1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

Similar documents
2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

第5章 偏微分方程式の境界値問題

takei.dvi

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

Lecture 12. Properties of Expanders

数学概論I

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,


xia2.dvi

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

TOP URL 1

meiji_resume_1.PDF

陦ィ邏・2

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x


TOP URL 1

ver.1 / c /(13)

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

( ) Loewner SLE 13 February

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

日本内科学会雑誌第102巻第4号

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

( ) ) AGD 2) 7) 1

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

i 18 2H 2 + O 2 2H 2 + ( ) 3K

³ÎΨÏÀ

Lebesgue Fubini L p Banach, Hilbert Höld

『共形場理論』

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

QMII_10.dvi

量子力学 問題

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

Ł\”ƒ-2005

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C

第90回日本感染症学会学術講演会抄録(I)

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

2000年度『数学展望 I』講義録

I , : ~/math/functional-analysis/functional-analysis-1.tex


2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

MS#sugaku(ver.2).dvi

( ) (, ) ( )

Introduction 2 / 43

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Lebesgue可測性に関するSoloayの定理と実数の集合の正則性=1This slide is available on ` `%%%`#`&12_`__~~~ౡ氀猀e

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

現代物理化学 2-1(9)16.ppt


I = [a, b] R γ : I C γ(a) = γ(b) z C \ γ(i) 1(4) γ z winding number index Ind γ (z) = φ(b, z) φ(a, z) φ 1(1) (i)(ii) 1 1 c C \ {0} B(c; c ) L c z B(c;

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

all.dvi


(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

II Brown Brown

ohpmain.dvi

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

X x X X Y X Y R n n n R n R n 0 n 1 B n := {x R n : x < 1} B n := {x R n : x 1} 0 n := (0,..., 0) R n R n 2 S 1 S 1 3 B 2 S 1 (manifold) 2 ( ) n 1 n p

NewsLetter-No2

( ) 7 29 ( ) meager (forcing) [12] Sabine Koppelberg 1995 [10] [15], [2], [3] [15] [2] [3] [11]

2

日歯雑誌(H22・7月号)HP用/p06‐16 クリニカル① 田崎

Gmech08.dvi

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

untitled

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

プログラム

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

日歯雑誌(H19・5月号)済/P6‐16 クリニカル  柿木 5

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

Transcription:

.. IV 2012 10 4 ( ) 2012 10 4 1 / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25

1. Ω ε B ε t u ε u ε = 0 in (0, T) Ω ε (P ε ) Bu = 0 on (0, T) Ω ε u ε (0) = u ε in Ω 0 ε u ε (t, x) lim ε 0 u ε lim σ( B ), ε 0 Ω ε lim ( B z) 1 ε 0 Ω ε ( ) 2012 10 4 3 / 25

1. Quantum Graph 1930 ( ) 2012 10 4 4 / 25

1. [ 92 Hale and Raugel] G 1 G Y ( ) 2012 10 4 5 / 25

1. 2. 3.. 4 ( ) 2012 10 4 6 / 25

2.1 G = (V, E) V = {v i } i I ( I < + ) E = {e j } j J ( J < + ) l j (0, + ) e j (i.e. e j [0, l j ] = {s R 0 s l j }) ( ) 2012 10 4 7 / 25

2.1 G = (V, E) V = {v i } i I ( I < + ) E = {e j } j J ( J < + ) l j (0, + ) e j (i.e. e j [0, l j ] = {s R 0 s l j }) L 2 (G) := {ψ : G C ψ j := ψ e j L 2 (e j ) ( j J)} l j ψ j L 2 (e j ) ψ j 2 := ψ L 2 j (s) 2 ds < + (e j ) ψ, ϕ L 2 (G) := l j j J 0 0 ψ j (s) ϕ j (s) ds ( ) 2012 10 4 7 / 25

2.2 G H = d2 ds 2 with boundary conditions on each vertex 1 (Dirichlet condition) D(H) = {ψ H 2 (G) ψ(v) = 0 (v V)} 2 (Neumann condition) D(H) = {ψ H 2 (G) ψ (v) = 0 (v V)} ( ) 2012 10 4 8 / 25

