいものを調べる. a =d, c = f d e f 1 右の図の長方形 において,

More information

ベクトル公式.rtf

ベクトル公式.rtf 6 章ラプラシアン, ベクトル公式, 定理 6.1 ラプラシアン Laplacian φ はベクトル量である. そこでさらに発散をとると, φ はどういう形になるであろうか? φ = a + a + a φ a + a φ + a φ = φ + φ + φ = 2 φ + 2 φ 2 + 2 φ 2 2 φ = 2 φ 2 + 2 φ 2 + 2 φ 2 = 2 φ したがって,2 階の偏微分演算となる.

More information

2018年度 神戸大・理系数学

2018年度 神戸大・理系数学 8 神戸大学 ( 理系 ) 前期日程問題 解答解説のページへ t を < t < を満たす実数とする OABC を 辺の長さが の正四面体とする 辺 OA を -t : tに内分する点を P, 辺 OB を t :-tに内分する点を Q, 辺 BC の中点を R とする また a = OA, b = OB, c = OC とする 以下の問いに答えよ () QP と QR をt, a, b, c を用いて表せ

More information

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手 14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を

More information

Chap2.key

Chap2.key . f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π

More information

線型代数試験前最後の 3 日間 できるようになっておきたい計算問題 ( 特に注意 まぁ注意 ) シュミットの直交化とその行列表示 (P5) ユニタリ行列による行列の対角化 (P8) 数列, 微分方程式の解法 対角可能な条件もおさえておきたい とりあえず次の問題を ( まだやっていない人は ) やって

線型代数試験前最後の 3 日間 できるようになっておきたい計算問題 ( 特に注意 まぁ注意 ) シュミットの直交化とその行列表示 (P5) ユニタリ行列による行列の対角化 (P8) 数列, 微分方程式の解法 対角可能な条件もおさえておきたい とりあえず次の問題を ( まだやっていない人は ) やって 線型代数試験前最後の 日間 できるようになっておきたい計算問題 特に注意 まぁ注意 シュミットの直交化とその行列表示 P ユニタリ行列による行列の対角化 P8 数列 微分方程式の解法 対角可能な条件もおさえておきたい とりあえず次の問題を まだやっていない人は やってください 8 年 月 日 理二三 組の線型代数担当志甫先生の過去問から持ってきました 結構計算が大変だったと思います これが難なくできる人は以下の総復習編はさらっと目を通すだけで

More information

複素数平面への誘い

複素数平面への誘い いざな複素数平面への誘い GRS による複素数平面の表現 複素数平面への第一歩 - 複素数モード - 点と複素数 -3 複素数の四則演算 -4 絶対値と偏角, 共役複素数 -5 絶対値と偏角による複素数の表現 複素数平面の変換 4 - 回転移動と相似拡大 - 直線 に関する対称変換 -3 単位円に関する反転変換 -4 複素数平面の変換と曲線 3 入試問題に挑戦 6 3- 陰関数を利用した図形の表示

More information

<4D F736F F F696E74202D2091E6824F82538FCD8CEB82E88C9F8F6F814592F990B382CC8CB4979D82BB82CC82505F D E95848D8682CC90B69

<4D F736F F F696E74202D2091E6824F82538FCD8CEB82E88C9F8F6F814592F990B382CC8CB4979D82BB82CC82505F D E95848D8682CC90B69 第 章 誤り検出 訂正の原理 その ブロック符号とその復号 安達文幸 目次 誤り訂正符号化を用いる伝送系誤り検出符号誤り検出 訂正符号 7, ハミング符号, ハミング符号生成行列, パリティ検査行列の一般形符号の生成行列符号の生成行列とパリティ検査行列の関係符号の訂正能力符号多項式 安達 : コミュニケーション符号理論 安達 : コミュニケーション符号理論 誤り訂正符号化を用いる伝送系 伝送システム

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 千早高校学力スタンダード 自然数 整数 有理数 無理数の用語の意味を理解す る ( 例 ) 次の数の中から自然数 整数 有理 数 無理数に分類せよ 3 3,, 0.7, 3,,-, 4 (1) 自然数 () 整数 (3) 有理数 (4) 無理数 自然数 整数 有理数 無理数の包含関係など

More information

重要例題113

重要例題113 04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0

More information

2015年度 岡山大・理系数学

2015年度 岡山大・理系数学 5 岡山大学 ( 理系 ) 前期日程問題 解答解説のページへ を 以上の自然数とし, から までの自然数 k に対して, 番号 k をつけたカードをそれぞれ k 枚用意する これらすべてを箱に入れ, 箱の中から 枚のカードを同時に引くとき, 次の問いに答えよ () 用意したカードは全部で何枚か答えよ () 引いたカード 枚の番号が両方とも k である確率を と k の式で表せ () 引いたカード 枚の番号が一致する確率を

More information

1 対 1 対応の演習例題を解いてみた 微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h)

