Fig. 3: A ball-beam system with the palm circle task. Fig. 5: beam. Geometric parameters of the ball and the Fig. 4: Butterfly task of Cotnact jugglin

Similar documents
SICE東北支部研究集会資料(2012年)

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

ver.1 / c /(13)

鉄鋼協会プレゼン

ばらつき抑制のための確率最適制御

28 Horizontal angle correction using straight line detection in an equirectangular image

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

xia2.dvi

MmUm+FopX m Mm+Mop F-Mm(Fop-Mopum)M m+mop MSuS+FX S M S+MOb Fs-Ms(Mobus-Fex)M s+mob Fig. 1 Particle model of single degree of freedom master/ slave sy

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

mt_4.dvi

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

report.dvi

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L


Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

sakigake1.dvi

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

ohp_06nov_tohoku.dvi

JFE.dvi

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

1

24 Depth scaling of binocular stereopsis by observer s own movements

<4D F736F F D DB82CC88F892A38BAD937893C190AB76355F8D5A897B8CE3325F2E646F63>


A Construction of Hybrid Adaptive Control System Using a Fixed Compensator Shiro MASUDA*, Hiroshi OKAMOTO** and Akira INOUE* In this paper, we propose

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

29_10_05.dvi

数学演習:微分方程式

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

Vol.-ICS-6 No.3 /3/8 Input.8.6 y.4 Fig....5 receptive field x 3 w x y Machband w(x =

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

三石貴志.indd

第5章 偏微分方程式の境界値問題

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A Navigation Algorithm for Avoidance of Moving and Stationary Obstacles for Mobile Robot Masaaki TOMITA*3 and Motoji YAMAMOTO Department of Production

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of jo

9.プレゼン資料(小泉)R1

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l


IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

.I.v e pmd

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N


318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) (a) (c) ) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) (1

2 ( ) i

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

特-3.indd

36 581/2 2012

14 2 5

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

数値計算:常微分方程式

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1)., Φ = gh, f.,. (2.6.40), Φ + V Φ + Φ V = 0 (3.2.2). T = L/C (3.2.3), C. C V, T = L/V

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

( ), ( ) Patrol Mobile Robot To Greet Passing People Takemi KIMURA(Univ. of Tsukuba), and Akihisa OHYA(Univ. of Tsukuba) Abstract This research aims a


Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

fiš„v8.dvi

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:


Vol. 23 No. 4 Oct Kitchen of the Future 1 Kitchen of the Future 1 1 Kitchen of the Future LCD [7], [8] (Kitchen of the Future ) WWW [7], [3

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

S-6.indd

橡上野先生訂正2

光学

2.2 6).,.,.,. Yang, 7).,,.,,. 2.3 SIFT SIFT (Scale-Invariant Feature Transform) 8).,. SIFT,,. SIFT, Mean-Shift 9)., SIFT,., SIFT,. 3.,.,,,,,.,,,., 1,

IPSJ SIG Technical Report Vol.2014-GN-90 No.16 Vol.2014-CDS-9 No.16 Vol.2014-DCC-6 No /1/24 1,a) 2,b) 2,c) 1,d) QUMARION QUMARION Kinect Kinect

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

ICT a) Caption Presentation Method with Speech Expression Utilizing Speech Bubble Shapes for Video Content Yuko KONYA a) and Itiro SIIO 1. Graduate Sc

公益社団法人日本都市計画学会都市計画論文集 Vol.53 No 年 10 月 Journal of the City Planning Institute of Japan, Vol.53 No.3, October, 2018 A queueing model for goods d

Fig. 1 Contact states Fig. 2 Model-based approach to monitoring of process state

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

”R„`‚å−w‰IŠv†^›¡‚g‡¾‡¯.ren

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. TV A310

Human-Agent Interaction Simposium A Heterogeneous Robot System U

重力方向に基づくコントローラの向き決定方法

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

Transcription:

