変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

Similar documents
応力とひずみ.ppt

73

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


all.dvi

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

all.dvi

s s U s L e A = P A l l + dl dε = dl l l

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

Gmech08.dvi

A

all.dvi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


Part () () Γ Part ,

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

pdf

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

untitled

meiji_resume_1.PDF

i

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

i 18 2H 2 + O 2 2H 2 + ( ) 3K

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

1.1 1 A

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

TOP URL 1

( ) Loewner SLE 13 February

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =


H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

sec13.dvi

Untitled

Gmech08.dvi

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb


x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

st.dvi

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1


( ) ( )

II 2 II

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

TOP URL 1

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

, = = 7 6 = 42, =

A

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

LLG-R8.Nisus.pdf

dvipsj.8449.dvi

Acrobat Distiller, Job 128

gr09.dvi

8.3 ( ) Intrinsic ( ) (1 ) V v i V {e 1,..., e n } V v V v = v 1 e v n e n = v i e i V V V V w i V {f 1,..., f n } V w 1


Z: Q: R: C: 3. Green Cauchy

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)


nakata/nakata.html p.1/20



Microsoft Word - 11問題表紙(選択).docx

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ )

.....Z...^.[ \..

note1.dvi

96 7 1m = N 1A a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

液晶の物理1:連続体理論(弾性,粘性)

TOP URL 1

『共形場理論』

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

Transcription:

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z + dz + w + dw) P Qのように近接する2点間 の伸び 回転から固体の変形 を論じることができる ひずみ成分 点 P の変位 (u, v, w) 点 Q の変位 (u + du, v + dv, w + dw) u u u u + du = u + dx + dy + dz y z v v v v + dv = v + dx + dy + dz y z w w w w + dw = w + dx + dy + dz y z 37

x x x + x x x + u(x) x + x + u(x) + u(x) 38

x x x + x x x x + u(x) x + x + u(x) + u(x) ε(x) = x x x = ( x + u(x) ) x x = u(x) x ε = du dx 39

D D B A C B A C B x + dx y z B x + dx + u + ( u/)dx y + v + ( v/)dx z + w + ( w/)dx ds x = ( 1 + u ) 2 + ( v ) 2 + ( ) w 2 dx ε x = ds x dx dx = ( 1 + u ) 2 + ( v ) 2 + ( w ) 2 1 u 40

D D B A C B A C ε x = u ε y = v y ε z = w z 41

dy dx θ 1 tan θ 1 = θ 2 tan θ 2 = ( v + v ) dx v dx ( u + u ) y dy u dy = v = u y γ xy = θ 1 + θ 2 = u y + v 42

z ω z = 1 2 ( v u ) v x y ω x = 1 ( w 2 y v ) z ω y = 1 ( u 2 z w ) ω z = 1 ( v 2 u ) y 43

du dv dw du = u u u dx + dy + y z dz = u { ( 1 u dx + 2 y v ) + 1 ( u 2 y + v )} dy { ( 1 u + 2 z w ) + 1 ( u 2 z + w )} dz ( = ε x dx + ω z + 1 ) ( 2 γ xy dy + ω y + 1 ) 2 γ zx dz dv dw du dv dw = ε x γ xy /2 γ zx /2 γ xy /2 ε y γ yz /2 γ zx /2 γ yz /2 ε z dx dy dz + 0 ω z ω y ω z 0 ω x ω y ω x 0 dx dy dz 44

ε ij = 1 2 (u i, j + u j,i ) = = ε x γ xy /2 γ zx /2 γ xy /2 ε y γ yz /2 γ zx /2 γ yz /2 ε z 1 2 1 2 u ( v + u y ( w + u z ) ) ε xx ε xy ε xz ε yx ε yy ε yz ε zx ε zy ε zz ε x γ xy γ zx γ xy ε y γ yz γ zx γ yz ε z 1 2 1 2 ( u y + v v y ( w y + v z = ) ) 1 2 1 2 ( u z + w ( v z + w y w z ε xx ε yx ε zx ε xy ε yy ε zy ε xz ε yz ε zz ) ) 45

D D V = dxdydz B A C B A C V (1 + ε x ) dx (1 + ε y ) dy (1 + ε z ) dz = (1 + ε x + ε y + ε z + ε x ε y + ε y ε z + ε z ε x + ε x ε y ε z ) dxdydz e = V V V = ε x + ε y + ε z 46

ε = 1 3 (ε x + ε y + ε z ) = 1 3 e ε x γ xy γ zx γ xy ε y γ yz γ zx γ yz ε z = ε x 1 3 e γ xy γ zx γ xy ε y 1 3 e γ yz γ zx γ yz ε z 1 3 e + 1 3 e 0 0 0 e 0 0 0 e 47

48

σ x σ x x σ y = σ z = τ xy = τ yz = τ zx = 0 σ x = ε x y z σ x > 0 ε y 0, ε z 0 ε y, ε z ε x ε x ε y = νε x, ε z = νε x ν 0 50

(B) x y z (A) (A) x? σ x σ x x (A) σ x = ε x σ x σ x x (B) σ x = ε x 51

γ C τ δ C τ D D τ l γ γ tan γ = CC AC = δ l τ A τ A τ = Gγ G G ν 2G = 1 + ν 52

ε x = σ x ν σ y ν σ z = 1 + ν σ x ν (σ x + σ y + σ z ) ε y = σ y ν σ x ν σ z = 1 + ν σ y ν (σ x + σ y + σ z ) ε z = σ z ν σ x ν σ y = 1 + ν σ z ν (σ x + σ y + σ z ) γ xy = τ xy G γ yz = τ yz G γ zx = τ zx G = 2(1 + ν) = 2(1 + ν) = 2(1 + ν) τ xy τ yz τ zx 53

