ψ(, v = u + v = (5.1 u = ψ, v = ψ (5.2 ψ 2 P P F ig.23 ds d d n P flow v : d/ds = (d/ds, d/ds 9 n=(d/ds, d/ds ds 2 = d 2 d v n P ψ( ψ

Similar documents
KENZOU

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

高等学校学習指導要領

高等学校学習指導要領

KENZOU

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

TOP URL 1

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f

meiji_resume_1.PDF

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e


A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

Gmech08.dvi

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

TOP URL 1

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j


1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1


50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Gmech08.dvi


(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

Chap10.dvi

b3e2003.dvi

Gmech08.dvi

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {


.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

量子力学 問題

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3)

1


No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

DVIOUT-fujin

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

Quiz x y i, j, k 3 A A i A j A k x y z A x A y A z x y z A A A A A A x y z P (x, y,z) r x i y j zk P r r r r r r x y z P ( x 1, y 1, z 1 )

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

: , 2.0, 3.0, 2.0, (%) ( 2.

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

ARspec_decomp.dvi

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

2011de.dvi

重力方向に基づくコントローラの向き決定方法

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

高校生の就職への数学II

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x


1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

2000年度『数学展望 I』講義録

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

untitled

Jacobi, Stieltjes, Gauss : :

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

Z: Q: R: C: 3. Green Cauchy

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

2 2 L 5 2. L L L L k.....

(1) (2) (3) (4) 1


I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

ito.dvi

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

chap9.dvi

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

Transcription:

KENZOU 28 8 9 9/6 4 1 2 3 4 2 2 5 2 2 5.1............................................. 2 5.2......................................... 3 5.2.1........................................ 3 5.2.2............................... 4 5.2.3........................................... 5 5.2.4.......................................... 6 5.2.5...................................... 6 5.2.6........................................... 7 5.2.7.......................................... 8 5.2.8............................................... 9 5.3...................................... 11 5.3.1.......................... 11 5.3.2.......................... 13 ============================ 1

5 2 5.1 2 3 3.12 ψ(, v = u + v = (5.1 u = ψ, v = ψ (5.2 ψ 2 P P F ig.23 ds d d n P flow v : d/ds = (d/ds, d/ds 9 n=(d/ds, d/ds ds 2 = d 2 d v n P ψ( ψ( = P v n ds (5.3 P ψ( ψ P ψ 2 ψ P ψ P Q Q P v n ds = P (v n + v n ds = P ( ψ d ds + ψ d P ds = dψ = ψ P ψ (5.4 ds P P (,, ψ(, = const (5.5 Fig.24 B B ψ ψ B ψ B B B F ig.24 ψ B ψ B B B ψ 2

B BB Q Q Q = ψ B ψ, Q = ψ B ψ BB BB B Q BB Q Q = Q, ψ B ψ = ψ B ψ,... ψ B = ψ B = const ψ = const 2 ω ω = otv = i j k z u v = (,, v u (5.6 z ω = v u ( 2 = 2 + 2 2 ψ = 2 ψ (5.7 2 ψ = (5.8 5.2 5.2.1 u v u = φ v = φ (5.9 φ(, φ(, φ φ ud + vd φ(, ud + vd = dφ dφ = φ φ d + d u = φ/, v = φ/ u = 2 φ = 2 φ, v = 2 φ u v = 5.9 φ φ = const 5.9 5.1 2 φ 2 + φ = 2 φ = (5.1 2 φ 1 φ 2 φ = c 1 φ 1 + c 2 φ 2 ( 1, c 2 3

F ig.25 ψ = const ψ 1 = const ψ 2 = const ψ 3 = const φ 3 = const φ 2 = const φ 1 = const φ = const [ ] φ(, = const, ψ(, = const φ + φ ψ + ψ ( d d φ ( d d ψ = φ = φ = ψ = ψ ( d d φ ( d d ψ 5.2 5.9 φ ψ = φ ψ = φ, ψ = φ ( d d φ ψ ( d d φ φ ψ ( d = 1 d ψ ( d d ψ = φ φ ψ = cos, = sin... φ = φ + φ = φ φ cos + sin = u cos + v sin ψ = ψ ψ cos + sin = v cos + u sin φ = φ + φ = φ φ sin + cos = ( u sin + v cos ψ = ψ ψ sin + cos = (v sin + u cos φ = ψ = v φ, = ψ = v ψ 5.2.2 v(u, v u = φ = ψ v = φ = ψ (5.11 4