2.3 1 3 (Kirchhoff condition) ψ C(G) N dψ j ds (0) = 0 j=1 dψ j ds (l j) = 0 ( j = 1,..., N) O G ( ) 2012 10 4 9 / 25

2.3 3 (Kirchhoff condition) ψ C(G) N dψ j ds (0) = 0 j=1 dψ j ds (l j) = 0 ( j = 1,..., N) 4 (δ-type condition) ψ C(G) N dψ j (0) = αψ(0) ds j=1 dψ j ds (l j) = 0 ( j = 1,..., N) α R G O ( ) 2012 10 4 10 / 25

3.1 Ω Q[u, w] = u w dx Ω ( ) 2012 10 4 11 / 25

3.1 Ω Q[u, w] = u w dx Ω u C 2 (Ω) u ν = 0 on Ω Q[u, w] = Ω ( u ν ) w ds x u w dx = u w dx Ω Ω Q[u, w] = u, w L 2 ( ) 2012 10 4 11 / 25

3.1 H = L 2 (Ω) Q[u, w] = u w dx Ω D( N ) := {u Ω H2 (Ω) u ν = 0 u, w D(Q) = H 1 (Ω) on Ω} Q[u, w] = u, w H (u D( N Ω ), w H1 (Ω)) ( ) 2012 10 4 12 / 25

3.1 H = L 2 (Ω) Q[u, w] = u w dx Ω D( N ) := {u Ω H2 (Ω) u ν = 0 u, w D(Q) = H 1 (Ω) on Ω} Q[u, w] = u, w H (u D( N Ω ), w H1 (Ω)) φ(u) = Q[u, u] φ Ω Neumann Laplacian N Ω φ N Ω ( ) 2012 10 4 12 / 25

3.2 Kirchhoff Laplacian Q 0 [ψ, ϕ] = N j=1 l j 0 ψ (s) j ϕ (s) ds j ψ, ϕ H 1 (G) = { ψ C(G) ψ j H 1 (e j )} ψ Kirchhoff N { Q 0 [ψ, ϕ] = ψ (s) ϕ s=l j l j } j j(s) ψ (s) ϕ j j(s) ds = j=1 l j N j=1 0 s=0 ψ j (s) ϕ j(s) ds 0 Q 0 d2 ds 2 = ψ, ϕ L 2 (G) with ψ C(G), e j E v dψ j (v) = 0 (v V) ds ( ) 2012 10 4 13 / 25

. Definition 3.3 Mosco [cf: 69 Mosco]. H 2 Φ ε, Φ : H (, + ] Φ ε Φ Mosco 2 1. u ε u in H weakly = Φ(u) lim inf Φ ε (u ε ). ε +0 2. u H, u ε H s.t. u ε u strongly, Φ(u) = lim Φ ε (u ε ) ε +0 y H = R, Φ ε (x) = Φ(x) = x x 2 + ε 2 Φ ε ε Φ 0 x ( ) 2012 10 4 14 / 25

. Theorem 3.3 Mosco [cf: 69 Mosco]. 2 Φ ε A ε 1. Φ ε Φ Mosco 2. e t A ε e t A strongly 3. (z A ε ) 1 (z A) 1 strongly (Im z 0) e t A A (1- ) (z A) 1 A. ( ) 2012 10 4 15 / 25

4.1 Ω ε Neumann Laplacian dµ ε = 1 ωε n 1 dx φ ε : H ε = L 2 (Ω ε, dµ ε ) [0, + ] φ ε (u) = Q ε [u, u] u 2 dµ ε if u H 1 (Ω ε, dµ ε ) = Ω ε + otherwise φ ε ε +0 ωε n 1 ε n 1 Ω ε ( ) 2012 10 4 16 / 25

4.2 Gromov-Hausdorff [cf: 03 Kuwae-Shioya] f ε : Ω ε G Gromov-Hausdorff ( Ωε, O, dµ ε = dx/(ωε n 1 ) ) (G, O, ds) (ε +0) lim ψ f ε dµ ε = ψ ds ε +0 Ω ε G = ψ C 0 (G) N j=1 l j 0 ψ j (s) ds O O Ω ε G ( ) 2012 10 4 17 / 25