A Control Method of Juggling Task for Ball-beam System Akira Nakashima (Nanzan University) Abstract This paper deals with the realization of Palm circle task for a ball-beam system in a 2- dimensional space. The palm circle means the situation where the spactial position of the ball is fixed at a point while the relative position of the ball on the beam tracks a cyclic trajectory. First, the equations of motion of the ball and the beam are derived via the Lagrange equation with the constraints that stand for the rolling contact between the ball and the beam. Second, the equations of motion are transformed to the ones in terms of the control variables, i.e. the position of the ball, the relative position of the ball on the beam and the orientation angle of the beam. Third, the LQ optimal servo controller is derived based on the linear system around the origin of the equations of motion for the control. Finally, the effectiveness of the controller with a cyclic trajectory of ball on the beam is verified by numerical simulations. Key Words: Ball-beam system, contact juggling, dynamic manipulation, LQ servo control ) 2) 3) 4) 5) 6) 7) 8) 3 9) ) ) 2) Fig. : A task of Contact juggling -Palm circle. Fig. 2: Palm circle task by a ball-plate system. 3) Fig. Fig. 2

Fig. 3: A ball-beam system with the palm circle task. Fig. 5: beam. Geometric parameters of the ball and the Fig. 4: Butterfly task of Cotnact juggling 4). 2 3 2 Fig. 3 2 4) Fig. 4 3 5) Fig. 6: Configuration of the ball-beam system. LQ 2 2. Fig. 6 l F m O J F = 2 m F lf 2 kg m2 m m O kg J O = 2 m OrO 2 kg m2 Finger Object Fig. 6 Σ B 2 y Σ F x Σ O Σ B

( B p F, B R F ) SE(2) B p F R 2 Σ B Σ F B R F SO(2) Σ B Σ F Σ O ( B p O, B R O ) SE(2) B R F B R O 2 ϕ F ϕ O B R F := R(ϕ F ), B R O := R(ϕ O ) () ϕ F ϕ O R Σ B x Σ F Σ O x R(ϕ) SO(2) cos ϕ sin ϕ R(ϕ) :=, ϕ R (2) sin ϕ cos ϕ (2) A B qf q := R 6 p B, q F := F p, q O := O R 3 q O (3) Fig. 6 Σ CF Σ CO y Σ CF Σ CO Σ F Σ O ( F p CF, F R CF ) ( O p CO, O R CO ) SE(2) F αf p CF =, F R CF = I 2 (4) O ro cos α p CO = O, O R CO = R(α O π sin α 2 ) (5) O ϕ F ϕ O α F R Σ F Σ CF α O R Σ O x Σ CO y α F α O Σ F B f F R 2 τ F R B f u := F R 3 (6) 2.2 2.2. τ F B p F + B R F F p CF = B p O + B R O O p CO (7) B R F F R CF C F R CO = B R O O R CO (8) Fig. 6 F R CF = I 2, C F R CO = R(±π) (9) (7) (7) (8) α F α O q F q O α F (7) F p CF (8) (9) (5) F p CF = B R T F ( B p O B p F ) + B R T F B R O O p CO = B R T F ( B p O B p F ) O R T C O O p CO = B R T F ( B p O B p F ) e y (4) α F α F = e T x B R T F ( B p O B p F ) () e x :=, T e y :=, T e T x e y = α O (8) () A α O = ϕ F ϕ O π 2 2 2.2.2 () (7) B R F F ṗ CF = B R OOṗ CO (2) (2) (7) (8) α F = α O (3) (2) (7) (2) Bṗ F + B Ṙ F F p CF = B ṗ O + B Ṙ O O p CO A A(q) q = (4) A := A F (q) A O (q) R 2 6 A F := I 2 R( π 2 )B R F F p CF R 2 3 A O := I 2 R( π 2 )B R O O p CO R 2 3 (8) 2C F R CO = R( π)