f = φ + iψ (5.12 f(z 1... f = f(z f = z dz = ( + i = dz dz, dz = f = (φ + iψ f = i dz (5.13 = u iv (5.14 = u iv (5.15 dz u iv u + iv 2 u u u = u cos + v sin u = u sin v cos v u cos v cos v sin u u sin... i u iu = (u cos + v sin i(u sin + v cos = (cos + i sin (u iv = e dz dz = (u iu e i (5.16 5.2.3 f(z f(z = Uz U : (5.17 = u iv = U (5.18 dz u = U, v = (u, v U u = U cos, v = U sin u iv = U(cos i sin = Ue i 1 2 5

dz = u iv = Ue i f = Ue i z 5.2.4 f(z f(z = z n >, n > dz = nzn 1 z = e i f = n e in = n (cos n + i sin n = φ + iψ φ = n cos n, ψ = n sin n ψ = = k π, (k =, ±1, ±2, n π/n ψ = c (c > ( c 1/n 1 = ( sin n 1/n n = 1 n = 2, 4, F ig.26 n = 1 n = 2 n = 4 n = 2/3 n = 1/2 5.2.5 Q (souce 2 u u Q Q = u u = Q/, u = 2 φ = Q, u = φ, u = φ φ = φ = Q log + c(, φ = c(, c(, c(, φ 2 e e = e φ + e φ (5.19 φ = Q log (5.2 6

Q F ig.27 u u ψ u = ψ, u = ψ ψ = Q (5.21 f(z = φ + iψ = Q (log + i = Q log ei = Q log z (5.22 f(z z = 3 Q > Q < (sink dz = u iv = Q z = Q e i = u u 5.16 dz = Q e i = (u u e i u = Q (cos i sin (5.23 Q, u = [ ] ψ dψ = Q d = Q Q 5.2.6 U O f(z = Uz + Q log z (5.24 z z = e i f(z = Ue i + Q log ei = (U cos + Q log + i (U sin + Q (5.25 3 7

φ ψ φ = U cos + Q log, ψ = U sin + Q (5.26 F ig.28 ψ = Q/2 b = Q/2U U ψ = Q/2 O ψ = a u =, = u = φ = U + (Q/ 1 = U + m 1, (m = Q/ (5.27 u = m/u ( = a 4 = ψ = = π ψ = Q/2, π ψ = Q/2 = Q π U sin (5.28 5.28 2b ( Q b = lim sin = lim (π = Q U 2U = πa 2b = Q/U = a = a [ ] φ u, v φ = U + Q log... u = φ = U + Q cos = U + Q ( 2 + 2, v = φ = Q sin = Q ( 2 + 2 5.2.7 2 = a Q = a Q f(z = Q log(z + a Q log(z a = Q log z + a (5.29 z a 4 /dz = 5.16 8

5.29 5 a [ a z 1 ( a 2 1 ( a ] 3 + 2 z 3 z f(z = Q 1 + (a/z log 1 (a/z = Q Q 2a z [ a z 1 ( a 2 1 ( a ] 3 2 z 3 z (5.3 m = 2aQ a 6 2 f(z = Q 2a lim 2aQ m z = m z = m e i (5.31 m 2 2 u, u 5.16 dz = m 1 z 2 = m... u = m cos, 2 u 1 2 e i2 = m 2 (cos i sin e i = (u iu e i = m 2 sin F ig.29 1 F ig.29 2 2 ψ f(z = m (cos i sin = φ + iψ (5.32 ψ = m sin (5.33 ψ = const sin / = const 7 Fig.29-1 Fig.29-1 5.2.8 f(z = f(z = Γ log z (Γ (5.34 i Γ i (log + i = Γ i Γ log = φ + iψ... φ = Γ, ψ = Γ log (5.35 5 log(1 + = (1/2 2 + (1/3 3, < 1 6 a 2aQ 2a Q a 7 ψ = 1,sin =, sin = 2, sin =, = 2 = 2 + 2, 2 + ( 1/2 2 = (1/2 2 9

