7章 構造物の応答値の算定

Similar documents

untitled

Qx-Qy2 cbmo=arctanv ax=-arctanzzxylay=ax+ r am-(ax+a) RS-1ksineccosImo2S(sin-sinmo)2 RT-ks sin bsincbmosin -sin qs mo Rc-1sinsinImodam2sin-sinoUm dys=

LOL ONNRION RRISIS OF RQUK RSPONS OF KO ROUN akashi kiyoshi, ept. o ivil ngrg., Kumamoto Univ., Kunihiko Fuchida, ept.

20 Microsoft Excel Adobe Acrobat Reader

CHARACTERISTICS OF LOVE WAVE GENERATED AROUND A DIPPING BASEMENT By Susumu NAKAMURA, Iwao SUETOMI, Shinichi AKIYAMA and Nozomu YOSHIDA Source mechanis

6) , 3) L60m h=4m 4m φ19 SS400 σ y = kn/mm 2 E = 205.8kN/mm 2 Table1 4) 7 Fig.1 5 7) S S 2 5 (Fig.2 ) ( No.1, No.2, No.3, No.4)

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

untitled

JFE.dvi

-37-


Microsoft Word - CTCWEB講座(4章照査)0419.doc

7章.doc

144 福 武 松 岡 Fig. 2 Definition of stresses and strain increments, Photo 1 Fig. 3 The resultant strain shear strain T and cumulative Multi-directional s

<4D F736F F D DB82CC88F892A38BAD937893C190AB76355F8D5A897B8CE3325F2E646F63>

A2, Vol. 69, No. 2 Vol. 16, I_237-I_246, Analytical Investigation of Shear Force Distribution of Perfobond Strip with Plural Perforations * ** *

(a) (b) (c) (d) (b') (c') (d') Fig. 1 Undrained shear strength of soft clay ground during consolidation Fig. 2 Illustration for an one-dimensional con

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

charpter0.PDF

untitled


NETES No.CG V


I II III IV V

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

日本内科学会雑誌第102巻第4号

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

untitled

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)


SICE東北支部研究集会資料(2012年)

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

Key Words: average behavior, upper and lower bounds, Mori-Tanaka theory, composites, polycrystals


untitled

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

Twist knot orbifold Chern-Simons

B

Vol Topics Technical Reports Kozo Keikaku Engineering, Inc

鉄筋単体の座屈モデル(HP用).doc

Microsoft Word doc

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

untitled

卒業論文


橡表紙参照.PDF

国土技術政策総合研究所 研究資料


a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

Q & A Q A p

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

43-60論文-濱田.indd

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

01.Œk’ì/“²fi¡*

untitled

Microsoft Word - mitomi_v06.doc

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

紙2003

28 Horizontal angle correction using straight line detection in an equirectangular image

1

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

SEJulyMs更新V7

Flow Around a Circular Cylinder with Tangential Blowing near a Plane Boundary (2nd Report, A Study on Unsteady Characteristics) Shimpei OKAYASU, Kotar

日歯雑誌(H19・5月号)済/P6‐16 クリニカル  柿木 5

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

bc0710_010_015.indd

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±


IPSJ SIG Technical Report Vol.2013-GN-87 No /3/ Research of a surround-sound field adjustmen system based on loudspeakers arrangement Ak


, 3, STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO

( ) ,

03.Œk’ì

untitled

2006 No.110

しろうさぎ43号_cs5.indd

DEIM Forum 2012 E Web Extracting Modification of Objec

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

untitled

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

1

OHO.dvi

総研大恒星進化概要.dvi

<332D985F95B62D8FAC93638BA795DB90E690B62E706466>

(1) 2

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

DocuPrint C5450 ユーザーズガイド

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

1

首都直下地震における地方財政への影響

Present Situation and Problems on Aseismic Design of Pile Foundation By H. Hokugo, F. Ohsugi, A. Omika, S. Nomura, Y. Fukuda Concrete Journal, Vol. 29

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

Transcription:

(1) 2 (2) 5.4 5.8.4 2 5.2 (3) 1.8 1) 36

2) PS 3) N N PS 37

10 20m N G hg h PS N (1) G h G/G 0 h 3 1) G 0 PS PS 38

N V s G 0 40% Gh 1 S 0.11% G/G 0 h G/G 0 h H-D 2),3) R-O 4) 5),6),7) τ G 0 γ = 0 r 1 ( ) 1+ G0 γ / τ f τ = G γ α G 0 τ γ : (>0), r: (1) 4 γ γ γ 2 = 1 1 1 π + r r γ γ + r 2 r 1 G h l n γ h = α π π 1 r + 1 G0 G G 0 G 1 = G0 1+ γ /γ r G G = 1 0 τ = τ 1+ α τ a / a r y r 1 ( τ ) y f G 0 G 0 1 2 y 1 G 0 f /2 0 r y (1+) 39