1 対 1 対応の演習例題を解いてみた   微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h) 微分法とその応用 例題 1 極限 微分係数の定義 () 関数 ( x) は任意の実数 x について微分可能なのは明らか ( 1, ( 1) ) と ( 1 + h, ( 1 + h) ) の傾き= ( 1 + h ) - ( 1 ) ( 1 + ) - ( 1) = ( 1 + h) - 1 h ( 1) = lim h ( 1 + h) - ( 1) h ( 1, ( 1) ) と ( 1 - h,

More information

2011年度 東京大・文系数学

2011年度 東京大・文系数学 東京大学 ( 文系 ) 前期日程問題 解答解説のページへ x の 次関数 f( x) = x + x + cx+ d が, つの条件 f () =, f ( ) =, ( x + cx+ d) dx= をすべて満たしているとする このような f( x) の中で定積分 I = { f ( x) } dx を最小にするものを求め, そのときの I の値を求めよ ただし, f ( x) は f ( x)

More information

線形代数とは

線形代数とは 線形代数とは 第一回ベクトル 教科書 エクササイズ線形代数 立花俊一 成田清正著 共立出版 必要最低限のことに限る 得意な人には物足りないかもしれません 線形代数とは何をするもの? 線形関係 y 直線 yもも 次式で登場する (( 次の形 ) 線形 ただし 次元の話世の中は 3 次元 [4[ 次元 ] 次元 3 次元 4 次元 はどうやって直線を表すの? ベクトルや行列の概念 y A ベクトルを使うと

More information

Microsoft PowerPoint - mp11-02.pptx

Microsoft PowerPoint - mp11-02.pptx 数理計画法第 2 回 塩浦昭義情報科学研究科准教授 shioura@dais.is.tohoku.ac.jp http://www.dais.is.tohoku.ac.jp/~shioura/teaching 前回の復習 数理計画とは? 数理計画 ( 復習 ) 数理計画問題とは? 狭義には : 数理 ( 数学 ) を使って計画を立てるための問題 広義には : 与えられた評価尺度に関して最も良い解を求める問題

More information

2013年度 九州大・理系数学

2013年度 九州大・理系数学 九州大学 ( 理系 ) 前期日程問題 解答解説のページへ a> とし, つの曲線 y= ( ), y= a ( > ) を順にC, C とする また, C とC の交点 P におけるC の接線をl とする 以下 の問いに答えよ () 曲線 C とy 軸および直線 l で囲まれた部分の面積をa を用いて表せ () 点 P におけるC の接線と直線 l のなす角を ( a) とき, limasin θ(

More information

第6章 実験モード解析

第6章 実験モード解析 第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法

More information

レッスン15  行列とグラフ

レッスン15  行列とグラフ レッスン 15 行列とグラフ このレッスンでは行列のグラフを定義し 簡単な応用例として 行列のグラフの強連結性 ( 各頂点から他のすべての頂点に至る道が存在する ) 行列の既約性 ( 順列行列相似変換による ブロック三角行列化が不可能 ) およびこの事実の 2 次元境界値問題の差分法による解法への応用をのべる グラフ理論入門のつもりで読んで頂きたい 15.1 行列のグラフ 与えられた次正方行列 =

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

2014年度 名古屋大・理系数学

2014年度 名古屋大・理系数学 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ空間内にある半径 の球 ( 内部を含む ) を B とする 直線 と B が交わっており, その交わりは長さ の線分である () B の中心と との距離を求めよ () のまわりに B を 回転してできる立体の体積を求めよ 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ 実数 t に対して 点 P( t, t ), Q(

More information

Microsoft PowerPoint - 03NonlinearEq.ppt

Microsoft PowerPoint - 03NonlinearEq.ppt 方程式を解く 知的情報処理 3 非線形方程式を解く 一変数 代数方程式を解くことは昔から重要な問題であった 算木にもたくさんある 数学競技会(例: 30題を40 50日で解く)で出された 3次 4次代数方程式が一般的に解けた Scipione del Ferro (465-56), Niccoló Fontana Tartaglia(499547), Girolamo Cardano (50-576)

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

航空機の運動方程式

航空機の運動方程式 過渡応答 定常応答 線形時不変のシステムの入出力関係は伝達関数で表された. システムに対する基本的な 入力に対する過渡応答と定常応答の特性を理解する必要がある.. 伝達関数の応答. 一般的なシステムの応答システムの入力の変化に対する出力の変化の様相を応答 ( 時間応答, 動的応答 ) という. 過渡応答 システムで, 入力がある定常状態から別の定常状態に変化したとき, 出力が変化後の定常状態に達するまでの応答.

More information

DVIOUT

DVIOUT 第 3 章 フーリエ変換 3.1 フーリエ積分とフーリエ変換 第 章では 周期を持つ関数のフーリエ級数について学びました この章では 最初に 周期を持つ関数のフーリエ級数を拡張し 周期を持たない ( 一般的な ) 関数のフーリエ級数を導きましょう 具体的には 関数 f(x) を区間 L x L で考え この L を限りなく大きくするというアプローチを取ります (L ) なお ここで扱う関数 f(x)

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数 の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい ア イ 無理数 整数 ウ 無理数の加法及び減法 乗法公式などを利用した計 算ができる また 分母だけが二項である無理数の 分母の有理化ができる ( 例 1)

More information