2.3 L = 2 m F B ṗ F 2 + 2 J F ϕ 2 F + 2 m O B ṗ O 2 + 2 J O ϕ 2 O ( m F ge T y B p F + m O ge T y B p O ) (5) g = 9.8 m/s 2 (5) d dt ( ) T L = q ( ) T L A T λ + Υ (6) q λ R 2 F C := A T λ (7) λ Σ B λ = B f C = B f Cx B f Cy (8) Υ R 6 I3 Υ = Bu, B := (9) 3 3 MF M := 3 3 3 3 M O mf I M F := 2 2 2 J F FgF F g := R 6 F gf := F go mf e y M q + F g = A T λ + Bu (2), F go := 2.4 R 6 6, M O := mo e y R 3 mo I 2 2 2 J O R 3 3 (2) (4) 6) (4) A q + A q = (2) q λ (q, q) λ = ( AM A T) { AM (Bu F g ) + A q (2) (2) (2) (q, q) 7) 3 3 3. (7) 2 6 2 = 4 B p O x c := α F ϕ F } R 4 (22) q (22) B p F (7) (8) (9) (4) (5) B p F = B p O B R F F p CF + B R O O p CO = B p O B R F F p CF B R F O R T C O p CO = B p O B R F F p O (23) F p O = αf x c F p O R 2 ϕ F B p O ϕ O () ϕ O = ϕ F α O π 2 α O (3) ϕ O = ϕ F α F + α F () α O () π 2 (24) α F () α O () α F α O (23) Bṗ F = B ṗ O B Ṙ F F p O B R F F ṗ O = B ṗ O R( π 2 )B R F F p O ϕf B R F e x α F (25) 3 (7) (3) 8)

(24) ϕ O = ϕ F α F (26) (3) (3) M c ẍ c + F gc (x c ) = B c u (32) (25) (26) q ẋ c q = S(x c )ẋ c (27) M c := m c I 2 m c2 m c3 m T c 2 m c22 m c23 I 2 B R F e x R( π 2 )B R F F p O 2 S := I 2 2 2 R6 4 2 S (4) A AS = (28) (28) (27) (4) ASẋ c = x c 3.2 (2) (22) (27) q = Ṡẋ c + Sẍ c (29) (29) (2) S T S T MSẍ c + S T MṠẋ c + S T F g = S T A T λ + S T Bu (28) x c M c (x c )ẍ c +C c (x c, ẋ c )ẋ c +F gc (x c ) = B c (x c )u (3) M c := S T MS, C c := S T MṠ F gc := S T F g, B c := S T B C 3.3 (3) (x c, ẋ c ) = (, ) 2 R(ϕ) ϕ ϕ = I 2 + R( π 2 )ϕ (3) F gc := m T c 3 m c23 m c33 (m F + m O )ge y m F gϕ F m F g ϕ F I 2 2 B c := e T x e T x M c m c := m F I 2 m c2 := m F e x m c3 := m F e x m c22 := m F + J ro 2 O m c23 := (m F + J O ) m c33 := m F ro 2 + J F + J O (32) M c ẍ c + K c x c + d gc = B c u (33) 2 2 2 2 K c := 2 m F g 2 m F g (m F + m O )ge y d gc := 3.4 LQ (33) (33) d gc R 4 u = ū + u g (34) (mf + m u g := O )ge y (34) (33) B c u g = d gc M c ẍ c + K c x c = B c ū (35) xc x := R 8 (36) ẋ c

LQ Servo Controller Fig. 7: The extended system with the linear one and the integrator. (35) ẋ = Ax + Bū (37) A := 4 4 K c I 4 4, 4 4 B := M c 4 3 M c B c B p O α F 4 ϕ F B p O α F y = Cx, C := I 3 3 5 (38) y R 3 r R 3 9) w = t (r y)dt (39) Fig. 7 (37) (38) { ẋe = A e x e + B e ū y = C e x e (4) x x e := R w A 8 3 A e := R C 3 3 B B e := R 3 3 3 C e := C 3 3 R 3 (4) 4 A B (4) C 3 3 4 Fig. 8: The LQ servo controller based on the extended system. (4) J := min ū Jū (42) (x T e Qx e + ū T Rū)dt, Q, R > LQ ū = K F K I xe = K F x K I w (43) Fig. 8 (34) (39) (43) t u = K F x K F (r y)dt + u g (44) 4 4. l F =.5 m, m F =.5 kg, J F = 2 m F l 2 F kg m 2 =.5 m, m O =. kg, J O = 2 m Or 2 O kg m 2 B p F () ϕ F α F α O B p O ϕ O (23) (24) B p F () =, T m, ϕ F () = 5 deg α F =. m, α O = 9 deg Fig. 9 LQ Q R Q p Q = Q v, Q p = Q y Q v = I 4, Q y = I 3