(2) 8) 10m 2m 2.5m 9) 1~2m 1~2m (3) V s =3.0km/s V s =700m/s V s =300m/s 10) EE 1) 3 pp.5.2-5.62000. 2) Kondner, R.. : Hyperbolic Stress-strain ResponseCohesive SoilsProc. ASCESM1pp.115-153 1963. 3) MODIFIED HARDIN-DRNEVICH 33 pp.1181-1184,1979. 4) Jennings, P. C. : Periodic Response of a General Yielding Structure, Proc. ASCEEM2pp.131-1631964 5) GHE 25 1999. 6) Wakai, A., Ugai, K., i, Q., Matsuo, O. and Shimazu, T. : Dynamic elasto-plastic analysis of the sliding displacement during earthquakeproc. Int. Sym. on Deformation and Progressive Failure in Geomechanics pp.635-640, 1997. 7) 10 pp.805-8101999. 8) pp.219-2241989. 9) : pp.102,1997. 10) pp.438,1987. 40

(1) 5.5 (2) (3)(1) (2) (1) D E F D E F D E 1) 2) - F (2) 0 3m 20kN/m 2 0.2kgf/cm 2 41

1) 1997. 2) () 1999. (1) (2) (3) (4) D 50 10% D Uc Fc Pc Gc (5) Ip w (6) 1),2) (1) 10m (2) 20m (3) D 50 10mm 10% D 1mm (4) 35% Fc 30% Pc 15% Ip 15 (1993) (1995) 1 42

2 1) 1997. 2) () 1999. 5.5.1 (1) (2) (3) (4) 4 F (1) F 1) F 5.5.2-1 1.0 F F F R F = 5.5.2-1 F R R N ( ) N 43

---- ---- ---- ---- ---- 20 K 0 K 0 44

K 0 K 0 N K 0 N 2) a) R (1995) 1) 2) 1) 2) 20 5% 1015% 15 20 230 R (dilatancy ) (Cyclic Mobility) Cyclic Mobility 45

b) max max ' max max V σ τ = 5.5.2-2 max τ ' σ V F 5.5.2-3 max 1)4) v v d g r ' max max σ σ α = 5.5.2-3 r d r =1.00.015z d max α g V σ ' σ V 1964 1983 200gal r max max d 5) Spectrum Intensity (SI) 6),7) 3) a R F b) 46

(2) 1) 1997. 2) () 1999. 3) 1960. 4) 1988. 5) 23 pp. 675-6781995. 6) SI 28 pp. 1325-13281993. 7) N0.610/-45pp. 83-961998. 5.5.2 F (1) P 1) 5.6-1 P F 5.6-1 ( )( )dz z F P = 20 0 0.5 10 1 z (m) 1 ( F F 1 )=0 47

2 5.6-1 100.5z F F F P F P 1 ( ) P P 1 = 0 P 0 5 < P 5 15 < P P < 15 P (2) 1 2 N 10 25 1) (D r ) (F ) (γ max ) (ε vd ) 2) 48

3) 4) 5) 6) ( ) FEM DEM 7) 8) 1) Vol.28No.4pp.23291980. 2) Nagase, H. and Ishihara, K.iquefaction-induced compaction and settlement of sand during earthquakes, Soils and Foundations, Vol. 28, No. 1, pp. 65-76, 1998. 3) Peiris, T. A. and Yoshida, N.Modeling of volume change characteristics of sand under cyclic lording, Proc., Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico, Paper No. 1087, 1996. 4) 52 -App. 222-2231998. 5) 1995. 6) 52 -App. 246-2471998. 7) 1994. 8) 52 pp. 612-6131989. 49

5.5 m 1983 1) 2% 5m 2),3) 1923 4 1964 12m 2) 1906 2m 3) 2),3),4) 1995 5) 2 1 H11.10 15 P 1/100 50

H8.12 2 5m 100m 5m 1) : 376-6pp.211-220,1986. 2) Hamada, M. and O Rourke, T. D. (Eds.): Case study of liquefaction and lifeline performance during past earthquake,vol.1 Japanese case studies, Technical Report NCEER-92-001,1992. 3) O Rourke, T. D. and Hamada, M.(Eds.): Case study of liquefaction and lifeline performance during past earthquake,vol.2 Japanese case studies United States case studies, Technical Report NCEER-92-002,1992. 4) 376-6pp. 221-229, 1986. 5) Hamada, M., Isoyama, R. and Wakamatsu, K.: iquefaction-induced Ground Displacement and Its Related damage to ifeline Facilities, Special Issue of Soils and Foundations, Japanese Geotechnical Society, pp.81-97,1996 (1) m 1),2) 3) 51