ψ = const φ = const Fig.29-2 f(z = Γ i log z v = Γ/ Γ v = φ =, v = φ = Γ (5.36 Γ/, 3 4.5 Γ( = v d = v s ds = Γ( = (ud + vd = ( φ φ d + d = dφ (5.37 [ ] Γ = Γ (5.38 f(z = (Γ/i log z Γ 8 Fig.27 Fig.29-2 [ ] z = z 5.8 2 1 3 1 3 2 3. -21 Γ 2 5.36 v = Γ/ v p( p p( p( + 1 2 ρv 2 = p p( = p ργ2 8π 2 1 2 8 1

p p = 1 1/8π 2 2 5.3 5.3.1 2 2 m = a 2 U f(z = Uz + m (z z = U + a2 z = U (e i + a2 = U ( + a2 e i ψ = U cos + iu ( a2 ( a2 sin (5.39 sin (5.4 = a ψ = = const a a ψ = a U = 1, a = 2 Fig.3 9 ψ =.2,.5, 1, 2, 3 [ ] 3 ψ = 1 ( 2 U 2 a3 sin 2 ( = a (1 dz = u iv = U a2 z 2 = U = U (1 a2 cos 2 + iu a2 2... u = U (1 a2 cos 2 2 (1 a2 2 e 2i sin 2 (5.41 2, v = U a2 sin 2 (5.42 2 u = 2U sin 2, 9 FunctionView v = 2U sin cos 11

= ±π/2 u 2U 2 = a, =, π u = v = q v = u cos + v sin = v = u sin + c cos = 2U sin q = v 2 + v 2 = v = 2U sin (5.43 p + ρ 2 q2 = p + ρ 2 U 2 = p = const (5.44 p 1 p 5.43 p = p + ρ 2 U 2 (1 4 sin 2 (5.45 Fig.31 F ig.31 P P = (p p /(ρu 2 /2 a ds p -pn n π/2 π Fig.31 =, π p = p + (ρ/2u 2 = π/2 p = p (3ρ/2U 2 P (P, P n P P = pnds = P = p cos ad, P = p sin ad, n = (cos, sin, ds = ad 5.45 P =, P = 11 12 [ ] 1 2 Rankine P88 Q < 1 11 http://integals.wolfam.com/inde.jsp 12 12

2 please daw ouself 2 5.3.2 2 Γ < 2 2 f(z = U (z + a2 z { = U ( + a2 iγ = φ + iψ (Γ = Γ (e log z = U i + a2 cos Γ } { + i U e i ( a2 iγ log ei sin + Γ log } (5.46 φ φ = U ψ v = φ = U v = φ = U ψ = U (1 dz = u iv = u a2 z 2 { = U (1 a2 cos 2 2 ( + a2 cos Γ (1 a2 2 (1 + a2 cos (5.47 2 sin + Γ (5.48 ( a2 sin + Γ log (5.49 + iγ z + Γ sin } } + i {U a2 Γ sin 2 + 2 cos (5.5 (5.51 z s z s /dz = u = v = 5.5 { z s = 1 2 iγ U ± 4a 2 Γ2 4π 2 U 2 } = iγ 4πU ± a 2 ( 2 Γ (5.52 4πU 13

2 3 3 (1 4πaU < Γ ( z s = iγ 4πU ± a 2 ( ( Γ 2 4πU iγ 4πU a 2 ( Γ 2 4πU = a 2 (2 4πaU = Γ z 1 = z 2 = iγ /4πU = ia (3 4πaU < Γ z s = i( Γ /4πaU ± (Γ 2 /16πa2 U 2 a 2 z s z 1 = i( Γ/4πaU (Γ 2 /16πa2 U 2 a 2 z 2 = Γ/4πaU + (Γ 2 /16πa 2 U 2 a 2 1 F ig.32 4πaU > Γ 4πaU = Γ 4πaU < Γ = a (5.46 φ = 2aU cos + Γ (5.53 v v = ( φ = (2U sin Γ /a (5.54 =a p p = p + 1 2 ρv 2 p = p 1 2 ρv 2 = p ρ 2a 2 { 4a 2 U 2 sin 2 4aU(Γ / sin + (Γ / 2} (5.55 P (P, P P = p cos ad =, P = p sin ad = ρuγ (5.56 ρuγ [ ] U Γ ρuγ Kutta-Joukowski 6 14

F ig.33 p = 1, ρ = 1, a = 1, U = 1, Γ = 1 p π p = p { ρ 2a 2 4a 2 U 2 sin 2 4aUΓ sin + ( } 2 Γ Fig.33 ( 4 [ ] 5.2.1 5.2.2 5.3.1 28.9.6 ( 3 5.2.5 u, u (28.9.8 15