応力とひずみ.ppt

Similar documents
変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

A

1



Gmech08.dvi

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Acrobat Distiller, Job 128

7-12.dvi

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

高等学校学習指導要領

高等学校学習指導要領

Microsoft Word - 計算力学2007有限要素法.doc

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

96 7 1m = N 1A a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

73

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

i 18 2H 2 + O 2 2H 2 + ( ) 3K

all.dvi

Quiz x y i, j, k 3 A A i A j A k x y z A x A y A z x y z A A A A A A x y z P (x, y,z) r x i y j zk P r r r r r r x y z P ( x 1, y 1, z 1 )

.....Z...^.[ \..

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

mugensho.dvi


main.dvi

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

II 2 II

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

( ) x y f(x, y) = ax

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

sec13.dvi

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

剛塑性FEM入門.ppt

DVIOUT

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

i

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

A


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

pdf

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -


< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

ii

lecture

6. Euler x

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

meiji_resume_1.PDF

x ( ) x dx = ax

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Part () () Γ Part ,

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

i


2014 S hara/lectures/lectures-j.html r 1 S phone: ,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

C:/KENAR/0p1.dvi

Gmech08.dvi

8.3 ( ) Intrinsic ( ) (1 ) V v i V {e 1,..., e n } V v V v = v 1 e v n e n = v i e i V V V V w i V {f 1,..., f n } V w 1

KENZOU

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

Gmech08.dvi

body.dvi

,2,4


genron-3

2011de.dvi

dvipsj.8449.dvi

( ) Loewner SLE 13 February

f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

0 = m 2p 1 p = 1/2 p y = 1 m = 1 2 d ( + 1)2 d ( + 1) 2 = d d ( + 1)2 = = 2( + 1) 2 g() 2 f() f() = [g()] 2 = g()g() f f () = [g()g()]

untitled

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

( ) ( )

TOP URL 1

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

Fr

Transcription:

in yukawa@numse.nagoya-u.ac.jp

2

3

4

5 x 2

6 Continuum)

7

8

9 F F

10 F L L F L 1 L F L F L F

11 F L F F L F L L L 1 L 2

12 F L F! A A! S! = F S

13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S " = F n S # = F S $ cos2 % & = F t # S = F S $ sin% $ cos%

14 F L L F " = F S # = 0 F L L F " = F n S # = F S $ cos2 % & = F t S # = F S $ sin% $ cos%

15 P

16 P ds df t (n) = lim ds"0 df ds P

17 x t (e x ) = lim ds x "0 df x ds x e x : x t (e y ) = t (e z ) = lim ds y "0 lim ds z "0 df y ds y df z ds z

18 " x " xy, " xz y z " y, # yx, # yz " z, # zx, # zy

19

20 t (e x ) (e, t y ) (e, t z ) t (n) P n S x S y S t x (n) S x f x = t x (n) " S S z Sx,Sy,Sz-x " f x = # x $ S x + % yx $ S y + % zx $ S z

21 ( ) ( n =1) n = n x, n y, n z t x (n) " S = # x " S x + $ yx " S y + $ zx " S z = # x " S " n x + $ yx " S " n y + $ zx " S " n z S S x t x (n) t x (n) = " x # n x + $ yx # n y + $ zx # n z S y S z t y (n) = " xy # n x +$ y # n y + " zy # n z t z (n) = " xz # n x + " yz # n y +$ z # n z

22 x y z 1,2,3 " t (n)& x + ) $ $ x * xy * xz. T t (n) - 0 # y ' = -* yx ) y * yz 0 $ t (n) $ - % z * (, zx * zy ) 0 z / + ) 11 ) 12 ) 13. T - 0 = ) 21 ) 22 ) 23-0,) 31 ) 32 ) 33 / t (n) =" T #n Cauchy " P t (n) " nx & $ $ # n y ' $ % n $ z ( " n1 & $ $ # n 2 ' $ % n $ 3 (

23 " (n) t & 1 $ * (n) $, # t 2 ' = $ (n) $, % $ t 3 ( $ + ) 11 ) 12 ) 13 - / ) 21 ) 22 ) 23 / ) 31 ) 32 ) 33. T " n1 & $ $ # n 2 ' $ % n $ 3 ( i, j t j (n) = 3 $ " ij # n i i=1 " t j (n) = " ij # n i Σ

24

25

26 F M a M " a = F F 2 F 1 a M " a = # F i a = 0 M F 3 " F i = 0

27 dx dy dz

28 X " + P x dx " x + = " x + #" x #x dx +L " + yx, " + zx P " + yx = " yx + #" yx #y " + zx = " zx + #" zx #z dy +L dz +L

29 X P & "# x $ dy $ dz + (# x + %# x ' %x dx ) + dy $ dz * & ", yx $ dx $ dz +, yx + %, yx ( ' %y dy ) + dx $ dz * & ", zx $ dx $ dy +, zx + %, zx ( ' %z dz ) + dx $ dy = 0 *

30 X "# x "x dx $ dy $ dz + "% yx "y dy $ dx $ dz + "% zx "z dz $ dx $ dy = 0 dx dy dz "# x "x + "$ yx "y + "$ zx "z = 0 "# xy "x + "$ y "y + "# zy "z = 0 "# xz "x + "# yz "y + "$ z "z = 0 "# ij "x i = 0 j =1L3 ( )