(i) FEM 4) 5) (ii) 6) (i) (ii) H11.10 (a) 5.7.2-1 D g H = 2 10 α m D g H m α % 52

D Dg = 2 4 2 20. 10 + 49. 10 + 10. H H 5.7.2-2 D (m) (m) (m) H (m) (b) D = ( + ' ) 21H 2 θ 5.7.2-3 32 / H H N D H ' H θ N 17. N N = 5.7.2-4 ' σ / 100 + 0. 7 σ v ' 1997.3 (a) v ( 100m ) 7090% 1.22.0% (b) 1.01.5% 1.01.5% δ g = k H θ 5.7.2-5 δ (m) g H : (m) θ (%) k 7090% 0.770.96 53

1997.8 80% (a) ( 100m ) ( )1.5% (b) 100m ( )1.2% 2 1999.9 (a) = α 10 2 H w 5.7.2-6 H w F d (b) = 250 5.7.2-7 ( N 1 ) av ( N1) av (m) N 98kN/m 2 N (c) δ = e 3. 35X 5.7.2-8 δ (m) X (m) (d) 6.37X S = 0.8 e 5.7.2-9 S (m) (2) 54

H8.12 (a) q N q N = C C K γ x 5.7.2-10 S N P N (tf/m C s S (s50m C =1.050ms100mC =0.5100msC =1.0) S S S C N K P N ( P 5C =0.05P 20 =(0.2 P -1)/320P C =1) N γ (tf/m 3 ) x (m) q = C C H + γ ( x H )} S { N N N 2 ) CN γ 5.7.2-11 N q (tf/m C (=0.3) H N (m) γ (tf/m 3 ) 2 ) 1) pp.53-701998 2) - - pp.12-171995. 3) No.596/-43,189-208 1998. 4) 47-6 55

1999. 5) 7 NO.813PP253-2791995. 6) 2 pp.309-312. 56

1 3),4) 1) :,pp.87,1997. 2) :, pp.70,1999. 3) : pp.76-81,1999. 4) Vol.41No.1pp.20-251999. 10-3 10-4 1/2 1 57

SHAKE 1) max eff eff = max 5.8.2-1 G h 5.8.2-1 0.70 0.40 6030% 2) 0.65 3) G h 10-3 4),5) 6) 7) 2 3) 6) 1) 2) 1) 10-2 2) (5.8.2-1) 58

1) Schnabel, P.B.,ysmerJ. and Seed,H.B.SHAKE A Computer program for earthquake response analysis of horizontally layered sites, Report No. EERC72-12, University of California, Berkeley, 1972 2), 19 pp.105-108, 1987. 3) pp.253-256, 1996. 4),,, 13 2 pp.29-34, 1999. 5) SHAKE pp.14-311994. 6),pp.72-73,1999. 7),, No.493/-27pp.49-58,1994. 0.5 1) 1),2),3) 4),5) 6),7) 2) 59

8),9) eff N eq u/ ' 0 G h 10) 1) No.505/ pp. 49-58, 1994. 2) IQCA pp.165-1741993. 3) Tobita, Y. and Yoshida, N. An isotropic bounding surface model for undrained cyclic behavior of sand: imitation and Modification, Proc., International Symposium on Pre-failure Deformation Characteristics of geomaterials, Sapporo, pp.457-462, 1994. 4) ee, M.K.W, and Fin, W.D.. : DESRA-2, Dynamic Efficient Stress Program for Earthquake Response Anarysis of Soil Deposits with Energy Transmitting Boundary Include Assesment of iquefaction Potential, The University of British VolumbiaFaculty of Applies Science1985. 5) AISS pp.125-1341993. 6) Ishihara, K. and Towhata, I. : One-dimensional Soil Response Analysis during Earthquake Based on Effective Stress Method, Journal of the Faculty of EngineeringVol.XXXX,The University of Tokyo, pp.656-700, 1991. 7) 29 4 pp.27-561990. 8) 23 pp.941-9421988. 9) pp.982-9851998. 10) pp.93-981998. (1) 2 3 (2) (1) 1) 60

2 1995 2) 2 1 10 100m (FEM) (BEM) 61

2 5 (2) 1/41/6 1/8 62

1) 1991. 2) Vo pp.86-92 1996. 3) () 4) )1986. 5) 2000. 63