. 4.3 Mosco [cf: 03 Kuwae-Shioya] Definition. (X ε, dm ε ) (X, dm) Gromov-Hausdorff H ε = L 2 (X ε, dm ε ) H = L 2 (X, dm) 2 Φ ε : H ε (, + ] Φ : H (, + ] Φ ε Φ Mosco 2 1. H ε u ε u H weakly = Φ(u) lim inf Φ ε (u ε ). ε +0 2. u H, u ε H ε s.t. u ε u strongly, Φ(u) = lim Φ ε (u ε ) ε +0 u ε u strongly lim u ε u f ε 2 dm ε = 0 ε +0 X ε f ε : X ε X ( ) 2012 10 4 18 / 25

4.4 Mosco [cf: 03 Kuwae-Shioya]. Theorem. 2 Φ ε A ε 1. Φ ε Φ Mosco 2. e t A ε e t A strongly 3. (z A ε ) 1 (z A) 1 strongly (Im z 0) e t A A (1- ) (z A) 1 A. ( ) 2012 10 4 19 / 25

4.5 φ ε : L 2 (Ω ε, dµ ε ) [0, + ] φ : L 2 (G) [0, + ] φ ε (u) = u 2 dµ ε if u H 1 (Ω ε, dµ ε ) Ω ε φ(ψ) = N l j j=1 0 ψ j (s) 2 ds if ψ H 1 (G) H 1 (G) = { ψ C(G) ψ j H 1 (e j ) ( j = 1,..., N)} O O Ω ε G ( ) 2012 10 4 20 / 25

4.6. Theorem. φ ε φ ε +0 Mosco. Ω ε Neumann. Laplacian G Kirchhoff Laplacian φ ε (u) = u 2 dµ ε if u H 1 (Ω ε, dµ ε ) Ω ε N l j φ(ψ) = ψ j (s) 2 ds if ψ H 1 (G) j=1 0 H 1 (G) = { ψ C(G) ψ j H 1 (e j ) ( j = 1,..., N)} O O Ω ε G ( ) 2012 10 4 21 / 25

4.6. Theorem. φ ε φ ε +0 Mosco. Ω ε Neumann. Laplacian G Kirchhoff Laplacian V C 0 (R n ), V 0, V ε (x) = (1/ε)V(x/ε) C V V mass φ ε (u) = u 2 dµ ε + Ω ε V ε u 2 dµ ε Ω ε φ(ψ) = N l j j=1 0 φ ε φ Mosco ψ j (s) 2 ds + C V ψ(o) 2 ( ) 2012 10 4 21 / 25

Kirchhoff B.C. Neumann B.C. ( ) 2012 10 4 22 / 25

{u ε } ε>0 sup {Q ε [u ε ] + u ε 2 } < + ε>0 L 2 (Ω E,dµ ε ) u ε k ψ D j,ε D 1,ε Ω ε O J ε D 3,ε D 2,ε w ε j (y) := uε D j,ε (y 1, εy ) y = (y 1, y ) (0, l j ) B 1 sup ε>0 w ε j H1 < +, lim y wε ε 0 j L 2 = 0 w ε k j ψ j ( ) 2012 10 4 23 / 25

ψ j G ψ ψ D(Q 0 ) = {ψ C(G) ψ j H 1 (e j )} J ε v ε (z) := u ε Jε (εz) (z J = ε 1 J ε ) lim z v ε L 2 = 0 v ε C ε : const ε 0 D j,ε J ε D 1,ε Ω ε O J ε D 3,ε D 2,ε ψ j (0) = lim k C ε k ψ C(G) ( ) 2012 10 4 24 / 25

1. H. Attouch, Variational Convergence for Functions and Operators, 1984. 2. G. Dal Maso, An Introduction to Γ-Convergence, 1993. 3. N. Kenmochi, Monotonicity and compactness Methods for Nonlinear Variational Inequalities, Handbook of Differential Equations, Stationary Partial Differential Equations, Vol. 4, ed. M. Chiopt, Chapter 4, 203-298, North Holland, Amsterdam, 2007. 4. K. Kuwae and T. Shioya, Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry, Comm. Anal. Geom., 11 (2003), 599 673. 5. U. Mosco, Convergence of convex sets and of solutions variational inequalities, Advances Math., 3(1969), 510-585. ( ) 2012 10 4 25 / 25