.4.3.2. -. -.2 -.3 -.4 -.4 -.3 -.2 -...2.3.4 Fig. 9: The initial situation of the ball-beam system. 2 r(t) = A αf cos(2πf αf t) α F A αf f αf A αf =. m, f αf =.2 Hz 4.2 Figs. 3 2 sec Figs. q y Fig. B p O y x α F α F LQ Fig. 2 Fig. 3 Σ CF C F f C = F R T C F B R T F λ (45) y (43) u = K F (x x d ) x d := t (r y)dt + u g (46) r ṙ (46) Figs. 4 7 Fig. 5 α F B p O x Fig. 8 8 5 LQ 2 3

..2.2 p Fx m p Ox m p Ox m -. 5 5 2 -.2 5 5 2.5 -.2 2 4 6 8 2 4 6 8 2.5 p Fy m -.5 p Oy m p Oy m -. 5 5 2 -.5 5 5 2 4 -.5 2 4 6 8 2 4 6 8 2.2 φ F deg φ O deg 2 α F m - -2 5 5 2 5 5 2 Fig. : Simulation result: Finger & object. -.2 2 4 6 8 2 4 6 8 2 Fig. : Simulation result: Ctrl. variables..2.6 f x N f y N. -. 2 4 6 8 2 4 6 8 2 τ N m 7 6 5 4 2 4 6 8 2 4 6 8 2 4 2-2 2 4 6 8 2 4 6 8 2 Fig. 2: Simulation result: Ctrl. inputs. 2) 2, 22) 25 I-A-2 ) T. Yoshikawa. Dexterous mechanical hand. Trans. RSJ, Vol. 8, No. 6, pp. 763 766, 2. (in japanease). 2) A. Nakashima, Y. Sugiyama, and Y. Hayakawa. Paddle juggling of one ball by robot manipulator with visual servo. In 9th International Conference on Control, Automation, Robotics and Vision, 26. ICARCV 6, pp. 6, 26. 3),,,,.., Vol. 3, No. 9, pp. 924 93, 22. 4) Chunfang Liu, Yoshikazu Hayakawa, and Akira Nakashima. Racket control for a table tennis robot F Cx N.4.2 -.2 -.4 2 4 6 8 2 4 6 8 2 F Cy N 4 3 2 2 4 6 8 2 4 6 8 2 Fig. 3: Simulation result: Cotact forces. to return a ball. SICE Journal of Control, Measurement, and System Integration, Vol. 6, No. 4, pp. 259 266, 23. 5) M.T. Mason and K.M. Lynch. Dynamic manipulation. In Proc. IEEE/RSJ IROS, Vol., pp. 52 59, 993. 6).., 2. 7),. Optimal trajectory design for nonlinear mechanical systems : Acrobot example., Vol. 59, p. 4p, may 25. 8).., Vol. 46, No. 9, pp. 73 76, 27. 9) T. Ibuki, Y. Tadokoro, Y. Fujita, and M. Sampei. 3d inverted pendulum stabilization on a quadrotor via bilinear system approximations. In Control Applications (CCA), 25 IEEE Conference on, pp. 53 58, Sept 25. ),,. 3., Vol. 5, No. 6, pp. 943 952, 997. ).., Vol., No. 4, pp. 52 528, 993. 2) R. W. Brockett. Asymptotic stability and feedback stabilization. In R. W. Brocket, R. Millman, and H. Sussman, editors, Differential Geometric Control Theory: Progress in Mathematics, Vol. 27, pp. 8 28. Springer-Verlag, 983.