ε x 1 ν ν 0 0 0 ε y ε z = 1 ν 1 ν 0 0 0 ν ν 1 0 0 0 γ xy 0 0 0 2(1 + ν) 0 0 γ yz 0 0 0 0 2(1 + ν) 0 γ zx 0 0 0 0 0 2(1 + ν) σ x σ y σ z τ xy τ yz τ zx {ε} =[C] {σ } {ε} {σ } [C] 54

σ x σ y σ z τ xy τ yz τ zx = (1+ν)(1 2ν) 1 ν ν ν 0 0 0 ν 1 ν ν 0 0 0 ν ν 1 ν 0 0 0 0 0 0 1 2ν 2 0 0 0 0 0 0 0 0 0 0 0 1 2ν 2 0 1 2ν 2 ε x ε y ε z γ xy γ yz γ zx {σ }=[D] {ε} [D] 55

σ x = (1 + ν)(1 2ν) σ y = (1 + ν)(1 2ν) σ z = (1 + ν)(1 2ν) τ xy = 2(1 + ν) γ xy τ yz = 2(1 + ν) γ yz τ yz = 2(1 + ν) γ yz { (1 ν)εx + νε y + νε z } { νεx + (1 ν)ε y + νε z } { νεx + νε y + (1 ν)ε z } 56

σ x σ y σ z τ xy τ yz τ zx = = (1+ν)(1 2ν) (1+ν)(1 2ν) 1 ν ν ν 0 0 0 ν 1 ν ν 0 0 0 ν ν 1 ν 0 0 0 0 0 0 1 2ν 2 0 0 0 0 0 0 0 0 0 0 0 1 2ν 2 0 1 2ν 2 1 ν ν ν 0 0 0 ν 1 ν ν 0 0 0 ν ν 1 ν 0 0 0 1 2ν 0 0 0 2 0 0 1 2ν 0 0 0 0 2 0 0 0 0 0 0 1 2ν 2 ε x αt ε y αt ε z αt γ xy γ yz ε x ε y ε z γ xy γ yz γ zx γ zx α 1 2ν T T T 0 0 0 57

ε x = 1 + ν σ x ν (σ x + σ y + σ z ) ε y = 1 + ν σ y ν (σ x + σ y + σ z ) ε z = 1 + ν σ z ν (σ x + σ y + σ z ) ε xy = 1 2 γ xy = 1 + ν σ xy ε yz = 1 2 γ yz = 1 + ν ε zx = 1 2 γ zx = 1 + ν σ yz σ zx ε ij = 1 + ν σ ij ν δ ijσ kk 58

ε ij = 1 + ν ε mm = 1 + ν = 1 + ν σ ij ν δ ijσ kk i = j = m σ kk = 1 2ν ε kk σ mm ν δ mmσ kk = 1 + ν σ kk 3ν σ kk = 1 2ν ε ij = 1 + ν σ ij ν 1 2ν δ ijε kk σ mm 3 ν σ kk σ kk = ε kk λ = σ ij = ν (1 2ν)(1 + ν) δ ijε kk + 1 + ν ε ij ν (1 2ν)(1+ν), µ = G = 2(1+ν) (Lamé) 59

σ x x γ xy = γ yz = γ zx = 0 τ xy = τ yz = τ zx = 0 y z 0 ε y = σ y ν σ x ν σ z = 0, σ y = σ z = ν 1 ν σ x ε x = σ x ν σ y ν σ z σ x = (1 ν) (1 + ν)(1 2ν) ε x ε z = σ z ν σ x ν σ y = 0 ε x = (1 + ν)(1 2ν) (1 ν) σ x (1 ν) 0 ν < 0.5 (1 + ν)(1 2ν) 60

{ } σ x = (1 ν)εx + νε y + νε z (1 + ν)(1 2ν) { } σ y = νεx + (1 ν)ε y + νε z (1 + ν)(1 2ν) { } σ z = νεx + νε y + (1 ν)ε z (1 + ν)(1 2ν) τ xy = 2(1 + ν) γ xy, τ yz = 2(1 + ν) γ yz, τ yz = 2(1 + ν) γ yz ε z = γ yz = γ zx = 0 σ x = (1 + ν)(1 2ν) σ y = (1 + ν)(1 2ν) τ xy = 2(1 + ν) γ xy { (1 ν)εx + νε y } { νεx + (1 ν)ε y } σ z 61

σ z = τ yz = τ zx = 0 ε z = ν 1 ν ( εx + ε y ) σ x = σ y = τ xy = (1 + ν)(1 ν) (ε x + νε y ) (1 + ν)(1 ν) (νε x + ε y ) 2(1 + ν) γ xy 62

: σ x = (1 + ν)(1 ν) (ε x + νε y ) σ y = (1 + ν)(1 ν) (νε x + ε y ) τ xy = 2(1 + ν) γ xy ν = ν 1 + ν, Ē = (1 ν 2 ) σ x = σ y = τ xy = Ē (1 + ν)(1 2 ν) Ē (1 + ν)(1 2 ν) Ē 2(1 + ν) γ xy { (1 ν)εx + νε y } { νεx + (1 ν)ε y } 63

σ = 1 3 (σ x + σ y + σ z ) e = ε x + ε y + ε z K = σ x + σ y + σ z = σ = 3(1 2ν) 1 2ν (ε x + ε y + ε z ) 3(1 2ν) e 64

65