31 L = # m i r i " r i F 1 F 2 dl dt = ( ) # m i r i " r i + r i " r i #( ) #( ) = m i $ r i " r i = F i " r i = N F 3 N: N = 0

32 z " xy # dy # dz # dx 2 + % " xy + $" xy ' & $x dx ( * dy # dz # dx ) 2 +" yx # dx # dz # dy 2 + % " yx + $" yx ' & $y dy ( * dx # dz # dy ) 2 = 0

33 " xy # dy # dz # dx + $" xy $x dy # dz # dx2 2 %" yx # dx # dz # dy % $" yx $y dy # dz # dy2 2 = 0 dx dy dz " xy + #" xy #x $ dx 2 %" yx % #" yx #y dy 2 = 0 dx, dy " xy = " yx " yz = " zy " zx = " xz Cauchy! x,! y,! z, " xy, " yz, " zx

34 $ " x # xy # zx ' & ) " = &# xy " y # yz ) & %# zx # yz " ) z ( #" 1 0 0 & % ( 0 " 2 0 % ( $ 0 0 " 3 '

35 n " n # S = (" x cos$ + % xy sin$ ) # S x + (" y sin$ + % xy cos$ ) # S y = " x cos 2 $ # S + % xy sin$ cos$ # S +" y sin 2 $ # S " n = " x cos 2 # +" y sin 2 # + 2$ xy sin# cos# Sx S Sy = " x +" y 2 + " x %" y 2 = " x +" y 2 ( cos 2 # + sin 2 #) ( cos 2 # % sin 2 #) + 2$ xysin# cos# + " x %" y 2 cos2# + $ xy sin2# 2sin" cos" = sin2" cos 2 " # sin 2 " = cos2"

36 n ( ) " n = # x sin$ cos$ %# y sin$ cos$ %" xy cos 2 $ % sin 2 $ = # x %# y sin2$ %" xy cos2$ 2 S Sx Sy

37 n " n = " x +" y 2 " n = # x $# y 2 + " x #" y cos2$ 2 + % xy sin2$ sin2% $ " xy cos2%

38 3 $ " x # xy # zx ' " & ) 1, " 2, " 3 &# xy " y # yz ) 3 & %# zx # yz " ) z ( (" x #" ) $ xy $ zx $ xy " y #" ( ) $ yz ( ) $ zx $ yz " z #" = 0

39 " 3 #" 2 (" x +" y +" z ) #" #( 2 " x " y +" y " z +" z " x )+ $ xy + $ 2 yz + $ 2 zx { } ( ) = 0 2 # " x " y " z #" x $ yz #" y $ 2 zx #" z $ 2 xy + 2$ xy $ yz $ zx " 3 # J 1 " 2 # J 2 " # J 3 = 0 J 1 = " x +" y +" z 2 J 2 = #(" x " y +" y " z +" z " x ) + $ xy + $ 2 yz + $ 2 zx 2 J 3 = " x " y " z #" x $ yz #" 2 y $ zx #" 2 z $ xy + 2$ xy $ yz $ zx J 1, J 2, J 3

40 J 1 = " 1 +" 2 +" 3 ( ) J 2 = # " 1 " 2 +" 2 " 3 +" 3 " 1 J 3 = " 1 " 2 " 3

41

42

43

44 d d d" 0 = dl l 0 d" = dl l " 0 = l # l 0 l 0 " = l dl $ # l = ln l 0 & l % l 0 ' ) (

45 " 0 = l # l 0 l 0 # " = ln% l $ l 0 & ( ' " 0 # "

46 " &% & #% $% $%% # $ ' ' $ %! (! (!%! dx, dy P P X X x P : x X : x + dx P! : x + u X!!: x + dx + u! x = x + dx + u + "u "x dx

47 "! & &% #% # $ ' ' $ % (! (!% $% $%% PX = dx # P' X" = % x + du + u + "u $ "x dx & () x + u ' = dx + "u "x dx x P' X" # PX " x = PX %! ' dx + $u & = $x dx ( *# dx ) dx y " y = #v #y ( ) = $u $x

48 " ' " % &% &%% ) " %! " ("% &!! #% $% $%% (" ) " # $ ' ' $ %! (! (!% )! %! " xy =# x +# y X' X" = P' X" + Y'Y" P'Y" % ' v + $v & = $x dx ( % * + v u + $u ) $y dy ( ' * + u & ) % ' 1+ $u + ( % * dx 1+ $v ( & $x) ' * dy & $y), $v $x + $u $y

49 $ &" x = #u #x & %" y = dv & #y & " z = #w '& #z $ &" xy = #v #x + #u #y & %" yz = #w #y + #v & #z " zx = #u #z + #w '& #x

50 " xy = " yx = # xy 2 " yz = " zy = # yz 2 " zx = " xz = # zx 2 # " x " xy " xz & % ( " = %" yx " y " yx ( % $ " zx " zy " ( z ' #" 11 " 12 " 13 & % ( = " 21 " 22 " 23 % ( $ " 31 " 32 " 33 ' " ij = 1 $ #u i + #u ' j 2& %#x j #x ) i (

51 # " x " xy " zx & % ( " = %" xy " y " yx ( % $ " zx " yz " ( z ' #" 1 0 0 & % ( 0 " 2 0 % ( $ 0 0 " 3 '

52