.2.2.2 p Fx m p Ox m p Ox m -.2 5 5 2 -.2 5 5 2.5 -.2 2 4 6 8 2 4 6 8 2.5 p Fy m -.5 p Oy m p Oy m -. 5 5 2 -.5 5 5 2 4 -.5 2 4 6 8 2 4 6 8 2.4 φ F deg - 5 5 2 φ O deg 2-2 5 5 2 Fig. 4: Simulation result(modified): Finger & object. 2 α F m.2 -.2 2 4 6 8 2 4 6 8 2 Fig. 5: Simulation result(modified): Ctrl. variables..6 f x N f y N τ N m - 2 4 6 8 2 4 6 8 2 7 6 5 4 2 4 6 8 2 4 6 8 2 5 F Cx N.4.2 -.2 -.4 2 4 6 8 2 4 6 8 2 4 3 F Cy N 2-5 2 4 6 8 2 4 6 8 2 Fig. 6: Simulation result(modified): Ctrl. inputs. 3) James Ernest. Contact Juggling. 3rd edition, 2. 4) K. M. Lynch, N. Shiroma, H. Arai, and K. Tanie. The roles of shape and motion in dynamic manipulation: the butterfly example. In Proceedings. 998 IEEE International Conference on Robotics and Automation, Vol. 3, pp. 958 963, 998. 5). Arduino MATLAB! Physical computing lab. TechShare, 22. 6) R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction to ROBOTIC MANIPULATION. CRC Press, New York, U.S.A., 994. 7)..,, Japan, 7 23. 8). ().,, Japan, 4 26. 9),. MATLAB., 2. 2). :. Mobiligence.,, Japan, 2. 2) S. Katsumata, S. Ichinose, T. Shoji, S. Nakaura, and M. Sampei. Throwing motion control based on output zeroing utilizing 2-link underactuated arm. In Proc. of American Control Conference, pp. 357 364, 29. 22) Leonid Freidovich, Anders Robertsson, Anton Shiriaev, and Rolf Johansson. Periodic motions of the pendubot via virtual holonomic constraints: Theory and experiments. Automatica, Vol. 44, No. 3, pp. 785 79, 28. 2 4 6 8 2 4 6 8 2 Fig. 7: Simulation result(modified): Cotact forces. A 2 R(ϕ) SO(2) ϕ R B R (ϕ) = R T (ϕ) = R( ϕ) R(ϕ + ϕ 2 ) = R(ϕ )R(ϕ 2 ) = R(ϕ 2 )R(ϕ ) d dt R(ϕ) = R( π 2 )R(ϕ) ϕ (A.3) (28) (A.) (A.2) (27) S S F S =, S F R 3 6, S O R 3 6 (B.) S O (28) AS = A F S F A O S O (B.2) A F S F = ( I 2 B R F e x R( π 2 )B R F ) F p CF F p O A O S O = I 2 R( π 2 )B R O O p CO R( π 2 )B R O O p CO (B.2) 2 2

Fig. 8: Simulation result(modified): Snapshots of the animation. (8) (9) B R O O p CO = B R F O R T C O O p CO = B R F e y 2 3 ( ) B R F e x R( π 2 )B R O O p CO = B R F e x R( π 2 )B R F e y = (B.3) R( π 2 )B R F ( F p CF F p O ) R( π 2 )B R O O p CO =R( π 2 )B R F ( F p CF F p O + B e y ) = (B.4) (B.2) (28) C (3) (3) S (B.2) M c C c F gc B c M c = S T F M F S F + S T OM O S O C c = S T F M F Ṡ F F gc = S T F F gf + S T OF go B c = S T F m c m c2 m c3 M c = m T c 2 m c22 m c23 m T c 3 m c23 m c33 2 2 c c2 c c3 C c = 2 c c23 2 c c23 c c33 (m F + m O )ge y F gc = m F ge T x B RF Te y m F g( e x α F e y ) TB RF Te y I 2 2 B c = e T x B RF T e T x ( e x α F e y ) T

M c C c m c := (m F + m O )I 2 m c2 := m B F R F e x m c3 := m B F R F ( e x α F e y ) m c22 := m F + J ro 2 O m c23 := (m F + J O ) m c33 := m F ro 2 + J F + J O c c2 := m F ϕf B { R F e y } c c3 := m B F R F α F ϕf e x + ( ϕf α F )e y c c23 c c33 := m F α F ϕf := m F α F α F